SlideShare a Scribd company logo
Friction


             Cause of dry friction
       Contact between two surfaces.
   Hence first task in a friction problem is correct
           identification of contact surfaces
 Identify the surface, the normal and the tangential
                         vectors.
Also important is to get an idea of probable direction
                   of relative motion
       The contact force acts along the normal.
 Gravity is the most common cause of normal force.
Friction acts along the tangent plane opposite to the
              direction of relative motion



Normal

                                    Relative velocity
Friction


Normal

                           Relative velocity




               Friction problems are
              essentially equilibrium
              problems with one f the
             forces being functions of
                      another


                          N
         Fr=f(N,V)



            Fr=f(N,V)
   N
The correct way of writing the dry friction force




            V
       −µ N
    Fr = =ˆ   −µ N V
            V

   N=Normal force vector

   V=Relative velocity vector of the   body
   µ= coefficient of dry friction or Coulomb
   friction
Problem 1




     Knowing that the coefficient of friction between the 13.5
     kg block and the incline is µs = 0.25, determine


a)   the smallest value of P required to maintain the block in
     equilibrium,
b)   the corresponding value of β.
Problem 1                     y


N cos60 − mg + f sin60 + P sin β =  0
− N sin60 + f cos 60 + P cos β =  0
f = µN                                                                            x
             mg sin60 − f
⇒P=
       sin β sin60 + cos β cos 60
N cos60 − mg + µ N sin60 + P sin β =  0
         mg − P sin β
⇒N=
        cos 60 − µ sin60
− N sin60 + µ N cos 60 + P cos β =  0
      mg − P sin β
⇒−                    ( sin60 − µ cos 60 ) + P cos β =0
     cos60 − µ sin60
⇒ − ( mg − P sin β )( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) =
                                                                        0
⇒ − mg ( sin60 − µ cos 60 ) + P sin β ( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) =
                                                                                          0
⇒ P ( sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ) = ( sin60 − µ cos 60 )
                                                                     mg
             ( sin60 − µ cos 60 )
⇒P=
  mg
      cos ( 60 − β ) − µ sin ( 60 − β )
 1    cos ( 60 − β ) − µ sin ( 60 − β )
⇒ =mg
 P           ( sin60 − µ cos 60 )
 d 1          d
      =⇒0         cos ( 60 − β ) − µ sin ( 60 − β )  =
dβ P         dβ                                      0
   d
⇒    [ sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ] =
                                                                     0
  dβ
⇒ sin60 cos β − µ cos 60 cos β − cos 60 sin β + µ sin60 sin β = 0
           sin60 − µ cos 60 
      β
⇒ tan =                                  β
                                = 2.614 ⇒ = 69 o
                                 
           cos 60 − µ sin60 
               ( sin 60 − µ cos 60 )          ( 0.866 − 0.125 )
P = mg         = mg                       = 0.72mg
        cos ( 60 − β ) − µ sin ( 60 − β )   cos ( −9 ) − µ sin ( −9 )
Problem 2




Knowing that P = 110 N, determine the range of values value of θ
for which equilibrium of the 8 kg block is maintained.
Problem 2
                   y                                       y




                                 x                                      x

                    mg                                      mg

                                        − P cos θ + N =0
− P cos θ + N =0
                                        P sinθ − mg − f = 0
P sinθ − mg + f = 0
                                        f = µN
f = µN
                                        ⇒N= θ    P cos
⇒N= θ    P cos
                                        P sinθ − mg − µ N = 0
P sinθ − mg + µ N = 0
                                        ⇒ P sinθ − mg − µ P cos θ =
                                                                  0
⇒ P sinθ − mg + µ P cos θ =
                          0
                                        ⇒ P ( sinθ − µ cos θ ) =
                                                               mg
⇒ P ( sinθ + µ cos θ ) =
                       mg
                                                   mg
           mg                           ⇒P=
⇒P=                                           sinθ − µ cos θ
      sinθ + µ cos θ
                                        Hence
Hence
                                        upward movement will not start before
downward movement will not start before
                                                 mg
         mg                             P=
P=                                         sinθ − µ s cos θ
   sinθ + µ k cos θ
Problem 3




The coefficients of friction are µs = 0.40 and µk = 0.30 between all
     the surfaces of contact. Determine the force P for which
     motion of the 27 kg block is impending if cable
a)   is attached as shown,
b)   is removed
Problem 3
                v

                   T        N1
                                 f1
m1g        f1
      N1                                     T
                         m2g          f2
                                 N2


T − µ N1 =
         0
N 1 − m1 g =
           0
= µ N= m1 g
⇒T   1
       , N1
    µm
⇒ T = 1g
T + µ N1 + µ N2 − P =
                    0
N 2 − N 1 − m2 g =
                 0
N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g
                  0       (
T + µ N1 + µ N2 − P =
                    0
⇒ µ m1 g + µ m1 g + µ ( m1 + m 2 ) g − P =
                                         0
⇒ P 3 µ m1 g + µ m 2 g
 =
Problem 3
                v

                0           N1
                                 f1
m1g        f1
      N1                                   0
                          m2g         f2
                                 N2


 T − µ N1 =
          m1 a
 Now T = 0 ⇒ − µ N 1 = m1 a
 N 1 − m1 g =
            0
 ⇒ N1 =
      m1 g
 µ N1 + µ N2 − P =
                 0
 N 2 − N 1 − m2 g =
                  0
 N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g
                   0       (
 µ N1 + µ N2 − P =
                 0
 ⇒ µ m1 g + µ ( m1 + m 2 ) g − P =
                                 0
 ⇒ P 2 µ m1 g + µ m 2 g
  =
Additional Problems




The 8 kg block A and the 16 kg block B are at rest on an
incline as shown. Knowing that the coefficient of static
friction is 0.25 between all surfaces of contact, determine the
value of θ for which motion is impending.
Toppling




The magnitude of the force P is slowly increased.
Does the homogeneous box of mass m slip or tip
first? State the value of P which would cause each
occurrence.
Slip or topple?




                         mg


f1                                         f2

     N1                                          N2

          P cos 30 − µ N 1 − µ N 2 =
                                   0
          P sin 30 + N 1 + N 2 − mg =
                                    0
          − P cos 30 × d − mg × d + µ N 2 × 2d =
                                               0
          P cos 30 = µ N 1 + µ N 2 = µ ( N 1 + N 2 )
          P sin 30 = 1 + N 2 ) + mg
                   −( N
                        2µ N
          P cos 30 + mg = 2
          µ P sin 30 = N 1 + N 2 ) + µ mg = 30 + µ mg
                     −µ (                 − P cos
          µ P sin 30 + P cos 30 =mg ⇒ P ( µ sin 30 + cos 30 ) =mg
                                 µ                             µ
                   µ mg
          ⇒P=
             µ sin 30 + cos 30
                0.5mg
          ⇒P=              = 0.448mg
            0.25 + 0.866
Slip or topple?




                mg


f1                            f2

     N1                            N2


          P cos 30 − f 2 =
                         0
          P sin 30 + N 2 − mg =
                              0
          − P cos 30 × d − P sin 30 × 2d + mg × d =
                                                  0

          P cos 30 = f 2
          P sin 30 = 2 + mg
                   −N
          P cos 30 + 2P sin 30 − mg =
                                    0
          ⇒ P ( cos 30 + 2 sin 30 ) =
                                    mg
                    mg
          ⇒P=
             cos 30 + 2 sin 30
                mg
          =
          ⇒P     = 0.536mg
             0.866 + 1
Additional Problems
Additional Problems
Additional Problems
Wedge
                f=µN
                                       P




                                           θ

                 N              mg



P − f cos θ + N sinθ =0
f sinθ + N cos θ − mg = 0
f = µN
                                           mg
µ N sinθ + N cos θ − mg = ⇒ N =
                           0
                                     µ sinθ + cos θ
P − µ N cos θ + N sinθ = 0
                               µ cos θ − sinθ
⇒ P ( µ cos θ − sinθ= mg
=                     )N
                               µ sinθ + cos θ
    P     µ − tanθ
⇒       =
   mg µ tanθ + 1
    P    tanφ − tanθ
⇒     =               = tan (φ − θ )
   mg tanφ tanθ + 1
A screw thread is a wedge
A screw thread is a wedge

              M=Pa




                          Q=Pa/r
                          = equivalent force




                      W




    Q
                            N
               f=µN
A screw thread is a wedge


                                     W


         Q
                                       N
           θ            f=µN

Q − f cos θ − N sinθ = 0
− f sinθ + N cos θ − W = 0
f = µN
                                           W
− µ N sinθ + N cos θ − W = ⇒ N =
                           0
                                    − µ sinθ + cos θ
Q − µ N cos θ − N sinθ = 0
                              µ cos θ + sinθ
⇒ Q ( µ cos θ + sinθ= W
=                      )N
                             − µ sinθ + cos θ
    Q    µ + tanθ
⇒      =
   W 1 − µ tanθ           Pa      µ + tanθ
                               =
                        Wr     1 − µ tanθ
                                   1     P
                         if tanθ =⇒        =
                                           ∞
                                   µ W
                                   Screw locks
A screw thread is a wedge

    The
                              W


    P
                               N
        θ           f=µN


        1   Pa
tanθ =    ⇒    =
               ∞                  Screw locks
        µ Wr
      1    Wr
µ
=     = = 0
    tanθ Pa

             There is a critical value of friction
            coefficient beyond which the thread
              does not move irrespective of the
                        force applied.
         This happens when a screw is not
        maintained properly. Because of dirt
          and rust µ becomes more than
                     critical.
A screw thread is a wedge




                      W




                            N
               f=µN
A screw thread is a wedge


                            W




                             N
         θ           f

For no movement
f cos θ − N sinθ = 0
f sinθ + N cos θ − W =
                     0
                           Self locking
    f    sinθ
⇒      =
   N cos θ
        sinθ
⇒= µ        = tanθ
        cos θ

          Therefore after raising the load if we
          let go of the screw the load will not
          cause the screw to unscrew by itself.
Terminologies




                                              Lead (L)
                    2πr


                     Pitch (p)




    = =
Lead L np
where
n=no. of parallely running threads = starts
          L
tanθ =
         2π r
Turnbuckle

T1                                   T2


         Used to apply tension.
     The sleeve is rotated to pull the
            threads together.




            M         µ + tanθ
                    =
       ( T2 − T1 ) r 1 − µ tanθ
An improved screw jack

               W




       θ
       θ




        W
                      T


T              T
                      T




    2T cos θ
An improved screw jack

                 W




       φ
       φ




                                      M=Pa
W=2T cos φ



      Pa    µ cos θ + sinθ
          =
      Wr − µ sinθ + cos θ
            M        µ cos θ + sinθ
      ⇒            =
         2Tr cos φ − µ sinθ + cos θ
Worm gear


                    MG



                                 M0/R



        R           N
M                            f




                        MG
    M G = WR ⇒ W =
                        R
    Pa     µ + tanθ
        =
    Wr 1 − µ tanθ
         M       µ + tanθ
    ⇒         =
       MG       1 − µ tanθ
            r
         R
       MR       µ + tanθ
    ⇒         =
       M G r 1 − µ tanθ
Belt drives
Belt drives




                           ∆θ                                   ∆θ
∑F  x
        = 0 ⇒ −T cos              − ∆ F + ( T + ∆T ) cos             = 0
                              2                                  2
                           ∆θ                                   ∆θ
∑F   y
       = 0 ⇒ −T sin               − ∆ N − ( T + ∆T ) sin             = 0
                              2                                 2
∆ F = µs ∆ N
       ∆θ                                   ∆θ
−T cos        − ∆ F + ( T + ∆T ) cos                 =
                                                     0
          2                                     2
              ∆θ                      ∆θ                  ∆θ
⇒ −T cos              − ∆ F + T cos        + ∆T cos             =0
              2                        2                   2
                         ∆θ                         ∆θ
⇒ − ∆ F + ∆T cos              = 0 ⇒ ∆T cos               = ∆ F = µs ∆ N
                          2                          2
         ∆θ                                 ∆θ
−T sin        − ∆ N − ( T + ∆T ) sin                =
                                                    0
          2                                     2
              ∆θ                      ∆θ                  ∆θ
⇒ −T sin              + ∆ N − T sin        − ∆T sin             =0
              2                        2                   2
              ∆θ                           ∆θ
⇒ −2T sin              + ∆ N − ∆T sin           =0
                  2                        2
              ∆θ                                    ∆θ
⇒ −2T sin              + ∆ N = 0 ⇒ 2T sin                = ∆N
                  2                                 2
Belt drives




         ∆θ
∆T cos        = µs ∆ N
         2
         ∆θ
2T sin        = ∆N
         2
              ∆θ              ∆θ
⇒ ∆T cos        2T µ s sin
                =
              2            2
                               ∆θ
                  sin
   1 ∆T     ∆θ        2
⇒       cos    µs
               =
  2T ∆θ      2      ∆θ
                                                   ∆θ
                                             sin
                1 ∆T     ∆θ                        2
  Lim                cos    = Lim µ
∆θ → 0 ,∆T → 0 2T ∆θ      2 ∆θ →0 ,∆T →0 s    ∆θ
        1 dT       µs
⇒                1=
     2T dθ          2



⇒
    dT = µ dθ
    T     s
Belt drives


                          Belt is just about to
                           slide to the right




dT = µ dθ
T     s
    dT β
   T2
                                           µ β    µ β
⇒ ∫ = ∫ µ s dθ                         T2
                                       = e  s ⇒T e s T
                                               =
  T T
    1  0                                        2     1
                                       T1
⇒  lnT                   β
            T2

               =  µ sθ 0
                         
            T1                         Torque required to drive the pulley
⇒ lnT − lnT
        2            1
                         = µs β                 µ β     
                                       T2 − T1  e
                                           =       s − 1 T
⇒ ln T = µ β
        2                                      
                                               
                                                          1
                                                         
     T  1
                 s




   2 = e µsβ
  T
⇒
  T
   1
Belt drives : Important points


                   2 = e µsβ
                  T
                ⇒
                  T
                   1


    Angle β must be expressed in radians
  Smallest µβ determines which pulley slips
                       first
   Larger tension occurs at that end of the
belt where relative motion is about to begin or
               is already moving
    T2 is used to denote the larger tension
  A freely rotating pulley implies no friction
   For a rotating pulley where slipping is
   about to start friction is µs since relative
    velocity between belt and pulley is zero.
  Once slipping starts friction coefficient is
            dynamic or kinetic i.e. µk
   If pulley does not rotate at all then rope
 has to slide and not slip, hence friction is µk
Belt drives




A                         B


                              θ

        θ




A                         B


                                  θ

    θ
Belt drives


                                T2
                             T2
                          = exp  µ ( π + 2θ )  ???
                                                 
                             T1
       A                            Always check
                                   for µβ value for
                                   each pulley in a
                                   system. The one
                                        with the
                              T1
                                      smallest µβ
            θ
                                       value will
                                    determine the
    Which expression is                tensions.
    correct???? Is T2>T1
          Or T1>T2.
    One pulley must slip.       T2
   Friction force is larger
 for the larger pulley since
  angle of wrap is larger.
    Hence smaller pulley
                                          B
  slips and determines the
           tension

T1                                        θ
     exp  µ ( π − 2θ )  ???
                                 T1
T2
Band brakes
Band brakes


                       TB                          T1             T3
              B




     T1                        T3




             75    75 4 
                        Tπ
T2   T1 exp  µ  π
      = T1 exp  0.25      
             180   180                               T2
T2 = 1.39T1
             135   135 
T3   T4 exp  µ  π
      = T4 exp  0.25    π
             180   180 
T4 = 0.55T3
M 0 =( T3 − T4 + T2 − T1 ) R
     −
Consider the pin B
∑F   x
         =0 ⇒ T1 cos 45 =T3 cos 45 ⇒ T1 =T3
∑F   y
         = cos 45 + T3 cos 45 = 1 cos 45 = ⇒ 2T1 =
         0 ⇒ T1               TB ⇒ 2T    TB      TB
∴ T2 1.39T1 ,T3 T1 ,T4 0.55T1
   =          =      =
Thus the largest tension is T2 = 5.6 ⇒ T1 = T3 = 4.03,T4 = 2.22,TB = 5.7
∴ M0 =    ( 5.6 − 2.22 ) R =   3.38 × 0.16 = 0.54 KNm = 540 Nm
Taking moments about D
50TB 250 P ⇒ = 0.2TB 1.14 KN
   =          P      =

More Related Content

PDF
Stresses and strains (Part 1)
PPTX
Heat treatment process
PPTX
Surface finishing processes - Electroplating
PPT
Advanced welding
PDF
Annealing
PDF
Lecture 10 bending stresses in beams
PPT
Metais propriedades mecânicas
PPTX
Stress Strain relation in plasticity
Stresses and strains (Part 1)
Heat treatment process
Surface finishing processes - Electroplating
Advanced welding
Annealing
Lecture 10 bending stresses in beams
Metais propriedades mecânicas
Stress Strain relation in plasticity

What's hot (20)

PPT
Equilibrium and Equation of Equilibrium:2D
PPTX
FLEXURAL STRESSES AND SHEAR STRESSES
PPT
Complex stresses
PPTX
A study on _ buckling
PDF
Lecture 12 deflection in beams
PDF
Creep Testing
PPTX
8 beam deflection
PDF
Friction
PPTX
Module 3 SFD &BMD PART-1
PDF
Lecture 2 principal stress and strain
PPTX
Sa 1,moment area theorem
PDF
Lecture 4 3 d stress tensor and equilibrium equations
PPTX
NON-LINEAR AND DYNAMIC ANALYSIS.pptx
PDF
Dynamics of Structures 4th Edition Chopra Solutions Manual
PPT
Bending of Curved Beams.ppt
PPTX
Dr.R.Narayanasamy - Anisotropy of sheet metals.
PDF
Estados de tensión y deformación
PPTX
Soldering and brazing
PPT
Dynamic response of oscillators to general excitations
PDF
Cap10
Equilibrium and Equation of Equilibrium:2D
FLEXURAL STRESSES AND SHEAR STRESSES
Complex stresses
A study on _ buckling
Lecture 12 deflection in beams
Creep Testing
8 beam deflection
Friction
Module 3 SFD &BMD PART-1
Lecture 2 principal stress and strain
Sa 1,moment area theorem
Lecture 4 3 d stress tensor and equilibrium equations
NON-LINEAR AND DYNAMIC ANALYSIS.pptx
Dynamics of Structures 4th Edition Chopra Solutions Manual
Bending of Curved Beams.ppt
Dr.R.Narayanasamy - Anisotropy of sheet metals.
Estados de tensión y deformación
Soldering and brazing
Dynamic response of oscillators to general excitations
Cap10
Ad

Viewers also liked (9)

PDF
6 friction fe
PDF
Engineering mechanics statics j.l.meriam-l.g.kraige-solution manual (5th ed)
PDF
Novo Catalogo Potente
PPT
PPT
Friction And Wedges
PPTX
FRICTION
PPS
Friction
PPT
Friction
6 friction fe
Engineering mechanics statics j.l.meriam-l.g.kraige-solution manual (5th ed)
Novo Catalogo Potente
Friction And Wedges
FRICTION
Friction
Friction
Ad

Similar to Friction (20)

PDF
Borut Bajc "Asymptotic safety"
PDF
B. Sazdovic - Noncommutativity and T-duality
PPT
Presentation5 1
PPT
8. terapan hk1 n
PDF
Sect5 6
PPT
Trigonometric ratios and identities 1
PDF
2 senarai rumus add maths k1 trial spm sbp 2010
PDF
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
Mit2 092 f09_lec15
PDF
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
PDF
Cheat Sheet
PDF
Formulario de matematicas
PPTX
gft_handout2_06.pptx
PDF
circular trigonometric functions and practice
PDF
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
DOC
2 senarai rumus add maths k1 trial spm sbp 2010
DOC
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
Tutorial solutions 2010
PDF
Sm8 21
Borut Bajc "Asymptotic safety"
B. Sazdovic - Noncommutativity and T-duality
Presentation5 1
8. terapan hk1 n
Sect5 6
Trigonometric ratios and identities 1
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Mit2 092 f09_lec15
The proof complexity of matrix algebra - Newton Institute, Cambridge 2006
Cheat Sheet
Formulario de matematicas
gft_handout2_06.pptx
circular trigonometric functions and practice
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Tutorial solutions 2010
Sm8 21

More from faizankhan260690 (7)

PDF
Science and Tech question for UPSC prelims
PDF
sort search in C
PDF
C applications
PPT
Polarisation
PDF
Friction problems
PDF
Friction [compatibility mode]
PDF
Friction (2) [compatibility mode]
Science and Tech question for UPSC prelims
sort search in C
C applications
Polarisation
Friction problems
Friction [compatibility mode]
Friction (2) [compatibility mode]

Recently uploaded (20)

PDF
MAGNET STORY- Coaster Sequence (Rough Version 2).pdf
PPTX
G.A.M.E. O.N.! (General — Art — Mythology — Entertainment — Obscure Naata) [2...
PDF
Best IPTV Service Providers in the UK (2025) – Honest Reviews & Top Picks
PDF
CityofHorror_v1.1.pdf manual en español i
PDF
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf
DOC
UNG毕业证学历认证,阿莱恩特国际大学毕业证文凭证书
DOCX
Nina Volyanska Controversy in Fishtank Live_ Unraveling the Mystery Behind th...
PDF
Keanu Reeves Beyond the Legendary Hollywood Movie Star.pdf
PDF
Rare Big Band Arrangers Who Revolutionized Big Band Music in USA.pdf
PPTX
The Pearl - project of Advanced Reading course
PPTX
continuous_steps_relay.pptx. Another activity
PDF
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf
PDF
What is Rotoscoping Best Software for Rotoscoping in 2025.pdf
PDF
TAIPANQQ SITUS MUDAH MENANG DAN MUDAH MAXWIN SEGERA DAFTAR DI TAIPANQQ DAN RA...
PDF
EVs U-5 ONE SHOT Notes_c49f9e68-5eac-4201-bf86-b314ef5930ba.pdf
DOC
NSCAD毕业证学历认证,温哥华岛大学毕业证国外证书制作申请
PPTX
BULAN K3 NASIONAL PowerPt Templates.pptx
PPTX
PRECISION AGRICULTURE- 1.pptx for agriculture
PPTX
the-solar-system.pptxxxxxxxxxxxxxxxxxxxx
PDF
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf
MAGNET STORY- Coaster Sequence (Rough Version 2).pdf
G.A.M.E. O.N.! (General — Art — Mythology — Entertainment — Obscure Naata) [2...
Best IPTV Service Providers in the UK (2025) – Honest Reviews & Top Picks
CityofHorror_v1.1.pdf manual en español i
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf
UNG毕业证学历认证,阿莱恩特国际大学毕业证文凭证书
Nina Volyanska Controversy in Fishtank Live_ Unraveling the Mystery Behind th...
Keanu Reeves Beyond the Legendary Hollywood Movie Star.pdf
Rare Big Band Arrangers Who Revolutionized Big Band Music in USA.pdf
The Pearl - project of Advanced Reading course
continuous_steps_relay.pptx. Another activity
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf
What is Rotoscoping Best Software for Rotoscoping in 2025.pdf
TAIPANQQ SITUS MUDAH MENANG DAN MUDAH MAXWIN SEGERA DAFTAR DI TAIPANQQ DAN RA...
EVs U-5 ONE SHOT Notes_c49f9e68-5eac-4201-bf86-b314ef5930ba.pdf
NSCAD毕业证学历认证,温哥华岛大学毕业证国外证书制作申请
BULAN K3 NASIONAL PowerPt Templates.pptx
PRECISION AGRICULTURE- 1.pptx for agriculture
the-solar-system.pptxxxxxxxxxxxxxxxxxxxx
WKA #29: "FALLING FOR CUPID" TRANSCRIPT.pdf

Friction

  • 1. Friction Cause of dry friction Contact between two surfaces. Hence first task in a friction problem is correct identification of contact surfaces Identify the surface, the normal and the tangential vectors. Also important is to get an idea of probable direction of relative motion The contact force acts along the normal. Gravity is the most common cause of normal force. Friction acts along the tangent plane opposite to the direction of relative motion Normal Relative velocity
  • 2. Friction Normal Relative velocity Friction problems are essentially equilibrium problems with one f the forces being functions of another N Fr=f(N,V) Fr=f(N,V) N
  • 3. The correct way of writing the dry friction force V −µ N Fr = =ˆ −µ N V V N=Normal force vector V=Relative velocity vector of the body µ= coefficient of dry friction or Coulomb friction
  • 4. Problem 1 Knowing that the coefficient of friction between the 13.5 kg block and the incline is µs = 0.25, determine a) the smallest value of P required to maintain the block in equilibrium, b) the corresponding value of β.
  • 5. Problem 1 y N cos60 − mg + f sin60 + P sin β = 0 − N sin60 + f cos 60 + P cos β = 0 f = µN x mg sin60 − f ⇒P= sin β sin60 + cos β cos 60 N cos60 − mg + µ N sin60 + P sin β = 0 mg − P sin β ⇒N= cos 60 − µ sin60 − N sin60 + µ N cos 60 + P cos β = 0 mg − P sin β ⇒− ( sin60 − µ cos 60 ) + P cos β =0 cos60 − µ sin60 ⇒ − ( mg − P sin β )( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) = 0 ⇒ − mg ( sin60 − µ cos 60 ) + P sin β ( sin60 − µ cos 60 ) + P cos β ( cos 60 − µ sin60 ) = 0 ⇒ P ( sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ) = ( sin60 − µ cos 60 ) mg ( sin60 − µ cos 60 ) ⇒P= mg cos ( 60 − β ) − µ sin ( 60 − β ) 1 cos ( 60 − β ) − µ sin ( 60 − β ) ⇒ =mg P ( sin60 − µ cos 60 ) d 1 d   =⇒0  cos ( 60 − β ) − µ sin ( 60 − β )  = dβ P dβ   0 d ⇒ [ sin60 sin β − µ cos 60 sin β + cos 60 cos β − µ sin60 cos β ] = 0 dβ ⇒ sin60 cos β − µ cos 60 cos β − cos 60 sin β + µ sin60 sin β = 0  sin60 − µ cos 60  β ⇒ tan =  β = 2.614 ⇒ = 69 o   cos 60 − µ sin60  ( sin 60 − µ cos 60 ) ( 0.866 − 0.125 ) P = mg = mg = 0.72mg cos ( 60 − β ) − µ sin ( 60 − β ) cos ( −9 ) − µ sin ( −9 )
  • 6. Problem 2 Knowing that P = 110 N, determine the range of values value of θ for which equilibrium of the 8 kg block is maintained.
  • 7. Problem 2 y y x x mg mg − P cos θ + N =0 − P cos θ + N =0 P sinθ − mg − f = 0 P sinθ − mg + f = 0 f = µN f = µN ⇒N= θ P cos ⇒N= θ P cos P sinθ − mg − µ N = 0 P sinθ − mg + µ N = 0 ⇒ P sinθ − mg − µ P cos θ = 0 ⇒ P sinθ − mg + µ P cos θ = 0 ⇒ P ( sinθ − µ cos θ ) = mg ⇒ P ( sinθ + µ cos θ ) = mg mg mg ⇒P= ⇒P= sinθ − µ cos θ sinθ + µ cos θ Hence Hence upward movement will not start before downward movement will not start before mg mg P= P= sinθ − µ s cos θ sinθ + µ k cos θ
  • 8. Problem 3 The coefficients of friction are µs = 0.40 and µk = 0.30 between all the surfaces of contact. Determine the force P for which motion of the 27 kg block is impending if cable a) is attached as shown, b) is removed
  • 9. Problem 3 v T N1 f1 m1g f1 N1 T m2g f2 N2 T − µ N1 = 0 N 1 − m1 g = 0 = µ N= m1 g ⇒T 1 , N1 µm ⇒ T = 1g T + µ N1 + µ N2 − P = 0 N 2 − N 1 − m2 g = 0 N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g 0 ( T + µ N1 + µ N2 − P = 0 ⇒ µ m1 g + µ m1 g + µ ( m1 + m 2 ) g − P = 0 ⇒ P 3 µ m1 g + µ m 2 g =
  • 10. Problem 3 v 0 N1 f1 m1g f1 N1 0 m2g f2 N2 T − µ N1 = m1 a Now T = 0 ⇒ − µ N 1 = m1 a N 1 − m1 g = 0 ⇒ N1 = m1 g µ N1 + µ N2 − P = 0 N 2 − N 1 − m2 g = 0 N 2 − N 1 − m2 g = ⇒ N 2 =m1 + m2 ) g 0 ( µ N1 + µ N2 − P = 0 ⇒ µ m1 g + µ ( m1 + m 2 ) g − P = 0 ⇒ P 2 µ m1 g + µ m 2 g =
  • 11. Additional Problems The 8 kg block A and the 16 kg block B are at rest on an incline as shown. Knowing that the coefficient of static friction is 0.25 between all surfaces of contact, determine the value of θ for which motion is impending.
  • 12. Toppling The magnitude of the force P is slowly increased. Does the homogeneous box of mass m slip or tip first? State the value of P which would cause each occurrence.
  • 13. Slip or topple? mg f1 f2 N1 N2 P cos 30 − µ N 1 − µ N 2 = 0 P sin 30 + N 1 + N 2 − mg = 0 − P cos 30 × d − mg × d + µ N 2 × 2d = 0 P cos 30 = µ N 1 + µ N 2 = µ ( N 1 + N 2 ) P sin 30 = 1 + N 2 ) + mg −( N 2µ N P cos 30 + mg = 2 µ P sin 30 = N 1 + N 2 ) + µ mg = 30 + µ mg −µ ( − P cos µ P sin 30 + P cos 30 =mg ⇒ P ( µ sin 30 + cos 30 ) =mg µ µ µ mg ⇒P= µ sin 30 + cos 30 0.5mg ⇒P= = 0.448mg 0.25 + 0.866
  • 14. Slip or topple? mg f1 f2 N1 N2 P cos 30 − f 2 = 0 P sin 30 + N 2 − mg = 0 − P cos 30 × d − P sin 30 × 2d + mg × d = 0 P cos 30 = f 2 P sin 30 = 2 + mg −N P cos 30 + 2P sin 30 − mg = 0 ⇒ P ( cos 30 + 2 sin 30 ) = mg mg ⇒P= cos 30 + 2 sin 30 mg = ⇒P = 0.536mg 0.866 + 1
  • 18. Wedge f=µN P θ N mg P − f cos θ + N sinθ =0 f sinθ + N cos θ − mg = 0 f = µN mg µ N sinθ + N cos θ − mg = ⇒ N = 0 µ sinθ + cos θ P − µ N cos θ + N sinθ = 0 µ cos θ − sinθ ⇒ P ( µ cos θ − sinθ= mg = )N µ sinθ + cos θ P µ − tanθ ⇒ = mg µ tanθ + 1 P tanφ − tanθ ⇒ = = tan (φ − θ ) mg tanφ tanθ + 1
  • 19. A screw thread is a wedge
  • 20. A screw thread is a wedge M=Pa Q=Pa/r = equivalent force W Q N f=µN
  • 21. A screw thread is a wedge W Q N θ f=µN Q − f cos θ − N sinθ = 0 − f sinθ + N cos θ − W = 0 f = µN W − µ N sinθ + N cos θ − W = ⇒ N = 0 − µ sinθ + cos θ Q − µ N cos θ − N sinθ = 0 µ cos θ + sinθ ⇒ Q ( µ cos θ + sinθ= W = )N − µ sinθ + cos θ Q µ + tanθ ⇒ = W 1 − µ tanθ Pa µ + tanθ = Wr 1 − µ tanθ 1 P if tanθ =⇒ = ∞ µ W Screw locks
  • 22. A screw thread is a wedge The W P N θ f=µN 1 Pa tanθ = ⇒ = ∞ Screw locks µ Wr 1 Wr µ = = = 0 tanθ Pa There is a critical value of friction coefficient beyond which the thread does not move irrespective of the force applied. This happens when a screw is not maintained properly. Because of dirt and rust µ becomes more than critical.
  • 23. A screw thread is a wedge W N f=µN
  • 24. A screw thread is a wedge W N θ f For no movement f cos θ − N sinθ = 0 f sinθ + N cos θ − W = 0 Self locking f sinθ ⇒ = N cos θ sinθ ⇒= µ = tanθ cos θ Therefore after raising the load if we let go of the screw the load will not cause the screw to unscrew by itself.
  • 25. Terminologies Lead (L) 2πr Pitch (p) = = Lead L np where n=no. of parallely running threads = starts L tanθ = 2π r
  • 26. Turnbuckle T1 T2 Used to apply tension. The sleeve is rotated to pull the threads together. M µ + tanθ = ( T2 − T1 ) r 1 − µ tanθ
  • 27. An improved screw jack W θ θ W T T T T 2T cos θ
  • 28. An improved screw jack W φ φ M=Pa W=2T cos φ Pa µ cos θ + sinθ = Wr − µ sinθ + cos θ M µ cos θ + sinθ ⇒ = 2Tr cos φ − µ sinθ + cos θ
  • 29. Worm gear MG M0/R R N M f MG M G = WR ⇒ W = R Pa µ + tanθ = Wr 1 − µ tanθ M µ + tanθ ⇒ = MG 1 − µ tanθ r R MR µ + tanθ ⇒ = M G r 1 − µ tanθ
  • 31. Belt drives ∆θ ∆θ ∑F x = 0 ⇒ −T cos − ∆ F + ( T + ∆T ) cos = 0 2 2 ∆θ ∆θ ∑F y = 0 ⇒ −T sin − ∆ N − ( T + ∆T ) sin = 0 2 2 ∆ F = µs ∆ N ∆θ ∆θ −T cos − ∆ F + ( T + ∆T ) cos = 0 2 2 ∆θ ∆θ ∆θ ⇒ −T cos − ∆ F + T cos + ∆T cos =0 2 2 2 ∆θ ∆θ ⇒ − ∆ F + ∆T cos = 0 ⇒ ∆T cos = ∆ F = µs ∆ N 2 2 ∆θ ∆θ −T sin − ∆ N − ( T + ∆T ) sin = 0 2 2 ∆θ ∆θ ∆θ ⇒ −T sin + ∆ N − T sin − ∆T sin =0 2 2 2 ∆θ ∆θ ⇒ −2T sin + ∆ N − ∆T sin =0 2 2 ∆θ ∆θ ⇒ −2T sin + ∆ N = 0 ⇒ 2T sin = ∆N 2 2
  • 32. Belt drives ∆θ ∆T cos = µs ∆ N 2 ∆θ 2T sin = ∆N 2 ∆θ ∆θ ⇒ ∆T cos 2T µ s sin = 2 2 ∆θ sin 1 ∆T ∆θ 2 ⇒ cos µs = 2T ∆θ 2 ∆θ ∆θ sin 1 ∆T ∆θ 2 Lim cos = Lim µ ∆θ → 0 ,∆T → 0 2T ∆θ 2 ∆θ →0 ,∆T →0 s ∆θ 1 dT µs ⇒ 1= 2T dθ 2 ⇒ dT = µ dθ T s
  • 33. Belt drives Belt is just about to slide to the right dT = µ dθ T s dT β T2 µ β µ β ⇒ ∫ = ∫ µ s dθ T2 = e s ⇒T e s T = T T 1 0 2 1 T1 ⇒  lnT  β T2   =  µ sθ 0   T1 Torque required to drive the pulley ⇒ lnT − lnT 2 1 = µs β  µ β  T2 − T1  e = s − 1 T ⇒ ln T = µ β 2    1  T 1 s 2 = e µsβ T ⇒ T 1
  • 34. Belt drives : Important points 2 = e µsβ T ⇒ T 1  Angle β must be expressed in radians  Smallest µβ determines which pulley slips first  Larger tension occurs at that end of the belt where relative motion is about to begin or is already moving  T2 is used to denote the larger tension  A freely rotating pulley implies no friction  For a rotating pulley where slipping is about to start friction is µs since relative velocity between belt and pulley is zero.  Once slipping starts friction coefficient is dynamic or kinetic i.e. µk  If pulley does not rotate at all then rope has to slide and not slip, hence friction is µk
  • 35. Belt drives A B θ θ A B θ θ
  • 36. Belt drives T2 T2 = exp  µ ( π + 2θ )  ???   T1 A Always check for µβ value for each pulley in a system. The one with the T1 smallest µβ θ value will determine the Which expression is tensions. correct???? Is T2>T1 Or T1>T2. One pulley must slip. T2 Friction force is larger for the larger pulley since angle of wrap is larger. Hence smaller pulley B slips and determines the tension T1 θ exp  µ ( π − 2θ )  ???   T1 T2
  • 38. Band brakes TB T1 T3 B T1 T3  75   75 4  Tπ T2 T1 exp  µ π = T1 exp  0.25   180   180  T2 T2 = 1.39T1  135   135  T3 T4 exp  µ π = T4 exp  0.25 π  180   180  T4 = 0.55T3 M 0 =( T3 − T4 + T2 − T1 ) R − Consider the pin B ∑F x =0 ⇒ T1 cos 45 =T3 cos 45 ⇒ T1 =T3 ∑F y = cos 45 + T3 cos 45 = 1 cos 45 = ⇒ 2T1 = 0 ⇒ T1 TB ⇒ 2T TB TB ∴ T2 1.39T1 ,T3 T1 ,T4 0.55T1 = = = Thus the largest tension is T2 = 5.6 ⇒ T1 = T3 = 4.03,T4 = 2.22,TB = 5.7 ∴ M0 = ( 5.6 − 2.22 ) R = 3.38 × 0.16 = 0.54 KNm = 540 Nm Taking moments about D 50TB 250 P ⇒ = 0.2TB 1.14 KN = P =