SlideShare a Scribd company logo
Opener:   Evaluate each of the following expressions for x=5.

          1.) 3x + 6




          2.) 




          3.) x2 +4




                                                                1
3.24 & 3.25     An Introduction to Function Notation

Think Back 
shhhh.....just think! 

                         Think of a linear equation that you have seen this year.  


                         Now, write down your equation.


                         How many solutions are there to this equation?




  Graphing on the        Graph your equation on the Nspire.
  Nspire




                         On the calculator we said f(x) meant the same thing as 
                         what ?




                         Why does it say f1 (x) = .....?




                         How will we represent different functions on paper?




                                                                                      2
Topic One:
Function Basics
              (Ex. 1) Find f(4) if f(x)= 3x+6.




               (Ex. 2) Find g(13) if g(x)= 




Think‐ Pair‐ Share
               (Ex. 3)
                         Find h(7) if h(x)=x2+4.




               (Ex. 4) Find f(‐2) if f(z)= |3z + 1|




              (Ex. 5) Find f(      ) if f (p) = 4(p ‐ 2).




                                                            3
Topic Two: 
Input‐Output Values
              (Ex. 6) Given the function f(x) = x4 ‐ 5 and our knowledge 
                      about exponents, label which column you think is the 
                      input and which is the output.




                      What value belongs in the third input box?  How might 
                      we solve for that value?




                      If we were given the input value instead, how would we 
                      solve for the output value?




  It's Your Turn!     Use the function f(x) = ‐2x + 5 to complete the table 
              (Ex. 7) with your partner.




                                                                                4
5
Exit Slip:        I need your help to come up with a STELLAR opener for 
Design an Opener. next class.

                   With your group, please write 2 questions that can be 
                   used as an opener in future classes.  These questions 
                   should review topics we discussed today: basic 
                   evaluation of functions and problems dealing with 
                   input‐output values of functions.  The questions may be 
                   similar in nature to what we did today, or may challenge 
                   your classmates beyond the scope of today's lesson.

                   Remember that I will be collecting these, and they will 
                   serve as a part of your group assignment grade. 




                                                                               6
7
Homework:   Evaluating Functions Worksheet 




                                              8
9
10

More Related Content

PDF
Polynomial functions
PDF
Theorems on polynomial functions
PDF
Math 4 graphing rational functions
PDF
More theorems on polynomial functions
PPTX
Skill40 evaluating functions
PDF
Lesson 1: Functions
PPTX
Section 1.1
PPT
Objective 1 - Identifying Functions
Polynomial functions
Theorems on polynomial functions
Math 4 graphing rational functions
More theorems on polynomial functions
Skill40 evaluating functions
Lesson 1: Functions
Section 1.1
Objective 1 - Identifying Functions

What's hot (19)

PDF
Lesson 1: Functions and their Representations
PDF
5.3 Basic functions. A handout.
PDF
Pre-Cal 30S January 15, 2009
PDF
Day 7 distributive property
PDF
2 5 zeros of poly fn
PPT
Exponential functions
PDF
Lesson 1: Functions and their representations (slides)
PDF
Applied 40S May 28, 2009
PPT
Core 3 Numerical Methods 1
PPTX
Exponents)
PPT
Judes Drafting Table The Bowling Question
DOCX
Power to a Power
PDF
Polynomial Function and Synthetic Division
PPT
PDF
Hw9
PPT
Polynomial functions
PPTX
Polynomial Functions
PPTX
Functions
PPT
Lecture 8 section 3.2 polynomial equations
Lesson 1: Functions and their Representations
5.3 Basic functions. A handout.
Pre-Cal 30S January 15, 2009
Day 7 distributive property
2 5 zeros of poly fn
Exponential functions
Lesson 1: Functions and their representations (slides)
Applied 40S May 28, 2009
Core 3 Numerical Methods 1
Exponents)
Judes Drafting Table The Bowling Question
Power to a Power
Polynomial Function and Synthetic Division
Hw9
Polynomial functions
Polynomial Functions
Functions
Lecture 8 section 3.2 polynomial equations
Ad

Similar to Functions D1 Notes (20)

PDF
2.4 notes b
PPTX
"Mastering Function Evaluation: A Step-by-Step Guide"
PPTX
(8) Lesson 4.4
PPSX
Types of functions 05272011
PDF
7 4 Notes A
PPTX
Precalculus ( Polynomial Functions.pptx)
PDF
mc-ty-polynomial-2009-1.pdf
PDF
Introduction to Functions
DOCX
Log char
PPT
ppt
PPT
ppt
PPTX
Proves Remainder Theorem used for COT.pptx
PPTX
Functions ordered pairs
DOCX
DirectionsUse what you have learned in this course to answer th.docx
PPT
Functions
PPT
PPt on Functions
PDF
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof...
PPT
Objective 1 - Identifying Functions
PDF
Note introductions of functions
PDF
Introduction to functions
2.4 notes b
"Mastering Function Evaluation: A Step-by-Step Guide"
(8) Lesson 4.4
Types of functions 05272011
7 4 Notes A
Precalculus ( Polynomial Functions.pptx)
mc-ty-polynomial-2009-1.pdf
Introduction to Functions
Log char
ppt
ppt
Proves Remainder Theorem used for COT.pptx
Functions ordered pairs
DirectionsUse what you have learned in this course to answer th.docx
Functions
PPt on Functions
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof...
Objective 1 - Identifying Functions
Note introductions of functions
Introduction to functions
Ad

Functions D1 Notes

  • 1. Opener: Evaluate each of the following expressions for x=5. 1.) 3x + 6 2.)  3.) x2 +4 1
  • 2. 3.24 & 3.25 An Introduction to Function Notation Think Back  shhhh.....just think!  Think of a linear equation that you have seen this year.   Now, write down your equation. How many solutions are there to this equation? Graphing on the  Graph your equation on the Nspire. Nspire On the calculator we said f(x) meant the same thing as  what ? Why does it say f1 (x) = .....? How will we represent different functions on paper? 2
  • 3. Topic One: Function Basics (Ex. 1) Find f(4) if f(x)= 3x+6. (Ex. 2) Find g(13) if g(x)=  Think‐ Pair‐ Share (Ex. 3) Find h(7) if h(x)=x2+4. (Ex. 4) Find f(‐2) if f(z)= |3z + 1| (Ex. 5) Find f(      ) if f (p) = 4(p ‐ 2). 3
  • 4. Topic Two:  Input‐Output Values (Ex. 6) Given the function f(x) = x4 ‐ 5 and our knowledge  about exponents, label which column you think is the  input and which is the output. What value belongs in the third input box?  How might  we solve for that value? If we were given the input value instead, how would we  solve for the output value? It's Your Turn! Use the function f(x) = ‐2x + 5 to complete the table  (Ex. 7) with your partner. 4
  • 5. 5
  • 6. Exit Slip: I need your help to come up with a STELLAR opener for  Design an Opener. next class. With your group, please write 2 questions that can be  used as an opener in future classes.  These questions  should review topics we discussed today: basic  evaluation of functions and problems dealing with  input‐output values of functions.  The questions may be  similar in nature to what we did today, or may challenge  your classmates beyond the scope of today's lesson. Remember that I will be collecting these, and they will  serve as a part of your group assignment grade.  6
  • 7. 7
  • 8. Homework: Evaluating Functions Worksheet  8
  • 9. 9
  • 10. 10