SlideShare a Scribd company logo
Nonlinear Frame Finite Elements in OpenSees
Michael H. Scott
Associate Professor
School of Civil and Construction Engineering
OpenSeesDays Users Workshop
Richmond, CA September 26, 2014
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 1 / 40
Types of Nonlinearity
Two sources of nonlinear frame element response:
Material – yielding, strain hardening, crushing of concrete, etc.
Geometry – loss of stability due to loads acting through large
displacements
An analysis can account for each source of nonlinearity
separately, giving four possible approaches
Geometry Linear (GL) Geometry Nonlinear (GN)
Material Linear (ML) ML, GL ML, GN
Material Nonlinear (MN) MN, GL MN, GN
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 2 / 40
Steel Frame Pushover Analysis
σy =36 ksi
E=30,000 ksi
α=0.02
30 ft
Columns: W14x90
αE
ε
σy
σ
E
Vb = 2λ
150 kip 150 kip
300 kip 300 kip
Beams: W18x76
0.67λ
1.33λ
15 ft
15 ft
Simple steel frame model analyzed under four approahces
Relatively large column axial loads will intensify both material
and geometric nonlinear response for demonstration purposes
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 3 / 40
Steel Frame Pushover Analysis
0 10 20 30
0
200
400
600
800
1000
0 5 10 15 20
0
50
100
150
200
ML, GL
ML, GN
MN, GL
MN, GL
MN, GN
MN, GN
Roof Displacement (in)
Roof Displacement (in)
Base
Shear
(kip)
Base
Shear
(kip)
We observe the following:
Material nonlinearity kicks in well before geometric nonlinearity
Geometric nonlinearity allows for prediction of loss of stability for
increasing displacement
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 4 / 40
Section Force-Deformation Response
At each cross-section along a frame element, we must determine
the section forces for any given section deformations
Material nonlinearity eminates from the stress-strain response in
each frame element
Heuristic approach through stress-resultant section models, e.g.,
moment-curvature; or
Integrate stress-strain response via “fiber section” approach
y
z
x
Ai
(yi , zi )
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 5 / 40
Commands for Section Definition
uniaxialMaterial modelName $tag ...
Define uniaxial stress-strain models for use in Bernoulli beam
elements
Elastic, Steel01, Steel02, Concrete01, Concrete02, etc.
nDMaterial modelName $tag ...
Define multiaxial stress-strain models for use in Timoshenko
beam elements
ElasticIsotropic, J2Plasticity, ConcreteMCFT, etc.
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 6 / 40
Commands for Section Definition
General definition of Bernoulli cross-section using patches and
layers of fibers whose stress-strain response is defined by
uniaxialMaterial objects
section Fiber $tag {
patch $type $matTag ...
layer $type $matTag ...
fiber $matTag ...
...
}
Use NDFiber with nDMaterial objects instead of Fiber with
uniaxialMaterial objects for Timoshenko beams
Specific cross-sections obtained with “canned” models
section WFSection2d $tag $matTag ...
section RCSection2d $tag $matTag ...
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 7 / 40
Rectangular Steel Section
Rectangular section with EPP uniaxial stress-strain response
Compute moment-curvature response for increasing number of
fibers
Exact solution for My = fy bd2
/6 and Mp = bd2
/4
b
i
Nfiber
2
1
yi
d
d/2
.
.
.
.
.
.
σ
σy
E
ε
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 8 / 40
Rectangular Steel Section
0 0.2 0.4 0.6 0.8 1
x 10
−3
0
1
2
3
4
x 10
4
0 0.2 0.4 0.6 0.8 1
x 10
−3
0
1
2
3
4
x 10
4
0 0.2 0.4 0.6 0.8 1
x 10
−3
0
1
2
3
4
x 10
4
0 0.2 0.4 0.6 0.8 1
x 10
−3
0
1
2
3
4
x 10
4
Nfiber = 2 Nfiber = 4
Nfiber = 8 Nfiber = 16
Curvature (1/in)
Curvature (1/in)
Curvature (1/in)
Curvature (1/in)
Moment
(kip-in)
Moment
(kip-in)
Moment
(kip-in)
Moment
(kip-in)
Yield
Yield
Yield
Yield
Exact
Exact
Exact
Exact
Computed
Computed
Computed
Computed
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 9 / 40
Reinforced Concrete Section
EPP steel and Concrete01 concrete
Using “canned” RCSection2d command
Confined and unconfined concrete
2 in
2 in
24 in
24 in
Strain, εc
Stress,
f
c
f ′
cc
f ′
cu
εcc εcu
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 10 / 40
Reinforced Concrete Section
Moment-curvature response for increasing levels of axial load
With and without confining effects of transverse reinforcement
Modify the Concrete01 input parameters for confined concrete
0 0.5 1 1.5
x 10
−3
0
5000
10000
15000
Curvature (1/in)
Moment
(kip-in)
ν = 0.0
ν = 0.1
ν = 0.2
ν = 0.3
(c) Without Confining Effects
0 0.5 1 1.5
x 10
−3
0
2000
4000
6000
8000
10000
12000
Curvature (1/in)
Moment
(kip-in)
ν = 0.0
ν = 0.1
ν = 0.2
ν = 0.3
(d) With Confining Effects
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 11 / 40
Numerical Integration of Element Response
For most material nonlinear element formulations, cross-section
response is integrated numerically along the frame element
length in order to determine element force-deformation response
Sections located at discrete points along the element length,
each with a prescribed weight
Highly accurate Gauss-based quadrature commonly used
x1 x2 x3 x4 x5
L
w4
w1 w3 w5
w2
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 12 / 40
Displacement-Based Frame Element
element dispBeamColumn $tag $ndI $ndJ $transfTag Legendre $secTag 2
Strict compatibility
Linear axial and cubic Hermitian transverse displacement fields
Constant axial deformation and linear curvature along element
length
Weak equilibrium
Equilibrium satisfied only at the nodes, not at every section
along the element
Two-point Gauss-Legendre integration along element length
Improve numerical solution by using more elements per member
(mesh- or h-refinement)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 13 / 40
Propped Cantilever
Constant axial load and increasing moment applied at propped
end
Fiber-discretized section response with strain-hardening
stress-strain
Two Gauss-points per element
Investigate refinement for increasing number of elements
ε
σ
E
αE
σy
θ
M
. . .
1 2 Nele
Nele-1
2 fibers each flange
N
100 in
W14x90
10 web fibers
U
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 14 / 40
Global Response
0 0.05 0.1 0.15 0.2
0
5000
10000
15000
−0.4 −0.3 −0.2 −0.1 0
0
5000
10000
15000
0 0.05 0.1 0.15 0.2
0
5000
10000
15000
−0.4 −0.3 −0.2 −0.1 0
0
5000
10000
15000
0 0.05 0.1 0.15 0.2
0
5000
10000
15000
−0.4 −0.3 −0.2 −0.1 0
0
5000
10000
15000
Rotation, θ (rad) Deflection, U (in)
Moment,
M
(kip-in)
Moment,
M
(kip-in)
Moment,
M
(kip-in)
Computed
Exact
Nele = 1
Nele = 1
Nele = 2
Nele = 2
Nele = 4
Nele = 4
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 15 / 40
Local Flexural Response
0 20 40 60 80 100
−1
0
1
2
x 10
4
0 20 40 60 80 100
−5
0
5
10
x 10
−3
0 20 40 60 80 100
−1
0
1
2
x 10
4
0 20 40 60 80 100
−5
0
5
10
x 10
−3
0 20 40 60 80 100
−1
0
1
2
x 10
4
0 20 40 60 80 100
−5
0
5
10
x 10
−3
x (in)
M(x)
(kip-in)
M(x)
(kip-in)
M(x)
(kip-in)
x (in)
κ(x)
(1/in)
κ(x)
(1/in)
κ(x)
(1/in)
Computed
Exact
Nele = 1 Nele = 1
Nele = 2 Nele = 2
Nele = 4 Nele = 4
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 16 / 40
Local Axial Response
0 20 40 60 80 100
−400
−200
0
0 20 40 60 80 100
−0.015
−0.01
−0.005
0
0 20 40 60 80 100
−400
−200
0
0 20 40 60 80 100
−0.015
−0.01
−0.005
0
0 20 40 60 80 100
−400
−200
0
0 20 40 60 80 100
−0.015
−0.01
−0.005
0
x (in)
N(x)
(kip)
N(x)
(kip)
N(x)
(kip)
x (in)
ε
a
(x)
(in/in)
ε
a
(x)
(in/in)
ε
a
(x)
(in/in)
Computed
Exact
Nele = 1 Nele = 1
Nele = 2 Nele = 2
Nele = 4 Nele = 4
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 17 / 40
Steel Frame Pushover Analysis
Investigate refinement of load-displacement response for
increasing number of displacement-based elements per member
σy =36 ksi
E=30,000 ksi
α=0.02
30 ft
Columns: W14x90
αE
ε
σy
σ
E
Vb = 2λ
150 kip 150 kip
300 kip 300 kip
Beams: W18x76
0.67λ
1.33λ
15 ft
15 ft
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 18 / 40
Steel Frame Pushover Analysis
Coarse mesh over-predicts strength – unconservative
Improved solution with refined mesh
0 10 20 30 40
0
50
100
150
200
Nele = 1
Nele = 2
Nele = 4
Roof Displacement (in)
Base
Shear
(kip)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 19 / 40
Force-Based Frame Element
element forceBeamColumn $tag $ndI $ndJ $transfTag Lobatto $secTag $Np
Average compatibility
Nodal displacements are balanced by weighted integral of
section deformations
Complex state determination
Use Gauss-Lobatto integration so that extreme flexural response
captured at element ends
Strong equilibrium
Equilibrum of nodal and section forces satisfied at all points
along element
Constant axial force and linear bending moment in absence of
member loads
Straightforward to include member loads
Improve numerical solution by using more integration points per
element while maintaining mesh of one element per member
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 20 / 40
Propped Cantilever
Constant axial load and increasing moment applied at propped
end
Fiber-discretized section response with strain-hardening
stress-strain
Investigate refinement for increasing number of Gauss-Lobatto
point using one element
ε
σ
E
αE
σy
θ
M
2 fibers each flange
N
100 in
W14x90
10 web fibers
U
1 2 Np-1 Np
. . .
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 21 / 40
Global Response
0 0.05 0.1 0.15 0.2
0
5000
10000
15000
−0.4 −0.3 −0.2 −0.1 0
0
5000
10000
15000
0 0.05 0.1 0.15 0.2
0
5000
10000
15000
−0.4 −0.3 −0.2 −0.1 0
0
5000
10000
15000
0 0.05 0.1 0.15 0.2
0
5000
10000
15000
−0.4 −0.3 −0.2 −0.1 0
0
5000
10000
15000
Rotation, θ (rad) Deflection, U (in)
Moment,
M
(kip-in)
Moment,
M
(kip-in)
Moment,
M
(kip-in)
Computed
Exact
Np = 3
Np = 3
Np = 4
Np = 4
Np = 5
Np = 5
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 22 / 40
Local Flexural Response
0 20 40 60 80 100
−1
0
1
2
x 10
4
0 20 40 60 80 100
−5
0
5
10
x 10
−3
0 20 40 60 80 100
−1
0
1
2
x 10
4
0 20 40 60 80 100
−5
0
5
10
x 10
−3
0 20 40 60 80 100
−1
0
1
2
x 10
4
0 20 40 60 80 100
−5
0
5
10
x 10
−3
x (in)
M(x)
(kip-in)
M(x)
(kip-in)
M(x)
(kip-in)
x (in)
κ(x)
(1/in)
κ(x)
(1/in)
κ(x)
(1/in)
Computed
Exact
Np = 3 Np = 3
Np = 4 Np = 4
Np = 5 Np = 5
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 23 / 40
Local Axial Response
0 20 40 60 80 100
−190.8
−190.8
−190.8
0 20 40 60 80 100
−0.015
−0.01
−0.005
0
0 20 40 60 80 100
−190.8
−190.8
−190.8
0 20 40 60 80 100
−0.015
−0.01
−0.005
0
0 20 40 60 80 100
−190.8
−190.8
−190.8
0 20 40 60 80 100
−0.015
−0.01
−0.005
0
x (in)
N(x)
(kip)
N(x)
(kip)
N(x)
(kip)
x (in)
ε
a
(x)
(in/in)
ε
a
(x)
(in/in)
ε
a
(x)
(in/in)
Computed
Exact
Np = 3 Np = 3
Np = 4 Np = 4
Np = 5 Np = 5
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 24 / 40
Steel Frame Pushover Analysis
Investigate refinement of load-displacement response for
increasing number of Gauss-Lobatto integration points per
element
Maintain one element per member
σy =36 ksi
E=30,000 ksi
α=0.02
30 ft
Columns: W14x90
αE
ε
σy
σ
E
Vb = 2λ
150 kip 150 kip
300 kip 300 kip
Beams: W18x76
0.67λ
1.33λ
15 ft
15 ft
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 25 / 40
Steel Frame Pushover Analysis
Same yield point predicted in all cases
Post-yield stiffness more flexible with fewer integration points
0 10 20 30 40
0
50
100
150
200
Np = 3
Np = 4
Np = 5
Roof Displacement (in)
Base
Shear
(kip)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 26 / 40
Force-Based Plastic Hinge Frame Element
element forceBeamColumn $tag $ndI $ndJ $transfTag HingeRadau $secTagI $lpI
$secTagJ $lpJ $secTagE
or
element beamWithHinges $tag $ndI $ndJ $secTagI $lpI $secTagJ $lpJ $E $A $I
$transfTag
Control integration weights at element ends
Important for strain-softening section response
J
I
x1 x6
L
x2 x3 x4 x5
lpI lpJ
L − 4(lpI + lpJ)
3lpI 3lpJ
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 27 / 40
Reinforced Concrete Bridge Pier
550mm x 550mm square
12 bars, db = 20 mm
40 mm clear cover
V = Base Shear
V , U
P = 0.3f ′
c Ag
L
=
1.65
m
Specimen 7
Tanaka and Park (1990)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 28 / 40
Displacement-Based Elements
Post-peak response is mesh-dependent
Function of element length
0 20 40 60 80
0
200
400
600
800
1
3
6
Displacement (mm)
Base
Shear
(kN)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 29 / 40
Force-Based Element
Post-peak response depends on number of integration points
Function of integration weight at base of column
0 20 40 60 80
0
200
400
600
800
4
5
6
Displacement (mm)
Base
Shear
(kN)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 30 / 40
Force-Based Plastic Hinge Element
Post-peak response controlled by plastic hinge length
lp = 0.22L from empirical equation
0 20 40 60 80
0
200
400
600
800
Displacement (mm)
Base
Shear
(kN)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 31 / 40
Drawback to Force-Based Plastic Hinge Element
For strain-hardening section behavior, post-peak response is too
flexible
0 5 10 15
0
5
10
15
Computed
Exact
Displacement
Load
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 32 / 40
Modeling Recommendations
There’s no silver bullet
Strain-Hardening Section Response
Use mesh of displacement-based elements
Use one force-based elements with 4 to 6 Gauss-Lobatto points
Plastic hinge element not recommended because post-peak
response will be too flexible
Strain-Softening Section Response
Use force-based plastic hinge element
Response with displacement-based elements is mesh dependent
Response with Gauss-Lobatto force-based element depends on
number of integration points
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 33 / 40
Geometric Transformation of Element Response
Element formulation of material nonlinearity inside the basic
system (free or rigid body displacement modes)
Element formulation of geometric nonlinearity outside the basic
system
β
β
I J
I
J
Basic System
Local Coordinate System
∆uly
ul2
ul1
L
ul4
ul5
L + ∆ulx
ul3
ul6
Ln
ub3
ub2
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 34 / 40
Geometric Transformation
geomTransf Linear $tag
Small displacement assumptions in local to basic transformation
Linear transformation of forces and displacements
geomTransf PDelta $tag
Small displacement assumption transformation of displacements
Account for transverse displacement of axial load in equilibrium
relationship
geomTransf Corotational $tag
Fully nonlinear transformation of displacements and forces
Exact in 2D but some approximations in 3D
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 35 / 40
Steel Frame Pushover Analysis
Examine pushover response for different levels of gravity load
σy =36 ksi
E=30,000 ksi
α=0.02
12 ft
12 ft
λ50 kip
λ50 kip
λ100 kip λ100 kip
V
V
Beams: W18x76
Columns: W14x90
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 36 / 40
Steel Frame Pushover Analysis
P − ∆ and Corotational – similar results for lateral displacement
0 20 40 60 80 100
0
100
200
300
400
0 20 40 60 80 100
0
100
200
300
400
0 20 40 60 80 100
0
100
200
300
400
0 20 40 60 80 100
0
100
200
300
400
λ = 1 λ = 2
λ = 3 λ = 4
Roof Disp (in)
Roof Disp (in)
Roof Disp (in)
Roof Disp (in)
Base
Shear
(kip)
Base
Shear
(kip)
Base
Shear
(kip)
Base
Shear
(kip)
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 37 / 40
Steel Frame Pushover Analysis
“Exact” Corotational predicts change in vertical displacement
Important for collapse prediction and post-buckling capacity
0 5 10 15 20
0
100
200
300
400
0 5 10 15 20
0
100
200
300
400
0 5 10 15 20
0
100
200
300
400
0 5 10 15 20
0
100
200
300
400
λ = 1 λ = 2
λ = 3 λ = 4
Roof Disp (in)
Roof Disp (in)
Roof Disp (in)
Roof Disp (in)
Base
Shear
(kip)
Base
Shear
(kip)
Base
Shear
(kip)
Base
Shear
(kip)
P-∆
P-∆
Corotational
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 38 / 40
Elastic Buckling
Use mesh of corotational frame elements to simulate buckling
Simply-supported W14x90, L=100 in, Pcr =29579 kip
L/r=16.26: short column, but demonstrates point
Imperfection applied to nodes, u(t) = 0.1 sin(πx/L) in
0 2 4 6 8 10
0
1
2
3
4
x 10
4
Nele=2
Nele=4
Nele=8
29579 kip
Axial Deflection (in)
Axial
Load
(kip)
Concept works well for inelastic buckling too
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 39 / 40
Summary
Material and geometric nonlinearity treated separately for frame
finite elements in OpenSees
Only scratching the surface – other element formulations and
models of nonlinear stress-strain response
Other Resources
OpenSees wiki
OpenSees message board
OpenSees YouTube videos
Course assignments
M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 40 / 40

More Related Content

PPTX
1 Bligh Sydney Modelling Project
PPT
ch7-mechanical_propertiesبلللللللللل.ppt
PPTX
2016 uhpc iowa_bi-lienar_v1
PPT
Determination of Contact Stress Distribution in Pin Loaded Orthotropic Plates
PPT
Beam column connections
PDF
WilliamLAI - From Rigid to Soft
PDF
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...
PPTX
mechanical properties of metal.pptx
1 Bligh Sydney Modelling Project
ch7-mechanical_propertiesبلللللللللل.ppt
2016 uhpc iowa_bi-lienar_v1
Determination of Contact Stress Distribution in Pin Loaded Orthotropic Plates
Beam column connections
WilliamLAI - From Rigid to Soft
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...
mechanical properties of metal.pptx

Similar to FrameElements.pdf (20)

PDF
3.4 pushover analysis
PPT
Bone Mechanics - Leismer and Walsh 2006
PPTX
Introduction to FEA
PDF
Analytical Study on Flexural Behaviour of RCC Slabs with Concealed Beams usin...
PDF
ResearchPoster_Davis_2013
PDF
Influence of Semi-Rigid Connection on Behaviour of Steel Space Frame Under St...
PDF
EVALUATION OF RESPONSE OF INELASTIC RCC FRAME STRUCTURE
PPTX

Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure

DOCX
Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
PDF
IRJET- Investigation and Analysis of Multiple Cracks in Cantilever Beam by us...
PDF
Opti 222 w4
PPT
Structures and Materials- Section 4 Behaviour of Materials
PPT
Steel_Beams_LTB Design Steel Beams for Flexure
PDF
Poster-CIVE-OTC-v1
PDF
01-ch0666666666 pdf classiterrrrdvdvfvbffh
PPTX
Em321 lesson 08b solutions ch6 - mechanical properties of metals
PDF
Chapter 02.pdf
PPTX
Monitoring of strain and seismic vibrations in structures
PPT
Short Composite Columns - thesis
PPT
Presentation final
3.4 pushover analysis
Bone Mechanics - Leismer and Walsh 2006
Introduction to FEA
Analytical Study on Flexural Behaviour of RCC Slabs with Concealed Beams usin...
ResearchPoster_Davis_2013
Influence of Semi-Rigid Connection on Behaviour of Steel Space Frame Under St...
EVALUATION OF RESPONSE OF INELASTIC RCC FRAME STRUCTURE

Design of Hybrid Steel Fibre Reinforced
Concrete Beams for Flexure

Page 6 of 8Engineering Materials ScienceMetals LabLEEDS .docx
IRJET- Investigation and Analysis of Multiple Cracks in Cantilever Beam by us...
Opti 222 w4
Structures and Materials- Section 4 Behaviour of Materials
Steel_Beams_LTB Design Steel Beams for Flexure
Poster-CIVE-OTC-v1
01-ch0666666666 pdf classiterrrrdvdvfvbffh
Em321 lesson 08b solutions ch6 - mechanical properties of metals
Chapter 02.pdf
Monitoring of strain and seismic vibrations in structures
Short Composite Columns - thesis
Presentation final
Ad

Recently uploaded (20)

PDF
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
PDF
Uptota Investor Deck - Where Africa Meets Blockchain
PDF
Exploring VPS Hosting Trends for SMBs in 2025
PDF
mera desh ae watn.(a source of motivation and patriotism to the youth of the ...
PDF
si manuel quezon at mga nagawa sa bansang pilipinas
PPTX
IPCNA VIRTUAL CLASSES INTERMEDIATE 6 PROJECT.pptx
PPTX
Slides PPTX: World Game (s): Eco Economic Epochs.pptx
PPTX
Database Information System - Management Information System
PPTX
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
PPT
FIRE PREVENTION AND CONTROL PLAN- LUS.FM.MQ.OM.UTM.PLN.00014.ppt
PDF
Slides PDF: The World Game (s) Eco Economic Epochs.pdf
PPTX
Funds Management Learning Material for Beg
PDF
Session 1 (Week 1)fghjmgfdsfgthyjkhfdsadfghjkhgfdsa
PPT
isotopes_sddsadsaadasdasdasdasdsa1213.ppt
PPTX
Internet Safety for Seniors presentation
PPTX
artificial intelligence overview of it and more
PPT
415456121-Jiwratrwecdtwfdsfwgdwedvwe dbwsdjsadca-EVN.ppt
PPTX
SAP Ariba Sourcing PPT for learning material
PPTX
Power Point - Lesson 3_2.pptx grad school presentation
PPTX
Layers_of_the_Earth_Grade7.pptx class by
FINAL CALL-6th International Conference on Networks & IOT (NeTIOT 2025)
Uptota Investor Deck - Where Africa Meets Blockchain
Exploring VPS Hosting Trends for SMBs in 2025
mera desh ae watn.(a source of motivation and patriotism to the youth of the ...
si manuel quezon at mga nagawa sa bansang pilipinas
IPCNA VIRTUAL CLASSES INTERMEDIATE 6 PROJECT.pptx
Slides PPTX: World Game (s): Eco Economic Epochs.pptx
Database Information System - Management Information System
June-4-Sermon-Powerpoint.pptx USE THIS FOR YOUR MOTIVATION
FIRE PREVENTION AND CONTROL PLAN- LUS.FM.MQ.OM.UTM.PLN.00014.ppt
Slides PDF: The World Game (s) Eco Economic Epochs.pdf
Funds Management Learning Material for Beg
Session 1 (Week 1)fghjmgfdsfgthyjkhfdsadfghjkhgfdsa
isotopes_sddsadsaadasdasdasdasdsa1213.ppt
Internet Safety for Seniors presentation
artificial intelligence overview of it and more
415456121-Jiwratrwecdtwfdsfwgdwedvwe dbwsdjsadca-EVN.ppt
SAP Ariba Sourcing PPT for learning material
Power Point - Lesson 3_2.pptx grad school presentation
Layers_of_the_Earth_Grade7.pptx class by
Ad

FrameElements.pdf

  • 1. Nonlinear Frame Finite Elements in OpenSees Michael H. Scott Associate Professor School of Civil and Construction Engineering OpenSeesDays Users Workshop Richmond, CA September 26, 2014 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 1 / 40
  • 2. Types of Nonlinearity Two sources of nonlinear frame element response: Material – yielding, strain hardening, crushing of concrete, etc. Geometry – loss of stability due to loads acting through large displacements An analysis can account for each source of nonlinearity separately, giving four possible approaches Geometry Linear (GL) Geometry Nonlinear (GN) Material Linear (ML) ML, GL ML, GN Material Nonlinear (MN) MN, GL MN, GN M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 2 / 40
  • 3. Steel Frame Pushover Analysis σy =36 ksi E=30,000 ksi α=0.02 30 ft Columns: W14x90 αE ε σy σ E Vb = 2λ 150 kip 150 kip 300 kip 300 kip Beams: W18x76 0.67λ 1.33λ 15 ft 15 ft Simple steel frame model analyzed under four approahces Relatively large column axial loads will intensify both material and geometric nonlinear response for demonstration purposes M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 3 / 40
  • 4. Steel Frame Pushover Analysis 0 10 20 30 0 200 400 600 800 1000 0 5 10 15 20 0 50 100 150 200 ML, GL ML, GN MN, GL MN, GL MN, GN MN, GN Roof Displacement (in) Roof Displacement (in) Base Shear (kip) Base Shear (kip) We observe the following: Material nonlinearity kicks in well before geometric nonlinearity Geometric nonlinearity allows for prediction of loss of stability for increasing displacement M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 4 / 40
  • 5. Section Force-Deformation Response At each cross-section along a frame element, we must determine the section forces for any given section deformations Material nonlinearity eminates from the stress-strain response in each frame element Heuristic approach through stress-resultant section models, e.g., moment-curvature; or Integrate stress-strain response via “fiber section” approach y z x Ai (yi , zi ) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 5 / 40
  • 6. Commands for Section Definition uniaxialMaterial modelName $tag ... Define uniaxial stress-strain models for use in Bernoulli beam elements Elastic, Steel01, Steel02, Concrete01, Concrete02, etc. nDMaterial modelName $tag ... Define multiaxial stress-strain models for use in Timoshenko beam elements ElasticIsotropic, J2Plasticity, ConcreteMCFT, etc. M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 6 / 40
  • 7. Commands for Section Definition General definition of Bernoulli cross-section using patches and layers of fibers whose stress-strain response is defined by uniaxialMaterial objects section Fiber $tag { patch $type $matTag ... layer $type $matTag ... fiber $matTag ... ... } Use NDFiber with nDMaterial objects instead of Fiber with uniaxialMaterial objects for Timoshenko beams Specific cross-sections obtained with “canned” models section WFSection2d $tag $matTag ... section RCSection2d $tag $matTag ... M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 7 / 40
  • 8. Rectangular Steel Section Rectangular section with EPP uniaxial stress-strain response Compute moment-curvature response for increasing number of fibers Exact solution for My = fy bd2 /6 and Mp = bd2 /4 b i Nfiber 2 1 yi d d/2 . . . . . . σ σy E ε M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 8 / 40
  • 9. Rectangular Steel Section 0 0.2 0.4 0.6 0.8 1 x 10 −3 0 1 2 3 4 x 10 4 0 0.2 0.4 0.6 0.8 1 x 10 −3 0 1 2 3 4 x 10 4 0 0.2 0.4 0.6 0.8 1 x 10 −3 0 1 2 3 4 x 10 4 0 0.2 0.4 0.6 0.8 1 x 10 −3 0 1 2 3 4 x 10 4 Nfiber = 2 Nfiber = 4 Nfiber = 8 Nfiber = 16 Curvature (1/in) Curvature (1/in) Curvature (1/in) Curvature (1/in) Moment (kip-in) Moment (kip-in) Moment (kip-in) Moment (kip-in) Yield Yield Yield Yield Exact Exact Exact Exact Computed Computed Computed Computed M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 9 / 40
  • 10. Reinforced Concrete Section EPP steel and Concrete01 concrete Using “canned” RCSection2d command Confined and unconfined concrete 2 in 2 in 24 in 24 in Strain, εc Stress, f c f ′ cc f ′ cu εcc εcu M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 10 / 40
  • 11. Reinforced Concrete Section Moment-curvature response for increasing levels of axial load With and without confining effects of transverse reinforcement Modify the Concrete01 input parameters for confined concrete 0 0.5 1 1.5 x 10 −3 0 5000 10000 15000 Curvature (1/in) Moment (kip-in) ν = 0.0 ν = 0.1 ν = 0.2 ν = 0.3 (c) Without Confining Effects 0 0.5 1 1.5 x 10 −3 0 2000 4000 6000 8000 10000 12000 Curvature (1/in) Moment (kip-in) ν = 0.0 ν = 0.1 ν = 0.2 ν = 0.3 (d) With Confining Effects M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 11 / 40
  • 12. Numerical Integration of Element Response For most material nonlinear element formulations, cross-section response is integrated numerically along the frame element length in order to determine element force-deformation response Sections located at discrete points along the element length, each with a prescribed weight Highly accurate Gauss-based quadrature commonly used x1 x2 x3 x4 x5 L w4 w1 w3 w5 w2 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 12 / 40
  • 13. Displacement-Based Frame Element element dispBeamColumn $tag $ndI $ndJ $transfTag Legendre $secTag 2 Strict compatibility Linear axial and cubic Hermitian transverse displacement fields Constant axial deformation and linear curvature along element length Weak equilibrium Equilibrium satisfied only at the nodes, not at every section along the element Two-point Gauss-Legendre integration along element length Improve numerical solution by using more elements per member (mesh- or h-refinement) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 13 / 40
  • 14. Propped Cantilever Constant axial load and increasing moment applied at propped end Fiber-discretized section response with strain-hardening stress-strain Two Gauss-points per element Investigate refinement for increasing number of elements ε σ E αE σy θ M . . . 1 2 Nele Nele-1 2 fibers each flange N 100 in W14x90 10 web fibers U M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 14 / 40
  • 15. Global Response 0 0.05 0.1 0.15 0.2 0 5000 10000 15000 −0.4 −0.3 −0.2 −0.1 0 0 5000 10000 15000 0 0.05 0.1 0.15 0.2 0 5000 10000 15000 −0.4 −0.3 −0.2 −0.1 0 0 5000 10000 15000 0 0.05 0.1 0.15 0.2 0 5000 10000 15000 −0.4 −0.3 −0.2 −0.1 0 0 5000 10000 15000 Rotation, θ (rad) Deflection, U (in) Moment, M (kip-in) Moment, M (kip-in) Moment, M (kip-in) Computed Exact Nele = 1 Nele = 1 Nele = 2 Nele = 2 Nele = 4 Nele = 4 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 15 / 40
  • 16. Local Flexural Response 0 20 40 60 80 100 −1 0 1 2 x 10 4 0 20 40 60 80 100 −5 0 5 10 x 10 −3 0 20 40 60 80 100 −1 0 1 2 x 10 4 0 20 40 60 80 100 −5 0 5 10 x 10 −3 0 20 40 60 80 100 −1 0 1 2 x 10 4 0 20 40 60 80 100 −5 0 5 10 x 10 −3 x (in) M(x) (kip-in) M(x) (kip-in) M(x) (kip-in) x (in) κ(x) (1/in) κ(x) (1/in) κ(x) (1/in) Computed Exact Nele = 1 Nele = 1 Nele = 2 Nele = 2 Nele = 4 Nele = 4 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 16 / 40
  • 17. Local Axial Response 0 20 40 60 80 100 −400 −200 0 0 20 40 60 80 100 −0.015 −0.01 −0.005 0 0 20 40 60 80 100 −400 −200 0 0 20 40 60 80 100 −0.015 −0.01 −0.005 0 0 20 40 60 80 100 −400 −200 0 0 20 40 60 80 100 −0.015 −0.01 −0.005 0 x (in) N(x) (kip) N(x) (kip) N(x) (kip) x (in) ε a (x) (in/in) ε a (x) (in/in) ε a (x) (in/in) Computed Exact Nele = 1 Nele = 1 Nele = 2 Nele = 2 Nele = 4 Nele = 4 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 17 / 40
  • 18. Steel Frame Pushover Analysis Investigate refinement of load-displacement response for increasing number of displacement-based elements per member σy =36 ksi E=30,000 ksi α=0.02 30 ft Columns: W14x90 αE ε σy σ E Vb = 2λ 150 kip 150 kip 300 kip 300 kip Beams: W18x76 0.67λ 1.33λ 15 ft 15 ft M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 18 / 40
  • 19. Steel Frame Pushover Analysis Coarse mesh over-predicts strength – unconservative Improved solution with refined mesh 0 10 20 30 40 0 50 100 150 200 Nele = 1 Nele = 2 Nele = 4 Roof Displacement (in) Base Shear (kip) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 19 / 40
  • 20. Force-Based Frame Element element forceBeamColumn $tag $ndI $ndJ $transfTag Lobatto $secTag $Np Average compatibility Nodal displacements are balanced by weighted integral of section deformations Complex state determination Use Gauss-Lobatto integration so that extreme flexural response captured at element ends Strong equilibrium Equilibrum of nodal and section forces satisfied at all points along element Constant axial force and linear bending moment in absence of member loads Straightforward to include member loads Improve numerical solution by using more integration points per element while maintaining mesh of one element per member M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 20 / 40
  • 21. Propped Cantilever Constant axial load and increasing moment applied at propped end Fiber-discretized section response with strain-hardening stress-strain Investigate refinement for increasing number of Gauss-Lobatto point using one element ε σ E αE σy θ M 2 fibers each flange N 100 in W14x90 10 web fibers U 1 2 Np-1 Np . . . M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 21 / 40
  • 22. Global Response 0 0.05 0.1 0.15 0.2 0 5000 10000 15000 −0.4 −0.3 −0.2 −0.1 0 0 5000 10000 15000 0 0.05 0.1 0.15 0.2 0 5000 10000 15000 −0.4 −0.3 −0.2 −0.1 0 0 5000 10000 15000 0 0.05 0.1 0.15 0.2 0 5000 10000 15000 −0.4 −0.3 −0.2 −0.1 0 0 5000 10000 15000 Rotation, θ (rad) Deflection, U (in) Moment, M (kip-in) Moment, M (kip-in) Moment, M (kip-in) Computed Exact Np = 3 Np = 3 Np = 4 Np = 4 Np = 5 Np = 5 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 22 / 40
  • 23. Local Flexural Response 0 20 40 60 80 100 −1 0 1 2 x 10 4 0 20 40 60 80 100 −5 0 5 10 x 10 −3 0 20 40 60 80 100 −1 0 1 2 x 10 4 0 20 40 60 80 100 −5 0 5 10 x 10 −3 0 20 40 60 80 100 −1 0 1 2 x 10 4 0 20 40 60 80 100 −5 0 5 10 x 10 −3 x (in) M(x) (kip-in) M(x) (kip-in) M(x) (kip-in) x (in) κ(x) (1/in) κ(x) (1/in) κ(x) (1/in) Computed Exact Np = 3 Np = 3 Np = 4 Np = 4 Np = 5 Np = 5 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 23 / 40
  • 24. Local Axial Response 0 20 40 60 80 100 −190.8 −190.8 −190.8 0 20 40 60 80 100 −0.015 −0.01 −0.005 0 0 20 40 60 80 100 −190.8 −190.8 −190.8 0 20 40 60 80 100 −0.015 −0.01 −0.005 0 0 20 40 60 80 100 −190.8 −190.8 −190.8 0 20 40 60 80 100 −0.015 −0.01 −0.005 0 x (in) N(x) (kip) N(x) (kip) N(x) (kip) x (in) ε a (x) (in/in) ε a (x) (in/in) ε a (x) (in/in) Computed Exact Np = 3 Np = 3 Np = 4 Np = 4 Np = 5 Np = 5 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 24 / 40
  • 25. Steel Frame Pushover Analysis Investigate refinement of load-displacement response for increasing number of Gauss-Lobatto integration points per element Maintain one element per member σy =36 ksi E=30,000 ksi α=0.02 30 ft Columns: W14x90 αE ε σy σ E Vb = 2λ 150 kip 150 kip 300 kip 300 kip Beams: W18x76 0.67λ 1.33λ 15 ft 15 ft M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 25 / 40
  • 26. Steel Frame Pushover Analysis Same yield point predicted in all cases Post-yield stiffness more flexible with fewer integration points 0 10 20 30 40 0 50 100 150 200 Np = 3 Np = 4 Np = 5 Roof Displacement (in) Base Shear (kip) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 26 / 40
  • 27. Force-Based Plastic Hinge Frame Element element forceBeamColumn $tag $ndI $ndJ $transfTag HingeRadau $secTagI $lpI $secTagJ $lpJ $secTagE or element beamWithHinges $tag $ndI $ndJ $secTagI $lpI $secTagJ $lpJ $E $A $I $transfTag Control integration weights at element ends Important for strain-softening section response J I x1 x6 L x2 x3 x4 x5 lpI lpJ L − 4(lpI + lpJ) 3lpI 3lpJ M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 27 / 40
  • 28. Reinforced Concrete Bridge Pier 550mm x 550mm square 12 bars, db = 20 mm 40 mm clear cover V = Base Shear V , U P = 0.3f ′ c Ag L = 1.65 m Specimen 7 Tanaka and Park (1990) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 28 / 40
  • 29. Displacement-Based Elements Post-peak response is mesh-dependent Function of element length 0 20 40 60 80 0 200 400 600 800 1 3 6 Displacement (mm) Base Shear (kN) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 29 / 40
  • 30. Force-Based Element Post-peak response depends on number of integration points Function of integration weight at base of column 0 20 40 60 80 0 200 400 600 800 4 5 6 Displacement (mm) Base Shear (kN) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 30 / 40
  • 31. Force-Based Plastic Hinge Element Post-peak response controlled by plastic hinge length lp = 0.22L from empirical equation 0 20 40 60 80 0 200 400 600 800 Displacement (mm) Base Shear (kN) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 31 / 40
  • 32. Drawback to Force-Based Plastic Hinge Element For strain-hardening section behavior, post-peak response is too flexible 0 5 10 15 0 5 10 15 Computed Exact Displacement Load M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 32 / 40
  • 33. Modeling Recommendations There’s no silver bullet Strain-Hardening Section Response Use mesh of displacement-based elements Use one force-based elements with 4 to 6 Gauss-Lobatto points Plastic hinge element not recommended because post-peak response will be too flexible Strain-Softening Section Response Use force-based plastic hinge element Response with displacement-based elements is mesh dependent Response with Gauss-Lobatto force-based element depends on number of integration points M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 33 / 40
  • 34. Geometric Transformation of Element Response Element formulation of material nonlinearity inside the basic system (free or rigid body displacement modes) Element formulation of geometric nonlinearity outside the basic system β β I J I J Basic System Local Coordinate System ∆uly ul2 ul1 L ul4 ul5 L + ∆ulx ul3 ul6 Ln ub3 ub2 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 34 / 40
  • 35. Geometric Transformation geomTransf Linear $tag Small displacement assumptions in local to basic transformation Linear transformation of forces and displacements geomTransf PDelta $tag Small displacement assumption transformation of displacements Account for transverse displacement of axial load in equilibrium relationship geomTransf Corotational $tag Fully nonlinear transformation of displacements and forces Exact in 2D but some approximations in 3D M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 35 / 40
  • 36. Steel Frame Pushover Analysis Examine pushover response for different levels of gravity load σy =36 ksi E=30,000 ksi α=0.02 12 ft 12 ft λ50 kip λ50 kip λ100 kip λ100 kip V V Beams: W18x76 Columns: W14x90 M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 36 / 40
  • 37. Steel Frame Pushover Analysis P − ∆ and Corotational – similar results for lateral displacement 0 20 40 60 80 100 0 100 200 300 400 0 20 40 60 80 100 0 100 200 300 400 0 20 40 60 80 100 0 100 200 300 400 0 20 40 60 80 100 0 100 200 300 400 λ = 1 λ = 2 λ = 3 λ = 4 Roof Disp (in) Roof Disp (in) Roof Disp (in) Roof Disp (in) Base Shear (kip) Base Shear (kip) Base Shear (kip) Base Shear (kip) M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 37 / 40
  • 38. Steel Frame Pushover Analysis “Exact” Corotational predicts change in vertical displacement Important for collapse prediction and post-buckling capacity 0 5 10 15 20 0 100 200 300 400 0 5 10 15 20 0 100 200 300 400 0 5 10 15 20 0 100 200 300 400 0 5 10 15 20 0 100 200 300 400 λ = 1 λ = 2 λ = 3 λ = 4 Roof Disp (in) Roof Disp (in) Roof Disp (in) Roof Disp (in) Base Shear (kip) Base Shear (kip) Base Shear (kip) Base Shear (kip) P-∆ P-∆ Corotational M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 38 / 40
  • 39. Elastic Buckling Use mesh of corotational frame elements to simulate buckling Simply-supported W14x90, L=100 in, Pcr =29579 kip L/r=16.26: short column, but demonstrates point Imperfection applied to nodes, u(t) = 0.1 sin(πx/L) in 0 2 4 6 8 10 0 1 2 3 4 x 10 4 Nele=2 Nele=4 Nele=8 29579 kip Axial Deflection (in) Axial Load (kip) Concept works well for inelastic buckling too M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 39 / 40
  • 40. Summary Material and geometric nonlinearity treated separately for frame finite elements in OpenSees Only scratching the surface – other element formulations and models of nonlinear stress-strain response Other Resources OpenSees wiki OpenSees message board OpenSees YouTube videos Course assignments M.H. Scott (OSU) OpenSees Frame Elements OpenSeesDays 2014 40 / 40