P„” 
- LD| U`µÄt` 
äµ 
RD t© ôtY µÄ„ : èÀÉ, 
äÀÉ„ 
2ü( : Table2  main result 
@Ä- 
¸YP ôtYÐ )XYPä „X, ´íYPä ¬ü 
March 11, 2014 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
©( 
1 P„” 
2 - LD| U`µÄt` 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
3 äµ 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
ÝX èT 
Y ð? 
1 ÄÜ ð VS Üð(Count data) 
2 ð: Ü„ì!!!!!! ! | ŒÀ„ 
3 Count: Ý , @  etc.. : ìD¡, È, Ltm 
ñ..(ݵ) 
Y ӟ? 
1 2”ü VS 3”ütÁ 
2 2”ü : À¤ñ 
3 3”ütÁ : W ñ..(ݵ) 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
èÀÉ VS äÀÉ 
èÀÉ(univariate) VS äÀÉ(multivariate) 
1 Association ¼È˜ ˆÐ 
1 äx ƒX ¨ü| ô ÄÐÄ Associationt ˆ”? 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
 VS ü U` 
ü¬| X8 1t ˜, U` 
1 : U`@ U + t¬Xà øƒD ”ä. 
2 ü: L Æä, ÿLD č Åpt¸`  Ð.. 
ü¬| X8 1t ˜, U`Ð  ü• 
1 : č X8 ”tôÈ U`@ 1/6x ï Xä. 
2 ü: 1/6| ƒ @p, č X8ôÈ 1/6t Þ” ƒ 
$.. 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
Homo bayesianis 
Figure : Fun example of bayesian 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
FrequentistX |Á• 
Á): à}t‘ 0t }t‘ UX¨ü (t Æ” ƒ 
@p.. 
˜: P? à}t‘ 0t }t‘ (t 0t|à?? (t 0 
t|à X. øìt ´LlLl.. t pt0X Áit ˜, 
¥1t pX Æ”p(5%øÌxp)? øÈL
À8´. 
1 (t 0t|à Ð ¬Œ@ Æä. ÁXD œÀ. 
2 Á)X ü¥D  Œ tXì . 
3 ½Xä. 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
BayesianX |Á• 
Á): à}t‘ 0t }t‘ UX¨ü (t Æ” ƒ 
@p.. N(0; 1)„ì| 0tÀ JDL? 
˜: (t N(0; 1)D 0xäà X. Ð 0tt t 
pt0X Áit ü´LD L, (tX pt€U`D 
İtôÈ N(5; 1:2)| 0t”p? 
1 ¬ÿLÐ  „ì| : Prior 
2 pt0 ü” ô: Likelihood 
3 ÿLü pt0X ô| …i : Posterior- tx t. 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
Probability‘ (t. 
¥Ä 
Figure : Likelihood 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
Maximum likelihood estimator(MLE) 
¥Ä”É: 1;    ; nt  Žt|X. 
1 X ¥Ä h| lä. 
2 ¥Ä| € ñXt ´ ¬tX ¥Ä (ŽtÈL) 
3 ¥Ä|  X”
| lä. 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
@ µÄ„ä 
1ÄÐ 0x U(t 
1 T-test@ ANOVA, simple regression@ @ µÄ„tä. 
Uü ˜t@X Ä 
1 correlationü simple regression@ @ „. 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
Least Square(Œñ•) 
ñiD Œ: y Ü1Ð   D”Æä. 
Figure : Least square method 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
MLE: ¥Ä”É 
pt0 |´  ¥1D : y”  „ìD”. 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
Why know? 
1 Multilevel „X tt| t. 
2 OLS ! GLS ! GEE : semi-parametric 
3 MLE ! LMM ! GLMM : parametric 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
LRT? Ward? score? 
Likelihood Ratio Test VS Ward test VS score test 
1 µÄ X1 èX” )•ä. 
2 ¥ÄDP VS  ÀDP VS 0¸0DP/ 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
DP 
Figure : Comparion 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
P„” 
- LD| U`µÄt` 
äµ 
Frequentist VS Bayesian 
Likelihood 
ŒÀ„X PÀ ”• 
„°üÐ ì¨ ü X 
AIC 
°¬ l ¨X ¥Ä| Lt| Xt. 
1 AIC = 2  log (L) + 2  k 
2 k: $…ÀX /(1Ä, ˜t, ð	...) 
3 ‘D] ‹@ ¨!!! 
¥Ä p ¨D àt ÀÌ.. $…À 4 Ît 
˜ð!!! 
@Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„

More Related Content

PDF
Whole Genome Regression using Bayesian Lasso
PDF
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammogr...
PDF
Fst, selection index
PDF
Why Does Deep and Cheap Learning Work So Well
PDF
괴델(Godel)의 불완전성 정리 증명의 이해.
PDF
New Epidemiologic Measures in Multilevel Study: Median Risk Ratio, Median Haz...
DOCX
가설검정의 심리학
PDF
Win Above Replacement in Sabermetrics
Whole Genome Regression using Bayesian Lasso
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammogr...
Fst, selection index
Why Does Deep and Cheap Learning Work So Well
괴델(Godel)의 불완전성 정리 증명의 이해.
New Epidemiologic Measures in Multilevel Study: Median Risk Ratio, Median Haz...
가설검정의 심리학
Win Above Replacement in Sabermetrics

More from Jinseob Kim (17)

PDF
Regression Basic : MLE
PDF
iHS calculation in R
PDF
Fst in R
PDF
Selection index population_genetics
PDF
질병부담계산: Dismod mr gbd2010
PDF
DALY & QALY
PDF
Case-crossover study
PDF
Generalized Additive Model
PDF
Deep Learning by JSKIM (Korean)
PDF
Machine Learning Introduction
PDF
Tree advanced
PDF
Deep learning by JSKIM
PDF
Multilevel study
PDF
GEE & GLMM in GWAS
PDF
useR 2014 jskim
PDF
R Introduction & auto make table1
PDF
Think bayes
Regression Basic : MLE
iHS calculation in R
Fst in R
Selection index population_genetics
질병부담계산: Dismod mr gbd2010
DALY & QALY
Case-crossover study
Generalized Additive Model
Deep Learning by JSKIM (Korean)
Machine Learning Introduction
Tree advanced
Deep learning by JSKIM
Multilevel study
GEE & GLMM in GWAS
useR 2014 jskim
R Introduction & auto make table1
Think bayes
Ad

Main result

  • 1. P„” - LD| U`µÄt` äµ RD t© ôtY µÄ„ : èÀÉ, äÀÉ„ 2ü( : Table2 main result @Ä- ¸YP ôtYÐ )XYPä „X, ´íYPä ¬ü March 11, 2014 @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 2. P„” - LD| U`µÄt` äµ ©( 1 P„” 2 - LD| U`µÄt` Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X 3 äµ @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 3. P„” - LD| U`µÄt` äµ ÝX èT Y ð? 1 ÄÜ ð VS Üð(Count data) 2 ð: Ü„ì!!!!!! ! | ŒÀ„ 3 Count: Ý , @ etc.. : ìD¡, È, Ltm ñ..(ݵ) Y ”ü? 1 2”ü VS 3”ütÁ 2 2”ü : À¤ñ 3 3”ütÁ : W ñ..(ݵ) @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 4. P„” - LD| U`µÄt` äµ èÀÉ VS äÀÉ èÀÉ(univariate) VS äÀÉ(multivariate) 1 Association ¼È˜ ˆÐ 1 äx ƒX ¨ü| ô ÄÐÄ Associationt ˆ”? @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 5. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X VS ü U` ü¬| X8 1t ˜, U` 1 : U`@ U + t¬Xà øƒD ”ä. 2 ü: L Æä, ÿLD č Åpt¸` Ð.. ü¬| X8 1t ˜, U`Ð ü• 1 : č X8 ”tôÈ U`@ 1/6x ï Xä. 2 ü: 1/6| ƒ @p, č X8ôÈ 1/6t Þ” ƒ $.. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 6. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Homo bayesianis Figure : Fun example of bayesian @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 7. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X FrequentistX |Á• Á): à}t‘ 0t }t‘ UX¨ü (t Æ” ƒ @p.. ˜: P? à}t‘ 0t }t‘ (t 0t|à?? (t 0 t|à X. øìt ´LlLl.. t pt0X Áit ˜, ¥1t pX Æ”p(5%øÌxp)? øÈL
  • 8. À8´. 1 (t 0t|à Ð ¬Œ@ Æä. ÁXD œÀ. 2 Á)X ü¥D Œ tXì . 3 ½Xä. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 9. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X BayesianX |Á• Á): à}t‘ 0t }t‘ UX¨ü (t Æ” ƒ @p.. N(0; 1)„ì| 0tÀ JDL? ˜: (t N(0; 1)D 0xäà X. Ð 0tt t pt0X Áit ü´LD L, (tX pt€U`D İtôÈ N(5; 1:2)| 0t”p? 1 ¬ÿLÐ „ì| : Prior 2 pt0 ü” ô: Likelihood 3 ÿLü pt0X ô| …i : Posterior- tx t. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 10. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Probability‘ (t. ¥Ä Figure : Likelihood @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 11. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Maximum likelihood estimator(MLE) ¥Ä”É: 1; ; nt Žt|X. 1 X ¥Ä h| lä. 2 ¥Ä| € ñXt ´ ¬tX ¥Ä (ŽtÈL) 3 ¥Ä| X”
  • 12. | lä. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 13. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X @ µÄ„ä 1ÄÐ 0x U(t 1 T-test@ ANOVA, simple regression@ @ µÄ„tä. Uü ˜t@X Ä 1 correlationü simple regression@ @ „. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 14. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Least Square(Œñ•) ñiD Œ: y Ü1Ð D”Æä. Figure : Least square method @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 15. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X MLE: ¥Ä”É pt0 |´  ¥1D : y” „ìD”. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 16. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Why know? 1 Multilevel „X tt| t. 2 OLS ! GLS ! GEE : semi-parametric 3 MLE ! LMM ! GLMM : parametric @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 17. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X LRT? Ward? score? Likelihood Ratio Test VS Ward test VS score test 1 µÄ X1 èX” )•ä. 2 ¥ÄDP VS  ÀDP VS 0¸0DP/ @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 18. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X DP Figure : Comparion @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 19. P„” - LD| U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X AIC °¬ l ¨X ¥Ä| Lt| Xt. 1 AIC = 2 log (L) + 2 k 2 k: $…ÀX /(1Ä, ˜t, ð ...) 3 ‘D] ‹@ ¨!!! ¥Ä p ¨D àt ÀÌ.. $…À 4 Ît ˜ð!!! @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 20. P„” - LD| U`µÄt` äµ 1 Main tableÐ èÀÉ„°ü t ü ˆÄ].. 2 epicalc (¤À tƒD ¥XŒ tä. 3 Week2.R 11. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
  • 21. P„” - LD| U`µÄt` äµ END Email : secondmath85@gmail.com Oce: (02)880-2473 H.P: 010-9192-5385 @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„