Submit Search
Fst in R
0 likes
1,015 views
Jinseob Kim
Fst calculation in population genetics using R
Health & Medicine
Read more
1 of 5
Download now
Download to read offline
1
2
3
4
5
More Related Content
PDF
Tablas%20estadisticas[1]
Betty Suarez Capcha
PDF
Antaryami
guest0e4c1c
PPTX
La computadora y sus partes
Pau Ortiz
DOCX
Brandy Moore
Brandy Moore
PDF
Tema1
Yhon Moncada
PDF
Survey Research (SOC2029). Seminar 8: formulating a research question
David Rozas
PDF
Survey Research (SOC2029). Seminar 4: measuring concepts
David Rozas
PDF
The function of_mangrov
Rara D'Gigi Qinclonx
Tablas%20estadisticas[1]
Betty Suarez Capcha
Antaryami
guest0e4c1c
La computadora y sus partes
Pau Ortiz
Brandy Moore
Brandy Moore
Tema1
Yhon Moncada
Survey Research (SOC2029). Seminar 8: formulating a research question
David Rozas
Survey Research (SOC2029). Seminar 4: measuring concepts
David Rozas
The function of_mangrov
Rara D'Gigi Qinclonx
Viewers also liked
(8)
PPTX
Olivia's Food Chain Story
jabernethy
PDF
Gasto energético
Lucia Ana Santiago Faulime
PPTX
Runs of Homozygosity presentation
Hadeel Abu Jamous
PPT
Leadership communications in difficult times
Susan Stewart
PDF
A Business Guide to Visual Communication
Visage
PDF
Kgf 8
Carlos Flores
PDF
Yt 38
Carlos Flores
PPTX
Professional communication
INVERTIS UNIVERSITY
Olivia's Food Chain Story
jabernethy
Gasto energético
Lucia Ana Santiago Faulime
Runs of Homozygosity presentation
Hadeel Abu Jamous
Leadership communications in difficult times
Susan Stewart
A Business Guide to Visual Communication
Visage
Kgf 8
Carlos Flores
Yt 38
Carlos Flores
Professional communication
INVERTIS UNIVERSITY
Ad
More from Jinseob Kim
(20)
PDF
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammogr...
Jinseob Kim
PDF
Fst, selection index
Jinseob Kim
PDF
Why Does Deep and Cheap Learning Work So Well
Jinseob Kim
PDF
괴델(Godel)의 불완전성 정리 증명의 이해.
Jinseob Kim
PDF
New Epidemiologic Measures in Multilevel Study: Median Risk Ratio, Median Haz...
Jinseob Kim
DOCX
가설검정의 심리학
Jinseob Kim
PDF
Win Above Replacement in Sabermetrics
Jinseob Kim
PDF
Regression Basic : MLE
Jinseob Kim
PDF
iHS calculation in R
Jinseob Kim
PDF
Selection index population_genetics
Jinseob Kim
PDF
질병부담계산: Dismod mr gbd2010
Jinseob Kim
PDF
DALY & QALY
Jinseob Kim
PDF
Case-crossover study
Jinseob Kim
PDF
Generalized Additive Model
Jinseob Kim
PDF
Deep Learning by JSKIM (Korean)
Jinseob Kim
PDF
Machine Learning Introduction
Jinseob Kim
PDF
Tree advanced
Jinseob Kim
PDF
Deep learning by JSKIM
Jinseob Kim
PDF
Main result
Jinseob Kim
PDF
Multilevel study
Jinseob Kim
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammogr...
Jinseob Kim
Fst, selection index
Jinseob Kim
Why Does Deep and Cheap Learning Work So Well
Jinseob Kim
괴델(Godel)의 불완전성 정리 증명의 이해.
Jinseob Kim
New Epidemiologic Measures in Multilevel Study: Median Risk Ratio, Median Haz...
Jinseob Kim
가설검정의 심리학
Jinseob Kim
Win Above Replacement in Sabermetrics
Jinseob Kim
Regression Basic : MLE
Jinseob Kim
iHS calculation in R
Jinseob Kim
Selection index population_genetics
Jinseob Kim
질병부담계산: Dismod mr gbd2010
Jinseob Kim
DALY & QALY
Jinseob Kim
Case-crossover study
Jinseob Kim
Generalized Additive Model
Jinseob Kim
Deep Learning by JSKIM (Korean)
Jinseob Kim
Machine Learning Introduction
Jinseob Kim
Tree advanced
Jinseob Kim
Deep learning by JSKIM
Jinseob Kim
Main result
Jinseob Kim
Multilevel study
Jinseob Kim
Ad
Fst in R
1.
fst.R secondmath Tue Oct 28
20:12:47 2014 ############## 2014 SNU GEPI population genetics by Jinseob Kim ################### ############## 1. Fst calculation ################################################## ## Load package & Set directory library(hierfstat) ## Loading required package: gtools ## Loading required package: ade4 setwd("/home/secondmath/Dropbox/GSPH/myteaching/pop_gene/") ## Read example file. 7 pop & 289 SNPs (PER3 gene) a=read.table("fstexample.txt",header=T) a[1:10,1:10] # see data ## pop rs2001142 rs1894654 rs2071924 rs17350193 rs6662782 rs11120896 ## 1 SASIA 22 44 33 24 11 33 ## 2 SASIA 44 24 33 44 13 13 ## 3 SASIA 44 22 33 44 11 11 ## 4 SASIA 44 22 33 44 11 33 ## 5 SASIA 44 22 13 44 13 13 ## 6 SASIA 24 44 33 44 13 33 ## 7 SASIA 44 22 13 44 13 33 ## 8 SASIA 24 24 33 44 11 33 ## 9 SASIA 24 24 33 44 11 13 ## 10 SASIA 44 24 13 44 33 33 ## rs9660884 rs12410983 rs10489142 ## 1 33 11 11 ## 2 13 11 13 ## 3 33 11 11 ## 4 33 11 11 ## 5 33 11 11 ## 6 13 11 13 ## 7 11 13 13 ## 8 NA 13 11 ## 9 33 11 11 ## 10 11 11 33 ## Basic stat: original Fst gg=basic.stats(a) perloc1=gg$perloc # per locus statistics head(perloc1) 1
2.
## Ho Hs
Ht Dst Htp Dstp Fst Fstp Fis ## rs2001142 0.2722 0.2807 0.2964 0.0158 0.2990 0.0184 0.0531 0.0615 0.0300 ## rs1894654 0.3299 0.3369 0.3540 0.0172 0.3569 0.0200 0.0485 0.0561 0.0208 ## rs2071924 0.3772 0.3910 0.4215 0.0305 0.4266 0.0356 0.0724 0.0834 0.0353 ## rs17350193 0.0498 0.0528 0.0551 0.0023 0.0555 0.0026 0.0409 0.0474 0.0568 ## rs6662782 0.3988 0.4168 0.4480 0.0312 0.4532 0.0365 0.0697 0.0804 0.0432 ## rs11120896 0.3645 0.3896 0.3923 0.0027 0.3928 0.0032 0.0069 0.0080 0.0645 ## Dest ## rs2001142 0.0255 ## rs1894654 0.0302 ## rs2071924 0.0584 ## rs17350193 0.0028 ## rs6662782 0.0625 ## rs11120896 0.0052 fstloc1=perloc1$Fst # per locus Fst all1=gg$overall # overall locus statistics all1 ## Ho Hs Ht Dst Htp Dstp Fst Fstp Fis Dest ## 0.2823 0.3071 0.3316 0.0245 0.3357 0.0286 0.0740 0.0853 0.0807 0.0413 fst1=all1[7] # overall locus Fst ## Weir & Cockerham's theta gg2=wc(a) fstloc2=gg2$per.loc$FST # per locus fst fstloc2 ## 1 2 3 4 5 ## 0.052426375 0.051901748 0.064390803 0.044631901 0.061101023 ## 6 7 8 9 10 ## 0.010805742 0.084424434 0.019530769 0.042595316 0.024048371 ## 11 12 13 14 15 ## 0.093010994 0.042172548 0.039478819 0.192633459 0.044971892 ## 16 17 18 19 20 ## 0.070157956 0.244806030 0.038940279 0.049389356 0.022615752 ## 21 22 23 24 25 ## 0.033183043 0.084127700 0.092273438 0.081908731 0.058302092 ## 26 27 28 29 30 ## 0.038110973 0.060156731 0.039210191 0.055371303 0.117279665 ## 31 32 33 34 35 ## 0.087762303 0.026666092 0.030153663 0.046526129 0.066012782 ## 36 37 38 39 40 ## 0.061041214 0.065332626 0.052962014 0.075426081 0.075463795 ## 41 42 43 44 45 ## 0.143851689 0.022441398 0.160989656 0.085724512 0.159376136 ## 46 47 48 49 50 ## 0.028792527 0.031761370 0.082197528 0.028375636 0.083978371 ## 51 52 53 54 55 ## 0.106743349 0.027738761 0.023558877 0.054323945 0.098209168 ## 56 57 58 59 60 2
3.
## 0.150600548 0.031533695
0.148855507 0.061552962 0.019935431 ## 61 62 63 64 65 ## 0.016629213 0.006049883 0.041119269 0.006287292 0.051063811 ## 66 67 68 69 70 ## 0.038257279 0.011084482 0.013817984 0.030726323 0.069563187 ## 71 72 73 74 75 ## 0.045359467 0.080328008 0.179663626 0.154162874 0.036787540 ## 76 77 78 79 80 ## 0.156474076 0.059713676 0.149472370 0.084625996 0.064651443 ## 81 82 83 84 85 ## 0.028755981 0.077093453 0.065962172 0.037836763 0.117841464 ## 86 87 88 89 90 ## 0.042180940 0.026789562 0.042122817 0.048523877 0.094996177 ## 91 92 93 94 95 ## 0.024541259 0.040236171 0.057711277 0.192378574 0.112027893 ## 96 97 98 99 100 ## 0.071100721 0.040958278 0.039804008 0.098646412 0.013432562 ## 101 102 103 104 105 ## 0.095766221 0.160937898 0.069724684 0.064214996 0.082597542 ## 106 107 108 109 110 ## 0.039028556 0.054556318 0.021502018 0.077457039 0.063175584 ## 111 112 113 114 115 ## 0.039896285 0.037271113 0.010461731 0.043870960 0.043724436 ## 116 117 118 119 120 ## 0.077800288 0.027988693 0.080775828 0.008932556 0.017080343 ## 121 122 123 124 125 ## 0.041276127 0.021382201 0.039066360 0.056839625 0.026916643 ## 126 127 128 129 130 ## 0.059286386 0.048044486 0.074539391 0.079925351 0.123555960 ## 131 132 133 134 135 ## 0.323591116 0.128787657 0.021784255 0.021430313 0.121233912 ## 136 137 138 139 140 ## 0.140351465 0.081686765 0.080744510 0.053169580 0.096458025 ## 141 142 143 144 145 ## 0.127744975 0.130914573 0.105859961 0.001699597 0.039567999 ## 146 147 148 149 150 ## 0.085991955 0.079364338 0.074371382 0.086226802 0.049037529 ## 151 152 153 154 155 ## 0.063945390 0.117413909 0.035727230 0.109651599 0.059974495 ## 156 157 158 159 160 ## 0.104324316 0.052068810 0.035235836 0.032422676 0.060364201 ## 161 162 163 164 165 ## 0.068006516 0.172619348 0.170746133 0.029443785 0.029540385 ## 166 167 168 169 170 ## 0.015170422 0.084822476 0.056898134 0.085222951 0.024341643 ## 171 172 173 174 175 ## 0.054741121 0.107398335 0.053295969 0.029420780 0.036229460 ## 176 177 178 179 180 ## 0.092176278 0.048550131 0.078728362 0.092591991 0.038693395 ## 181 182 183 184 185 ## 0.018883138 0.038350569 0.042581405 0.038474303 0.023212745 ## 186 187 188 189 190 ## 0.083181022 0.144283966 0.035368442 0.058273478 0.020144811 ## 191 192 193 194 195 3
4.
## 0.072092926 0.013574145
0.085529217 0.076189229 0.091166342 ## 196 197 198 199 200 ## 0.252546077 0.088750827 0.368615111 0.077587130 0.075699531 ## 201 202 203 204 205 ## 0.090949566 0.208493410 0.105717288 -0.000533255 0.249551248 ## 206 207 208 209 210 ## 0.085167668 0.129824466 0.027673612 0.077444448 0.139613076 ## 211 212 213 214 215 ## 0.318675887 0.015282752 0.073725744 0.078902430 0.073697552 ## 216 217 218 219 220 ## 0.195310925 0.195029487 0.053908628 0.086935114 0.009942154 ## 221 222 223 224 225 ## 0.062965097 0.142364332 0.012293135 0.063887472 0.312969039 ## 226 227 228 229 230 ## 0.160067128 0.056967522 0.228764639 0.031508745 0.131429003 ## 231 232 233 234 235 ## 0.222464312 0.223424855 0.185299901 0.050734606 0.185346302 ## 236 237 238 239 240 ## 0.115079447 0.069571321 0.119554978 0.071766978 0.111983227 ## 241 242 243 244 245 ## 0.214351264 0.029049366 0.042517478 0.087912279 0.048054601 ## 246 247 248 249 250 ## 0.151666017 0.053766103 0.038967702 0.020957993 0.019959893 ## 251 252 253 254 255 ## 0.026871676 0.035843600 0.026101353 0.256582892 0.099687908 ## 256 257 258 259 260 ## 0.119433181 0.196222456 0.119811602 0.090002108 0.107603627 ## 261 262 263 264 265 ## 0.101644046 0.035834332 0.028407850 0.069964605 0.039280632 ## 266 267 268 269 270 ## 0.127843935 0.052368189 0.085909558 0.120783113 0.072057826 ## 271 272 273 274 275 ## 0.051028973 0.077276447 0.026610008 0.023447421 0.049813392 ## 276 277 278 279 280 ## 0.030823804 0.050077302 0.148805161 0.103889542 0.081591341 ## 281 282 283 284 285 ## 0.118742163 0.135124404 0.149371409 0.106368373 0.098163375 ## 286 287 288 289 ## 0.077650054 0.050969890 0.078311214 0.171643330 fst2=gg2$FST # overall locus: mean fst2 ## [1] 0.07931026 ## Compare plot(fstloc1,fstloc2) ## compare Wright's Fst & Cockerham's theta 4
5.
0.00 0.05 0.10
0.15 0.20 0.25 0.00.10.20.3 fstloc1 fstloc2 cor.test(fstloc1,fstloc2) ## Correlation test ## ## Pearson's product-moment correlation ## ## data: fstloc1 and fstloc2 ## t = 68.9918, df = 287, p-value < 2.2e-16 ## alternative hypothesis: true correlation is not equal to 0 ## 95 percent confidence interval: ## 0.9637612 0.9770505 ## sample estimates: ## cor ## 0.9711504 5
Download