SlideShare a Scribd company logo
From moments to sparse representations,
a geometric, algebraic and algorithmic viewpoint
Bernard Mourrain
Inria M´editerran´ee, Sophia Antipolis
Bernard.Mourrain@inria.fr
Part I
Sparse representation problems
1 Sparse representation problems
2 Duality
3 Artinian algebra
B. Mourrain From moments to sparse representations 2 / 27
Sparse representation problems
Sparse representation of signals
Given a function or signal f (t):
decompose it as
f (t) =
r
i=1
(ai cos(µi t) + bi sin(µi t))eνi t
=
r
i=1
ωieζit
B. Mourrain From moments to sparse representations 3 / 27
Sparse representation problems
Prony’s method (1795)
For the signal f (t) = r
i=1 ωieζit, (ωi , ζi ∈ C),
Evaluate f at 2 r regularly spaced points: σ0 := f (0), σ1 := f (1), . . .
Compute a non-zero element p = [p0, . . . , pr] in the kernel:





σ0 σ1 . . . σr
σ1 σr+1
...
...
σr−1 . . . σ2r−1 σ2r−1










p0
p1
...
pr





= 0
Compute the roots ξ1 = eζ1 , . . . , ξr = eζr of p(x) := r
i=0 pi xi .
Solve the system





1 . . . . . . 1
ξ1 ξr
...
...
ξr−1
1 . . . . . . ξr−1
r










ω1
ω2
...
ωr





=





σ0
σ1
...
σr−1





.
B. Mourrain From moments to sparse representations 4 / 27
Sparse representation problems
Symmetric tensor decomposition
and Waring problem (1770)
Symmetric tensor decomposition problem:
Given a homogeneous polynomial ψ of degree d in the variables
x = (x0, x1, . . . , xn) with coefficients ∈ K:
ψ(x) =
|α|=d
σα
d
α
xα
,
find a minimal decomposition of ψ of the form
ψ(x) =
r
i=1
ωi (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)d
with ξi = (ξi,0, ξi,1, . . . , ξi,n) ∈ K
n+1
spanning disctint lines, ωi ∈ K.
The minimal r in such a decomposition is called the rank of ψ.
B. Mourrain From moments to sparse representations 5 / 27
Sparse representation problems
Sylvester approach (1851)
Theorem
The binary form ψ(x0, x1) = d
i=0 σi
d
i xd−i
0 xi
1 can be decomposed as a
sum of r distinct powers of linear forms
ψ =
r
k=1
ωk (αkx0 + βkx1)d
iff there exists a polynomial p(x0, x1) := p0xr
0 + p1xr−1
0 x1 + · · · + pr xr
1 s.t.





σ0 σ1 . . . σr
σ1 σr+1
...
...
σd−r . . . σd−1 σd










p0
p1
...
pr





= 0
and of the form p = c r
k=1(βkx0 − αkx1) with (αk : βk) distinct.
B. Mourrain From moments to sparse representations 6 / 27
Sparse representation problems
Sparse interpolation
Given a black-box polynomial function f (x)
find what are the terms inside from output values.
Find r ∈ N, ωi ∈ C, αi ∈ N such that f (x) = r
i=1 ωi xαi .
B. Mourrain From moments to sparse representations 7 / 27
Sparse representation problems
Choose ϕ ∈ C
Compute the sequence of terms σ0 = f (1), . . . , σ2r−1 = f (ϕ2r−1);
Construct the matrix H = [σi+j ] and its kernel p = [p0, . . . , pr ] s.t.





σ0 σ1 . . . σr
σ1 σr+1
...
...
σr−1 . . . σ2r−1 σ2r−1










p0
p1
...
pr





= 0
Compute the roots ξ1 = ϕα1 , . . . , ξr = ϕαr of p(x) := r
i=0 pi xi and
deduce the exponents αi = logϕ(ξi).
Deduce the weights W = [ωi ] by solving VΞ W = [σ0, . . . , σr−1]
where VΞ is the Vandermonde system of the roots ξ1, . . . , ξr .
B. Mourrain From moments to sparse representations 8 / 27
Sparse representation problems
Decoding
− − − − − − − − − − →
An algebraic code:
E = {c(f ) = [f (ξ1), . . . , f (ξm)] | f ∈ K[x]; deg(f ) ≤ d}.
Encoding messages using the dual code:
C = E⊥
= {c | c · [f (ξ1), . . . , f (ξl )] = 0 ∀f ∈ V = xa
⊂ F[x]}
Message received: r = m + e for m ∈ C where e = [ω1, . . . , ωm] is an
error with ωj = 0 for j = i1, . . . , ir and ωj = 0 otherwise.
Find the error e.
B. Mourrain From moments to sparse representations 9 / 27
Sparse representation problems
Berlekamp-Massey method (1969)
Compute the syndrome σk = c(xk) · r = c(xk) · e = r
j=1 ωij
ξk
ij
.
Compute the matrix





σ0 σ1 . . . σr
σ1 σr+1
...
...
σr−1 . . . σ2r−1 σ2r−1










p0
p1
...
pr





= 0
and its kernel p = [p0, . . . , pr ].
Compute the roots of the error locator polynomial
p(x) = r
i=0 pi xi = pr
r
j=1(x − ξij
).
Deduce the errors ωij
.
B. Mourrain From moments to sparse representations 10 / 27
Sparse representation problems
Simultaneous decomposition
Simultaneous decomposition problem
Given symmetric tensors ψ1, . . . , ψm of order d1, . . . , dm, find a
simultaneous decomposition of the form
ψl =
r
i=1
ωl,i (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)dl
where ξi = (ξi,0, . . . , ξi,n) span distinct lines in K
n+1
and ωl,i ∈ K for
l = 1, . . . , m.
B. Mourrain From moments to sparse representations 11 / 27
Sparse representation problems
Proposition (One dimensional decomposition)
Let ψl = dl
i=0 σ1,i
dl
i xdl −i
0 xi
1 ∈ K[x0, x1]dl
for l = 1, . . . , m.
If there exists a polynomial p(x0, x1) := p0xr
0 + p1xr−1
0 x1 + · · · + pr xr
1 s.t.

















σ1,0 σ1,1 . . . σ1,r
σ1,1 σ1,r+1
...
...
σ1,d1−r . . . σ1,d1−1 σ1,d1
...
...
σm,0 σm,1 . . . σm,r
σm,1 σr+1
...
...
σm,dm−r . . . σm,dm−1 σm,dm






















p0
p1
...
pr





= 0
of the form p = c r
k=1(βkx0 − αkx1) with [αk : βk] distinct, then
ψl =
r
i=1
ωi,l (αl x0 + βl x1)dl
for ωi,l ∈ K and l = 1, . . . , m.
B. Mourrain From moments to sparse representations 12 / 27
Duality
1 Sparse representation problems
2 Duality
3 Artinian algebra
B. Mourrain From moments to sparse representations 13 / 27
Duality
Sequences, series, duality (1D)
Sequences: σ = (σk)k∈N ∈ KN indexed by k ∈ N.
Formal power series:
σ(y) = ∞
k=0 σk
yk
k! ∈ K[[y]] σ(z) = ∞
k=0 σk zk ∈ K[[z]]
Linear functionals: K[x]∗ = {Λ : K[x] → K linear}.
Example:
p → coefficient of xi in p = 1
i! ∂i (p)(0)
eζ : p → p(ζ).
B. Mourrain From moments to sparse representations 14 / 27
Duality
Series as linear functionals: For σ(y) = ∞
k=0 σk
yk
k! ∈ K[[y]] or
σ(z) = ∞
k=0 σk zk ∈ K[[z]],
σ : p =
k
pkxk
→ σ|p =
k
σkpk
(yk
k! ) (resp. (zk)) is the dual basis of the monomial basis (xk)k∈N.
Example:
eζ(y) = ∞
k=0 ζk yk
k! = eζy ∈ K[[y]] eζ(z) = ∞
k=0 ζk zk = 1
1−ζz ∈ K[[z]]
Structure of K[x]-module: p Λ : q → Λ(p q).
x σ(y) =
∞
k=1 σk
yk−1
(k−1)! = ∂(σ(y))
p(x) σ(y) = p(∂)(σ(y)) p(x) σ(z) = π+(p(z−1
)(σ(z)))
B. Mourrain From moments to sparse representations 15 / 27
Duality
Sequences, series, duality (nD)
Multi-index sequences: σ = (σα)α∈Nn ∈ KNn
indexed by
α = (α1, . . . , αn) ∈ Nn.
Taylor series:
σ(y) = α∈Nn σα
yα
α! ∈ K[[y1, . . . , yn]] σ(z) = α∈Nn σαzα
∈ K[[z1, . . . , zn]]
where α! = αi ! for α = (α1, . . . , αn) ∈ N.
Linear functionals: σ ∈ R∗ = {σ : R → K, linear}
σ : p =
α
pαxα
→ σ|p =
α
σαpα
The coefficients σ|xα = σα ∈ K, α ∈ Nn are called the moments of σ.
Structure of R-module: ∀p ∈ R, σ ∈ R∗, p σ : q → σ|p q :
p σ = p(∂1, . . . , ∂n)(σ)(y) p σ = π+(p(z−1
1 , . . . , z−1
n )σ(z))
B. Mourrain From moments to sparse representations 16 / 27
Duality
Symmetric tensor and apolarity
Apolar product: For f = |α|=d fα
d
α xα
, g = |α|=d gα
d
α xα
∈ K[x]d ,
f , g d =
|α|=d
fα gα
d
α
.
Property: f , (ξ0x0 + · · · + ξnxn)d = f (ξ0, . . . , ξn)
Duality: For ψ ∈ Sd , we define ψ∗ ∈ S∗
d = HomK(Sd , K) as
ψ∗ : Sd → K
p → ψ, p d
Example: ((ξ0x0 + · · · + ξnxn)d )∗ = eξ : p ∈ Sd → p(ξ) (evaluation at ξ)
Dual symmetric tensor decomposition problem:
Given ψ∗
∈ S∗
d , find a decomposition of the form ψ∗
=
r
i=1 ωi eξi
where
ξi = (ξi,0, ξi,1, . . . , ξi,n) span distinct lines in K
n+1
, ωi ∈ K (ωi = 0).
B. Mourrain From moments to sparse representations 17 / 27
Duality
Symmetric tensors and secants
The evaluation eξ ∈ S∗
d at ξ ∈ K
n+1
represented by the vector (ξα)|α|=d
defines a point of the Veronese variety Vn
d ⊂ P(S∗
d ).
ψ∗ = r
i=1 ωi eξi
iff the corresponding point [ψ∗] in P(S∗
d ) is in the linear
span of the evaluations [eξi
] ∈ Vn
d .
Let So
r (Vn
d ) = {[ψ∗] ∈ P(S∗
d ) | ψ∗ = r
i=1 ωi ei with [ei ] ∈ Vn
d , ωi ∈ K}.
The closure Sr (Vn
d ) = So
r (Vn
d ) is the rth-secant of Vn
d .
B. Mourrain From moments to sparse representations 18 / 27
Duality
Dehomogeneization (apart´e)
S = K[x0, . . . , xn] R = K[x1, . . . , xn]
ι0 : p(x0, . . . , xn) → p(1, x1, . . . , xn)
x
deg(p)
0 p(x1
x0
, . . . , xn
x0
) → p(x1, . . . , xn) : h0
Dual action
h∗
0 : σ ∈ S∗
d → σ ◦ h0 ∈ R∗
≤d
ι∗
0 : σ ∈ R∗
≤d → σ ◦ ι ∈ S∗
d
ι∗
0(σ(y) + O(y)d
) = [e0 σ(y)]d
where e0 = i
yk
0
k! .
For I ⊂ R, let [e0 I⊥]∗ be the vector space of homogeneous components of
e0 σ(y) for σ ∈ I⊥ ⊂ R∗, then
[e0 I⊥
]∗ = (J : x∗
0 )⊥
for any J such that ι0(J) = I (e.g. J = (Ih0 )).
B. Mourrain From moments to sparse representations 19 / 27
Duality
Inverse systems
For I an ideal in R = K[x],
I⊥
= {σ ∈ R∗
| ∀p ∈ I, σ|p = 0}.
In K[[y]], I⊥ is stable by derivations with respect to yi .
In K[[z]], I⊥ is stable by “division” by variables zi .
Inverse system generated by ω1, . . . , ωr ∈ K[y]
ω1, . . . , ωr = ∂α
y (ωi ), α ∈ Nn
resp. π+(z−α
ωi(z)), α ∈ Nn
Example: I = (x2
1 , x2
2 ) ⊂ K[x1, x2]
I⊥
= 1, y1, y2, y1y2 = y1y2 resp. 1, z1, z2, z1z2 = z1z2
Dual of quotient algebra: for A = R/I, A∗ = I⊥.
B. Mourrain From moments to sparse representations 20 / 27
Duality
Hankel operators
Hankel operator: For σ = (σ1, . . . , σm) ∈ (R∗)m,
Hσ : R → (R∗
)m
p → (p σ1, . . . , p σm)
σ is the symbol of Hσ.
Truncated Hankel operator: V , W1, . . . , Wm ⊂ R,
HW ,V
σ : p ∈ V → ((p σi )|Wi
)
Example: V = xα, α ∈ A = xA , W = xβ, β ∈ B = xB ⊂ R,
σ ∈ R∗,
HA,B
σ = [ σ|xα
xβ
]α∈A,β∈B = [σα+β]α∈A,β∈B.
Ideal:
Iσ = ker Hσ = {p ∈ K[x] | p σ = 0},
= {p =
α
pαxα
| ∀β ∈ Nn
α
pασα+β = 0}
Linear recurrence relations on the sequence σ = (σα)α∈Nn .
Quotient algebra: Aσ = R/Iσ
Studied case: dim Aσ < ∞
B. Mourrain From moments to sparse representations 21 / 27
Artinian algebra
1 Sparse representation problems
2 Duality
3 Artinian algebra
B. Mourrain From moments to sparse representations 22 / 27
Artinian algebra
Structure of an Artinian algebra A
Definition: A = K[x]/I is Artinian if dimK A < ∞.
Hilbert nullstellensatz: A = K[x]/I Artinian ⇔ VK(I) = {ξ1, . . . , ξr } is
finite.
Assuming K = K is algebraically closed, we have
I = Q1 ∩· · ·∩Qr where Qi is mξi
-primary where VK(I) = {ξ1, . . . , ξr }.
A = K[x]/I = A1 ⊕ · · · ⊕ Ar , with
Ai = ui A ∼ K[x1, . . . , xn]/Qi ,
u2
i = ui , ui uj = 0 if i = j, u1 + · · · + ur = 1.
dim R/Qi = µi is the multiplicity of ξi .
B. Mourrain From moments to sparse representations 23 / 27
Artinian algebra
Structure of the dual A∗
Sparse series:
PolExp = σ(y) =
r
i=1
ωi (y) eξi
(y) | ωi (y) ∈ K[y],
where eξi
(y) = ey·ξi = ey1ξ1,i +···+ynξn,i with ξi,j ∈ K.
Inverse system generated by ω1, . . . , ωr ∈ K[y]
ω1, . . . , ωr = ∂α
y (ωi ), α ∈ Nn
Theorem
For K = K algebraically closed,
A∗
= ⊕r
i=1 Di eξi
(y) ⊂ PolExp
VK(I) = {ξ1, . . . , ξr }
Di = ωi,1, . . . , ωi,li
with ωi,j ∈ K[y], Q⊥
i = Di eξ where I = Q1 ∩ · · · ∩ Qr
µ(ωi,1, . . . , ωi,li
) := dimK(Di ) = µi multiplicity of ξi .
B. Mourrain From moments to sparse representations 24 / 27

More Related Content

PDF
From moments to sparse representations, a geometric, algebraic and algorithmi...
PDF
Hyperfunction method for numerical integration and Fredholm integral equation...
PDF
Imc2017 day1-solutions
PDF
Lesson 13: Linear Approximation
PPTX
Maxima & Minima of Calculus
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PDF
Probability Formula sheet
From moments to sparse representations, a geometric, algebraic and algorithmi...
Hyperfunction method for numerical integration and Fredholm integral equation...
Imc2017 day1-solutions
Lesson 13: Linear Approximation
Maxima & Minima of Calculus
Lesson 27: Evaluating Definite Integrals
Lesson 25: Evaluating Definite Integrals (slides)
Probability Formula sheet

What's hot (17)

PDF
Linear approximations and_differentials
PDF
Lesson 2: A Catalog of Essential Functions (slides)
PPT
15 multi variable functions
PDF
Number theory lecture (part 1)
PDF
Deep generative model.pdf
PPT
Newton-Raphson Method
PPTX
limits and continuity
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
PDF
Complex function
PDF
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
PDF
Lesson 19: Maximum and Minimum Values
PDF
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
PDF
Probability cheatsheet
PPT
Applications of maxima and minima
PDF
Lesson 20: Derivatives and the Shapes of Curves (slides)
PDF
On the Jensen-Shannon symmetrization of distances relying on abstract means
PDF
Numerical Methods 3
Linear approximations and_differentials
Lesson 2: A Catalog of Essential Functions (slides)
15 multi variable functions
Number theory lecture (part 1)
Deep generative model.pdf
Newton-Raphson Method
limits and continuity
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Complex function
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
Lesson 19: Maximum and Minimum Values
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
Probability cheatsheet
Applications of maxima and minima
Lesson 20: Derivatives and the Shapes of Curves (slides)
On the Jensen-Shannon symmetrization of distances relying on abstract means
Numerical Methods 3
Ad

Similar to From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint. B. Mourrain.part 1 (20)

PDF
Andrei rusu-2013-amaa-workshop
PDF
Multilinear Twisted Paraproducts
PDF
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
PDF
conference_poster_5_UCSB
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
PDF
Litvinenko_RWTH_UQ_Seminar_talk.pdf
PDF
Density theorems for anisotropic point configurations
PDF
Computing F-blowups
PDF
polynomials_.pdf
PDF
Interpolation techniques - Background and implementation
PDF
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
PDF
Fourier 3
PPTX
Resurgence2020-Sueishi análise wkb com in
PDF
Actuarial Science Reference Sheet
PPTX
Differentiation.pptx
PDF
Rational points on elliptic curves
PPTX
Polynomials of class 10 maths chapter polynomials this is prepared by Abhishe...
PPTX
Physical Chemistry Assignment Help
PPTX
Class 10 Maths Ch Polynomial PPT
Andrei rusu-2013-amaa-workshop
Multilinear Twisted Paraproducts
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
conference_poster_5_UCSB
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Density theorems for anisotropic point configurations
Computing F-blowups
polynomials_.pdf
Interpolation techniques - Background and implementation
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Fourier 3
Resurgence2020-Sueishi análise wkb com in
Actuarial Science Reference Sheet
Differentiation.pptx
Rational points on elliptic curves
Polynomials of class 10 maths chapter polynomials this is prepared by Abhishe...
Physical Chemistry Assignment Help
Class 10 Maths Ch Polynomial PPT
Ad

Recently uploaded (20)

PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
Science Form five needed shit SCIENEce so
PPT
Animal tissues, epithelial, muscle, connective, nervous tissue
PDF
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
PPTX
endocrine - management of adrenal incidentaloma.pptx
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
PPTX
Seminar Hypertension and Kidney diseases.pptx
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPT
LEC Synthetic Biology and its application.ppt
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPTX
gene cloning powerpoint for general biology 2
PPT
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
PPTX
A powerpoint on colorectal cancer with brief background
PPTX
ap-psych-ch-1-introduction-to-psychology-presentation.pptx
PPTX
Introcution to Microbes Burton's Biology for the Health
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PPTX
Biomechanics of the Hip - Basic Science.pptx
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Science Form five needed shit SCIENEce so
Animal tissues, epithelial, muscle, connective, nervous tissue
Warm, water-depleted rocky exoplanets with surfaceionic liquids: A proposed c...
endocrine - management of adrenal incidentaloma.pptx
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
INTRODUCTION TO PAEDIATRICS AND PAEDIATRIC HISTORY TAKING-1.pptx
Seminar Hypertension and Kidney diseases.pptx
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
LEC Synthetic Biology and its application.ppt
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
gene cloning powerpoint for general biology 2
1. INTRODUCTION TO EPIDEMIOLOGY.pptx for community medicine
A powerpoint on colorectal cancer with brief background
ap-psych-ch-1-introduction-to-psychology-presentation.pptx
Introcution to Microbes Burton's Biology for the Health
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
Biomechanics of the Hip - Basic Science.pptx
THE CELL THEORY AND ITS FUNDAMENTALS AND USE

From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint. B. Mourrain.part 1

  • 1. From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint Bernard Mourrain Inria M´editerran´ee, Sophia Antipolis Bernard.Mourrain@inria.fr Part I
  • 2. Sparse representation problems 1 Sparse representation problems 2 Duality 3 Artinian algebra B. Mourrain From moments to sparse representations 2 / 27
  • 3. Sparse representation problems Sparse representation of signals Given a function or signal f (t): decompose it as f (t) = r i=1 (ai cos(µi t) + bi sin(µi t))eνi t = r i=1 ωieζit B. Mourrain From moments to sparse representations 3 / 27
  • 4. Sparse representation problems Prony’s method (1795) For the signal f (t) = r i=1 ωieζit, (ωi , ζi ∈ C), Evaluate f at 2 r regularly spaced points: σ0 := f (0), σ1 := f (1), . . . Compute a non-zero element p = [p0, . . . , pr] in the kernel:      σ0 σ1 . . . σr σ1 σr+1 ... ... σr−1 . . . σ2r−1 σ2r−1           p0 p1 ... pr      = 0 Compute the roots ξ1 = eζ1 , . . . , ξr = eζr of p(x) := r i=0 pi xi . Solve the system      1 . . . . . . 1 ξ1 ξr ... ... ξr−1 1 . . . . . . ξr−1 r           ω1 ω2 ... ωr      =      σ0 σ1 ... σr−1      . B. Mourrain From moments to sparse representations 4 / 27
  • 5. Sparse representation problems Symmetric tensor decomposition and Waring problem (1770) Symmetric tensor decomposition problem: Given a homogeneous polynomial ψ of degree d in the variables x = (x0, x1, . . . , xn) with coefficients ∈ K: ψ(x) = |α|=d σα d α xα , find a minimal decomposition of ψ of the form ψ(x) = r i=1 ωi (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)d with ξi = (ξi,0, ξi,1, . . . , ξi,n) ∈ K n+1 spanning disctint lines, ωi ∈ K. The minimal r in such a decomposition is called the rank of ψ. B. Mourrain From moments to sparse representations 5 / 27
  • 6. Sparse representation problems Sylvester approach (1851) Theorem The binary form ψ(x0, x1) = d i=0 σi d i xd−i 0 xi 1 can be decomposed as a sum of r distinct powers of linear forms ψ = r k=1 ωk (αkx0 + βkx1)d iff there exists a polynomial p(x0, x1) := p0xr 0 + p1xr−1 0 x1 + · · · + pr xr 1 s.t.      σ0 σ1 . . . σr σ1 σr+1 ... ... σd−r . . . σd−1 σd           p0 p1 ... pr      = 0 and of the form p = c r k=1(βkx0 − αkx1) with (αk : βk) distinct. B. Mourrain From moments to sparse representations 6 / 27
  • 7. Sparse representation problems Sparse interpolation Given a black-box polynomial function f (x) find what are the terms inside from output values.
  • 8. Find r ∈ N, ωi ∈ C, αi ∈ N such that f (x) = r i=1 ωi xαi . B. Mourrain From moments to sparse representations 7 / 27
  • 9. Sparse representation problems Choose ϕ ∈ C Compute the sequence of terms σ0 = f (1), . . . , σ2r−1 = f (ϕ2r−1); Construct the matrix H = [σi+j ] and its kernel p = [p0, . . . , pr ] s.t.      σ0 σ1 . . . σr σ1 σr+1 ... ... σr−1 . . . σ2r−1 σ2r−1           p0 p1 ... pr      = 0 Compute the roots ξ1 = ϕα1 , . . . , ξr = ϕαr of p(x) := r i=0 pi xi and deduce the exponents αi = logϕ(ξi). Deduce the weights W = [ωi ] by solving VΞ W = [σ0, . . . , σr−1] where VΞ is the Vandermonde system of the roots ξ1, . . . , ξr . B. Mourrain From moments to sparse representations 8 / 27
  • 10. Sparse representation problems Decoding − − − − − − − − − − → An algebraic code: E = {c(f ) = [f (ξ1), . . . , f (ξm)] | f ∈ K[x]; deg(f ) ≤ d}. Encoding messages using the dual code: C = E⊥ = {c | c · [f (ξ1), . . . , f (ξl )] = 0 ∀f ∈ V = xa ⊂ F[x]} Message received: r = m + e for m ∈ C where e = [ω1, . . . , ωm] is an error with ωj = 0 for j = i1, . . . , ir and ωj = 0 otherwise.
  • 11. Find the error e. B. Mourrain From moments to sparse representations 9 / 27
  • 12. Sparse representation problems Berlekamp-Massey method (1969) Compute the syndrome σk = c(xk) · r = c(xk) · e = r j=1 ωij ξk ij . Compute the matrix      σ0 σ1 . . . σr σ1 σr+1 ... ... σr−1 . . . σ2r−1 σ2r−1           p0 p1 ... pr      = 0 and its kernel p = [p0, . . . , pr ]. Compute the roots of the error locator polynomial p(x) = r i=0 pi xi = pr r j=1(x − ξij ). Deduce the errors ωij . B. Mourrain From moments to sparse representations 10 / 27
  • 13. Sparse representation problems Simultaneous decomposition Simultaneous decomposition problem Given symmetric tensors ψ1, . . . , ψm of order d1, . . . , dm, find a simultaneous decomposition of the form ψl = r i=1 ωl,i (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)dl where ξi = (ξi,0, . . . , ξi,n) span distinct lines in K n+1 and ωl,i ∈ K for l = 1, . . . , m. B. Mourrain From moments to sparse representations 11 / 27
  • 14. Sparse representation problems Proposition (One dimensional decomposition) Let ψl = dl i=0 σ1,i dl i xdl −i 0 xi 1 ∈ K[x0, x1]dl for l = 1, . . . , m. If there exists a polynomial p(x0, x1) := p0xr 0 + p1xr−1 0 x1 + · · · + pr xr 1 s.t.                  σ1,0 σ1,1 . . . σ1,r σ1,1 σ1,r+1 ... ... σ1,d1−r . . . σ1,d1−1 σ1,d1 ... ... σm,0 σm,1 . . . σm,r σm,1 σr+1 ... ... σm,dm−r . . . σm,dm−1 σm,dm                       p0 p1 ... pr      = 0 of the form p = c r k=1(βkx0 − αkx1) with [αk : βk] distinct, then ψl = r i=1 ωi,l (αl x0 + βl x1)dl for ωi,l ∈ K and l = 1, . . . , m. B. Mourrain From moments to sparse representations 12 / 27
  • 15. Duality 1 Sparse representation problems 2 Duality 3 Artinian algebra B. Mourrain From moments to sparse representations 13 / 27
  • 16. Duality Sequences, series, duality (1D) Sequences: σ = (σk)k∈N ∈ KN indexed by k ∈ N. Formal power series: σ(y) = ∞ k=0 σk yk k! ∈ K[[y]] σ(z) = ∞ k=0 σk zk ∈ K[[z]] Linear functionals: K[x]∗ = {Λ : K[x] → K linear}. Example: p → coefficient of xi in p = 1 i! ∂i (p)(0) eζ : p → p(ζ). B. Mourrain From moments to sparse representations 14 / 27
  • 17. Duality Series as linear functionals: For σ(y) = ∞ k=0 σk yk k! ∈ K[[y]] or σ(z) = ∞ k=0 σk zk ∈ K[[z]], σ : p = k pkxk → σ|p = k σkpk (yk k! ) (resp. (zk)) is the dual basis of the monomial basis (xk)k∈N. Example: eζ(y) = ∞ k=0 ζk yk k! = eζy ∈ K[[y]] eζ(z) = ∞ k=0 ζk zk = 1 1−ζz ∈ K[[z]] Structure of K[x]-module: p Λ : q → Λ(p q). x σ(y) = ∞ k=1 σk yk−1 (k−1)! = ∂(σ(y)) p(x) σ(y) = p(∂)(σ(y)) p(x) σ(z) = π+(p(z−1 )(σ(z))) B. Mourrain From moments to sparse representations 15 / 27
  • 18. Duality Sequences, series, duality (nD) Multi-index sequences: σ = (σα)α∈Nn ∈ KNn indexed by α = (α1, . . . , αn) ∈ Nn. Taylor series: σ(y) = α∈Nn σα yα α! ∈ K[[y1, . . . , yn]] σ(z) = α∈Nn σαzα ∈ K[[z1, . . . , zn]] where α! = αi ! for α = (α1, . . . , αn) ∈ N. Linear functionals: σ ∈ R∗ = {σ : R → K, linear} σ : p = α pαxα → σ|p = α σαpα The coefficients σ|xα = σα ∈ K, α ∈ Nn are called the moments of σ. Structure of R-module: ∀p ∈ R, σ ∈ R∗, p σ : q → σ|p q : p σ = p(∂1, . . . , ∂n)(σ)(y) p σ = π+(p(z−1 1 , . . . , z−1 n )σ(z)) B. Mourrain From moments to sparse representations 16 / 27
  • 19. Duality Symmetric tensor and apolarity Apolar product: For f = |α|=d fα d α xα , g = |α|=d gα d α xα ∈ K[x]d , f , g d = |α|=d fα gα d α . Property: f , (ξ0x0 + · · · + ξnxn)d = f (ξ0, . . . , ξn) Duality: For ψ ∈ Sd , we define ψ∗ ∈ S∗ d = HomK(Sd , K) as ψ∗ : Sd → K p → ψ, p d Example: ((ξ0x0 + · · · + ξnxn)d )∗ = eξ : p ∈ Sd → p(ξ) (evaluation at ξ) Dual symmetric tensor decomposition problem: Given ψ∗ ∈ S∗ d , find a decomposition of the form ψ∗ = r i=1 ωi eξi where ξi = (ξi,0, ξi,1, . . . , ξi,n) span distinct lines in K n+1 , ωi ∈ K (ωi = 0). B. Mourrain From moments to sparse representations 17 / 27
  • 20. Duality Symmetric tensors and secants The evaluation eξ ∈ S∗ d at ξ ∈ K n+1 represented by the vector (ξα)|α|=d defines a point of the Veronese variety Vn d ⊂ P(S∗ d ). ψ∗ = r i=1 ωi eξi iff the corresponding point [ψ∗] in P(S∗ d ) is in the linear span of the evaluations [eξi ] ∈ Vn d . Let So r (Vn d ) = {[ψ∗] ∈ P(S∗ d ) | ψ∗ = r i=1 ωi ei with [ei ] ∈ Vn d , ωi ∈ K}. The closure Sr (Vn d ) = So r (Vn d ) is the rth-secant of Vn d . B. Mourrain From moments to sparse representations 18 / 27
  • 21. Duality Dehomogeneization (apart´e) S = K[x0, . . . , xn] R = K[x1, . . . , xn] ι0 : p(x0, . . . , xn) → p(1, x1, . . . , xn) x deg(p) 0 p(x1 x0 , . . . , xn x0 ) → p(x1, . . . , xn) : h0 Dual action h∗ 0 : σ ∈ S∗ d → σ ◦ h0 ∈ R∗ ≤d ι∗ 0 : σ ∈ R∗ ≤d → σ ◦ ι ∈ S∗ d ι∗ 0(σ(y) + O(y)d ) = [e0 σ(y)]d where e0 = i yk 0 k! . For I ⊂ R, let [e0 I⊥]∗ be the vector space of homogeneous components of e0 σ(y) for σ ∈ I⊥ ⊂ R∗, then [e0 I⊥ ]∗ = (J : x∗ 0 )⊥ for any J such that ι0(J) = I (e.g. J = (Ih0 )). B. Mourrain From moments to sparse representations 19 / 27
  • 22. Duality Inverse systems For I an ideal in R = K[x], I⊥ = {σ ∈ R∗ | ∀p ∈ I, σ|p = 0}. In K[[y]], I⊥ is stable by derivations with respect to yi . In K[[z]], I⊥ is stable by “division” by variables zi . Inverse system generated by ω1, . . . , ωr ∈ K[y] ω1, . . . , ωr = ∂α y (ωi ), α ∈ Nn resp. π+(z−α ωi(z)), α ∈ Nn Example: I = (x2 1 , x2 2 ) ⊂ K[x1, x2] I⊥ = 1, y1, y2, y1y2 = y1y2 resp. 1, z1, z2, z1z2 = z1z2 Dual of quotient algebra: for A = R/I, A∗ = I⊥. B. Mourrain From moments to sparse representations 20 / 27
  • 23. Duality Hankel operators Hankel operator: For σ = (σ1, . . . , σm) ∈ (R∗)m, Hσ : R → (R∗ )m p → (p σ1, . . . , p σm) σ is the symbol of Hσ. Truncated Hankel operator: V , W1, . . . , Wm ⊂ R, HW ,V σ : p ∈ V → ((p σi )|Wi ) Example: V = xα, α ∈ A = xA , W = xβ, β ∈ B = xB ⊂ R, σ ∈ R∗, HA,B σ = [ σ|xα xβ ]α∈A,β∈B = [σα+β]α∈A,β∈B. Ideal: Iσ = ker Hσ = {p ∈ K[x] | p σ = 0}, = {p = α pαxα | ∀β ∈ Nn α pασα+β = 0} Linear recurrence relations on the sequence σ = (σα)α∈Nn . Quotient algebra: Aσ = R/Iσ
  • 24. Studied case: dim Aσ < ∞ B. Mourrain From moments to sparse representations 21 / 27
  • 25. Artinian algebra 1 Sparse representation problems 2 Duality 3 Artinian algebra B. Mourrain From moments to sparse representations 22 / 27
  • 26. Artinian algebra Structure of an Artinian algebra A Definition: A = K[x]/I is Artinian if dimK A < ∞. Hilbert nullstellensatz: A = K[x]/I Artinian ⇔ VK(I) = {ξ1, . . . , ξr } is finite. Assuming K = K is algebraically closed, we have I = Q1 ∩· · ·∩Qr where Qi is mξi -primary where VK(I) = {ξ1, . . . , ξr }. A = K[x]/I = A1 ⊕ · · · ⊕ Ar , with Ai = ui A ∼ K[x1, . . . , xn]/Qi , u2 i = ui , ui uj = 0 if i = j, u1 + · · · + ur = 1. dim R/Qi = µi is the multiplicity of ξi . B. Mourrain From moments to sparse representations 23 / 27
  • 27. Artinian algebra Structure of the dual A∗ Sparse series: PolExp = σ(y) = r i=1 ωi (y) eξi (y) | ωi (y) ∈ K[y], where eξi (y) = ey·ξi = ey1ξ1,i +···+ynξn,i with ξi,j ∈ K. Inverse system generated by ω1, . . . , ωr ∈ K[y] ω1, . . . , ωr = ∂α y (ωi ), α ∈ Nn Theorem For K = K algebraically closed, A∗ = ⊕r i=1 Di eξi (y) ⊂ PolExp VK(I) = {ξ1, . . . , ξr } Di = ωi,1, . . . , ωi,li with ωi,j ∈ K[y], Q⊥ i = Di eξ where I = Q1 ∩ · · · ∩ Qr µ(ωi,1, . . . , ωi,li ) := dimK(Di ) = µi multiplicity of ξi . B. Mourrain From moments to sparse representations 24 / 27
  • 28. Artinian algebra The roots by eigencomputation Hypothesis: VK(I) = {ξ1, . . . , ξr } ⇔ A = K[x]/I Artinian. Ma : A → A u → a u Mt a : A∗ → A∗ Λ → a Λ = Λ ◦ Ma Theorem The eigenvalues of Ma are {a(ξ1), . . . , a(ξr )}. The eigenvectors of all (Mt a)a∈A are (up to a scalar) eξi : p → p(ξi ). Proposition If the roots are simple, the operators Ma are diagonalizable. Their common eigenvectors are, up to a scalar, interpolation polynomials ui at the roots and idempotent in A. B. Mourrain From moments to sparse representations 25 / 27
  • 29. Artinian algebra Example Roots of polynomial systems f1 = x2 1 x2 − x2 1 I = (f1, f2) ⊂ C[x] f2 = x1x2 − x2 A = C[x]/I ≡ 1, x1, x2 I = (x2 1 − x2, x1x2 − x2, x2 2 − x2) M1 =   0 0 0 1 0 0 0 1 1   , M2 =   0 0 0 0 0 0 1 1 1   common eigvecs of Mt 1, Mt 2 =   1 0 0   ,   1 1 1   I = Q1 ∩ Q2 where Q1 = (x2 1 , x2), Q2 = m(1,1) = (x1 − 1, x2 − 1) I = Q⊥ 1 ⊕Q⊥ 2 Q⊥ 1 = 1, y1 = 1, y1 e(0,0)(y) Q⊥ 2 = 1 e(1,1)(y) = ey1+y2 Solution of partial differential equations (with constant coeff.) ∂2 y1 ∂y2 σ − ∂2 y1 σ = 0 f1 σ = 0 ⇒ σ ∈ I⊥ = Q⊥ 1 ⊕ Q⊥ 2 ∂y1 ∂y2 σ − ∂y2 σ = 0 f2 σ = 0 σ = a + b y1 + c ey1+y2 a, b, c ∈ C B. Mourrain From moments to sparse representations 26 / 27
  • 30. Artinian algebra References Gaspard Riche Baron de Prony. Essai exp´erimental et analytique: Sur les lois de la dilatabilit´e de fluides ´elastiques et sur celles de la force expansive de la vapeur de l’alcool, `a diff´erentes temp´eratures. J. Ecole Polyt., 1:24–76, 1795. Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages 301–309. ACM, 1988. Elwyn R. Berlekamp. Nonbinary BCH decoding. IEEE Transactions on Information Theory, 14(2):242–242, 1968. Leopold Kronecker. Zur Theorie der Elimination Einer Variabeln aus Zwei Algebraischen Gleichungen. Monatsber. K¨onigl. Preussischen Akad. Wies. (Berlin ), pages 535–600., 1881. James Massey. Shift-register synthesis and BCH decoding. IEEE transactions on Information Theory, 15(1):122–127, 1969. James Joseph Sylvester. Essay on Canonical Form. The collected mathematical papers of J. J. Sylvester, Vol. I, Paper 34, Cambridge University Press. 1909 (XV und 688). G. Bell, London, 1851. Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of the International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79, pages 216–226, London, UK, 1979. Springer-Verlag. B. Mourrain From moments to sparse representations 27 / 27