Upload
Download free for 30 days
Login
Submit Search
Main result
1 like
490 views
Jinseob Kim
Main result
Data & Analytics
Read more
1 of 19
Download now
Download to read offline
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
More Related Content
PDF
Whole Genome Regression using Bayesian Lasso
Jinseob Kim
PDF
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammogr...
Jinseob Kim
PDF
Fst, selection index
Jinseob Kim
PDF
Why Does Deep and Cheap Learning Work So Well
Jinseob Kim
PDF
괴델(Godel)의 불완전성 정리 증명의 이해.
Jinseob Kim
PDF
New Epidemiologic Measures in Multilevel Study: Median Risk Ratio, Median Haz...
Jinseob Kim
DOCX
가설검정의 심리학
Jinseob Kim
PDF
Win Above Replacement in Sabermetrics
Jinseob Kim
Whole Genome Regression using Bayesian Lasso
Jinseob Kim
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammogr...
Jinseob Kim
Fst, selection index
Jinseob Kim
Why Does Deep and Cheap Learning Work So Well
Jinseob Kim
괴델(Godel)의 불완전성 정리 증명의 이해.
Jinseob Kim
New Epidemiologic Measures in Multilevel Study: Median Risk Ratio, Median Haz...
Jinseob Kim
가설검정의 심리학
Jinseob Kim
Win Above Replacement in Sabermetrics
Jinseob Kim
More from Jinseob Kim
(17)
PDF
Regression Basic : MLE
Jinseob Kim
PDF
iHS calculation in R
Jinseob Kim
PDF
Fst in R
Jinseob Kim
PDF
Selection index population_genetics
Jinseob Kim
PDF
질병부담계산: Dismod mr gbd2010
Jinseob Kim
PDF
DALY & QALY
Jinseob Kim
PDF
Case-crossover study
Jinseob Kim
PDF
Generalized Additive Model
Jinseob Kim
PDF
Deep Learning by JSKIM (Korean)
Jinseob Kim
PDF
Machine Learning Introduction
Jinseob Kim
PDF
Tree advanced
Jinseob Kim
PDF
Deep learning by JSKIM
Jinseob Kim
PDF
Multilevel study
Jinseob Kim
PDF
GEE & GLMM in GWAS
Jinseob Kim
PDF
useR 2014 jskim
Jinseob Kim
PDF
R Introduction & auto make table1
Jinseob Kim
PDF
Think bayes
Jinseob Kim
Regression Basic : MLE
Jinseob Kim
iHS calculation in R
Jinseob Kim
Fst in R
Jinseob Kim
Selection index population_genetics
Jinseob Kim
질병부담계산: Dismod mr gbd2010
Jinseob Kim
DALY & QALY
Jinseob Kim
Case-crossover study
Jinseob Kim
Generalized Additive Model
Jinseob Kim
Deep Learning by JSKIM (Korean)
Jinseob Kim
Machine Learning Introduction
Jinseob Kim
Tree advanced
Jinseob Kim
Deep learning by JSKIM
Jinseob Kim
Multilevel study
Jinseob Kim
GEE & GLMM in GWAS
Jinseob Kim
useR 2014 jskim
Jinseob Kim
R Introduction & auto make table1
Jinseob Kim
Think bayes
Jinseob Kim
Ad
Main result
1.
P„” - LD|
U`µÄt` äµ RD t© ôtY µÄ„ : èÀÉ, äÀÉ„ 2ü( : Table2 main result @Ä- ¸YP ôtYÐ )XYPä „X, ´íYPä ¬ü March 11, 2014 @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
2.
P„” - LD|
U`µÄt` äµ ©( 1 P„” 2 - LD| U`µÄt` Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X 3 äµ @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
3.
P„” - LD|
U`µÄt` äµ ÝX èT Y ð? 1 ÄÜ ð VS Üð(Count data) 2 ð: Ü„ì!!!!!! ! | ŒÀ„ 3 Count: Ý , @ etc.. : ìD¡, È, Ltm ñ..(ݵ) Y ”ü? 1 2”ü VS 3”ütÁ 2 2”ü : À¤ñ 3 3”ütÁ : W ñ..(ݵ) @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
4.
P„” - LD|
U`µÄt` äµ èÀÉ VS äÀÉ èÀÉ(univariate) VS äÀÉ(multivariate) 1 Association ¼È˜ ˆÐ 1 äx ƒX ¨ü| ô ÄÐÄ Associationt ˆ”? @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
5.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X VS ü U` ü¬| X8 1t ˜, U` 1 : U`@ U + t¬Xà øƒD ”ä. 2 ü: L Æä, ÿLD Ä Åpt¸` Ð.. ü¬| X8 1t ˜, U`Ð ü• 1 : Ä X8 ”tôÈ U`@ 1/6x ï Xä. 2 ü: 1/6| ƒ @p, Ä X8ôÈ 1/6t Þ” ƒ $.. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
6.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Homo bayesianis Figure : Fun example of bayesian @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
7.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X FrequentistX |Á• Á): à}t‘ 0t }t‘ UX¨ü (t Æ” ƒ @p.. ˜: P? à}t‘ 0t }t‘ (t 0t|à?? (t 0 t|à X. øìt ´LlLl.. t pt0X Áit ˜, ¥1t pX Æ”p(5%øÌxp)? øÈL
8.
À8´. 1 (t
0t|à Ð ¬Œ@ Æä. ÁXD œÀ. 2 Á)X ü¥D Œ tXì . 3 ½Xä. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
9.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X BayesianX |Á• Á): à}t‘ 0t }t‘ UX¨ü (t Æ” ƒ @p.. N(0; 1)„ì| 0tÀ JDL? ˜: (t N(0; 1)D 0xäà X. Ð 0tt t pt0X Áit ü´LD L, (tX pt€U`D İtôÈ N(5; 1:2)| 0t”p? 1 ¬ÿLÐ „ì| : Prior 2 pt0 ü” ô: Likelihood 3 ÿLü pt0X ô| …i : Posterior- tx t. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
10.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Probability‘ (t. ¥Ä Figure : Likelihood @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
11.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Maximum likelihood estimator(MLE) ¥Ä”É: 1; ; nt Žt|X. 1 X ¥Ä h| lä. 2 ¥Ä| € ñXt ´ ¬tX ¥Ä (ŽtÈL) 3 ¥Ä| X”
12.
| lä. @Ä-
RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
13.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X @ µÄ„ä 1ÄÐ 0x U(t 1 T-test@ ANOVA, simple regression@ @ µÄ„tä. Uü ˜t@X Ä 1 correlationü simple regression@ @ „. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
14.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Least Square(Œñ•) ñiD Œ: y Ü1Ð D”Æä. Figure : Least square method @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
15.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X MLE: ¥Ä”É pt0 |´ ¥1D : y” „ìD”. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
16.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X Why know? 1 Multilevel „X tt| t. 2 OLS ! GLS ! GEE : semi-parametric 3 MLE ! LMM ! GLMM : parametric @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
17.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X LRT? Ward? score? Likelihood Ratio Test VS Ward test VS score test 1 µÄ X1 èX” )•ä. 2 ¥ÄDP VS ÀDP VS 0¸0DP/ @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
18.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X DP Figure : Comparion @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
19.
P„” - LD|
U`µÄt` äµ Frequentist VS Bayesian Likelihood ŒÀ„X PÀ ”• „°üÐ ì¨ ü X AIC °¬ l ¨X ¥Ä| Lt| Xt. 1 AIC = 2 log (L) + 2 k 2 k: $…ÀX /(1Ä, ˜t, ð ...) 3 ‘D] ‹@ ¨!!! ¥Ä p ¨D àt ÀÌ.. $…À 4 Ît ˜ð!!! @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
20.
P„” - LD|
U`µÄt` äµ 1 Main tableÐ èÀÉ„°ü t ü ˆÄ].. 2 epicalc (¤À tƒD ¥XŒ tä. 3 Week2.R 11. @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
21.
P„” - LD|
U`µÄt` äµ END Email : secondmath85@gmail.com Oce: (02)880-2473 H.P: 010-9192-5385 @Ä- RD t© ôtY µÄ„ : èÀÉ, äÀÉ„
Download