SlideShare a Scribd company logo
Fundamentals of
RF Systems
조용희조용희
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실2
1. Microwave systems
Transmission
  Information
- Channel bandwidth
- Base band
- Inefficient wave radiation
 Modulation – center frequency
Time domain Frequency domain
출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실3
Why’s modulation need?
  Transmission efficiency
- Multiplexing
- Antenna length: wavelength
- Wave radiation: comparison with DC
Battery: DC
Antenna: AC
1. Microwave systems
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실4
Microwave transmitter (Tx)
  Up-conversion: frequency
( ))cos()cos(
2
1
)cos()cos( yxyxyx −++=
BBf BBLO ff ± BBLO ff ±
1. Microwave systems

출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실5
Microwave receiver (Rx)
  Down-conversion: frequency
( ))cos()cos(
2
1
)cos()cos( yxyxyx −++=
BBfBBIF ff ±BBLO ff ±
IFLO fff −= IFff =
1. Microwave systems

출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실6
Microwave transceiver
  Duplexer: bandpass filter or switch
- Loss, tx suppression, channel selection
IF: superheterodyne
No IF: direct conversion
1. Microwave systems
출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실7
FDMA (FDM Access)
1. Microwave systems
  Resource: frequency
 Guard band
 Simple transceiver
 Interference
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실8
DS(Direct Sequence)-CDMA
1. Microwave systems
QPSK: Quadrature Phase Shift Keying
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실9
Fundamentals
  Antenna gain: anisotropic radiation (G > 1)
isotropic radiation (G = 1)
 Directivity and efficiency:
 Angular beamwidth: 3dB
Radiation pattern [dBi]: dB isotropic
2. Antennas
DG η=
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실10
2. Antennas
Dipole antenna
  Simple but long structure
 Low efficiency
Microstrip type
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실11
Handy phone antenna
Helical antenna
2. Antennas
  Complicated structure
 Medium efficiency
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실12
Antenna simulation
Ansoft: Ensemble
CST: MWS
Ansoft: HFSS
2. Antennas
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실13
Wave propagation
}Re{
}Re{
)cos(),(
)(
tjzjj
o
ztj
o
o
eeeV
eV
ztVtzV
ωβφ
φβω
φβω
−
+−
=
=
+−=
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실14
Distributed element
  Lumped element: R, L, C
  Distributed element: tx line
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실15
Wave solution
  Traveling wave solution
- Voltage:
- Current:
zz
s eVeVzV γγ −−+
+= 00)(
zz
s eIeIzI γγ −−+
−= 00)(
)())((
)(
2
2
zVCjGLjR
dz
zVd
s
s
ωω ++=
))(( CjGLjRj ωωβαγ ++=+=
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실16
Characteristic impedance
  Important parameter in tx line:
-
-
CjG
LjR
Z
ω
ω
+
+
=0
−
−
+
+
==
0
0
0
0
0
I
V
I
V
Z
3. Tx line theory
0Z
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실17
Reflection coefficient
0
0
0
11 ||
ZZ
ZZ
V
V
e
L
Loj
+
−
==Γ=Γ +
−
φ

  Voltage wave continuity conditions
 Current wave continuity conditions
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실18
Wave power
( ) ( )2
0
2
0*
1
2
Re
2
1
Γ−==
+
Z
V
VIP
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실19
SWR (Standing Wave Ratio)
  SWR: field theory
 VSWR (Voltage SWR): tx line theory
||1
||1
min
max
Γ−
Γ+
=
=
V
V
s
Experiment
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실20
Smith chart
 Graphical method
 Essential diagram for
microwave engineering

P. Smith in 1939
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실21
Induction of Smith chart
 S-parameter: reflection
coefficient
 |S11| = 0: all transmission
 |S11| = 1: all reflection

3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실22
VNA (Vector Network Analyzer)
 Measurement equipment
 Reflection coefficients
with frequency sweep

3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실23
Scattering matrix: Two-port network
 Matrix definition: matched load
gain:
isolation:
reflection:,where
21
12
2211
2
1
2221
1211
2
1
S
S
SS
V
V
SS
SS
V
V












=





+
+
−
−

3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실24
Antenna impedance
  Antenna impedance (not infinity) matching
 No reflection, power efficiency
Handy phone antenna
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실25
Coaxial line
3. Tx line theory
 Wide bandwidth (TEM)
 Characteristic impedance: 50 Ohms
 Shielding
 Conductor and dielectric loss
 Measurement
 RG (Radio Government) series
Coaxial line
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실26
Connector
 BNC (Bayonet Neill Concelman) connector
 SMA (SubMiniature type A) connector
 Type N connector
 Type K connector
 APC (Amphenol Precision Connector)
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실27
Microstrip line
3. Tx line theory
  Quasi-TEM line
 Easy fabrication: etching
 Substrate
 Characteristic impedance
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실28
Substrate
  Relative permittivity
 Thickness of a substrate: mil (inch/1000)
 Thickness of a metal: oz (almost 1.4 mils)
 Loss: loss tangent
 Temperature
3. Tx line theory
Power amplifier module
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실29
Etching: PCB (Printed Circuit
Board)
  FR4, RT/duroid 5880 (6010 …)
 Film
 Photoresist (PR)
 Toluene
 Ultraviolet
 Iron chloride
3. Tx line theory
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실30
Selection of active device
4. Amplifier
pHEMT amplifier with package
 Gain [dB]
 Bandwidth [Hz]
 Stability: oscillation
 Noise figure [dB]: LNA
 P1dB [dBm]: PA
 Characteristics of
active device: bias

Bare chip
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실31
Wire bonding for bare chip
Wire bonding vs.
soldering

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실32
Bias design
 Assignment of AC and DC path
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실33
S2P file: S-parameter information
 Input impedance: S11
 Output impedance: S22
 Gain: S21
 Isolation: S12

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실34
Impedance matching
 Lumped elements (L or C)
 Stub matching
 Conjugate matching: maximum power transfer
 Noise matching: low noise

( )*
LL ZZ →
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실35
Block diagram of cellular phone
 LNA (Low Noise Amplifier), PA (Power
Amplifier), Mixer, VCO, switch
 Filter, duplexer

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실36
Digital RF system
Transmitter and receiver
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실37
LNA (Low Noise Amplifier)
 Noise figure: 2 dB
 Amplifier gain: 15 dB
 Return loss: 15 dB
 Reverse isolation: 20 dB
 Impedance matching: power and noise

4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실38
 SNR: signal to noise ratio
 Noiseless system: NF = 1
 Noisy system: NF > 1
 Ground

Noise figure (NF)
4. Amplifier
in
out
out
in
out
in
N
N
S
S
SNR
SNR
NF ==
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실39
Simulation of LNA
Port
OUT
Num=2
Port
IN
Num=1
C
C2
C=1.0pF
C
C1
C=1.0pF
L
L3
R=
L=1.0nH
L
L2
R=
L=1.0nH
TSMC_CM025RF_PMOS_RF
PMOS_RF1
finger=16
width=10um
length=0.24um
Type=2.5Vtwin-well
TSMC_CM025RF_NMOS
NMOS2
Width=0.30um
Length=0.24um
Type=2.5V_nom
L
L1
R=
L=1.0nH
R
R3
R=50Ohm
R
R2
R=50OhmTSMC_CM025RF_NMOS
NMOS1
Width=0.30um
Length=0.24um
Type=2.5V_nom
R
R1
R=50Ohm
HP
ADS (Advanced Design System)

 AC and DC path
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실40
HPA (High Power Amplifier)
 Output power (P1dB), power gain
 Linearity (OIP3)
 Efficiency (PAE)
 Temperature

Power amplifier scheme
4. Amplifier
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실41
Characteristics
5. Filter
 2 port network: S parameters
 Pass band and stop band
 Return loss and insertion loss
 Ripple and selectivity (skirt)
 Pole and zero
 Group delay

Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실42
Classification
 LPF (Low Pass Filter)
 HPF (High Pass Filter)
 BPF (Band Pass Filter)
 BSF (Band Stop Filter): notch filter
 Duplexer: 2 BPF
 Diplexer: LPF and HPF

5. Filter
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실43
Power divider
 Division of power: scattering matrix
 Lossless system
-
- Scattering matrix: unitary matrix

3-port networks 5-port networks












−−−
−−
−
=
ββαα
βαβα
αα
222
22
2
lossy
11
1
10
S

[ ] [ ] [ ] [ ]** −−++
= VVVV
TT
5. Filter
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실44
T-junction power divider
 Simple 3-port network
 Waveguide or microstrip line
 Lossless or all-port matched network

portat 021in YYYjBY ++=
5. Filter
출처 : RFDH.com
Fundamentals of RF SystemsFundamentals of RF Systems
전자파연구실전자파연구실45
Frequency conversion
  Mixer
 VCO: Voltage Controlled Oscillator
 PLL: Phase Locked Loop
 TCXO: Temperature Compensated Crystal
Oscillator
6. IF conversion
출처 : RFDH.com

More Related Content

PDF
An Introduction to RF Design, Live presentation at EELive 2014
PPT
RF transmitter & receiver
PPT
RF Transceivers
PDF
Rf basics
PDF
Channel Estimation
PDF
MIMO Channel Capacity
PDF
Millimeter wave 5G antennas for smartphones
An Introduction to RF Design, Live presentation at EELive 2014
RF transmitter & receiver
RF Transceivers
Rf basics
Channel Estimation
MIMO Channel Capacity
Millimeter wave 5G antennas for smartphones

What's hot (20)

PPT
Introduction to RF & Wireless - Part 1
PPT
RF Basics & Getting Started Guide by Anaren
PPT
Introduction to RF & Wireless - Part 2
PPT
Signal Integrity Testing With a Vector Network Analyzer
PPT
RF fundamentals
PDF
RF Module Design - [Chapter 4] Transceiver Architecture
PDF
802.11ac WIFI Fundamentals
PDF
Rf fundamentals
PPTX
Fundamental of Radio Frequency
PPT
lecture4.ppt
PPT
Spectrum Analyzer Fundamentals/Advanced Spectrum Analysis
PPT
Rf receiver design case studies
PDF
RF Module Design - [Chapter 3] Linearity
PDF
Understanding RF Fundamentals and the Radio Design of Wireless Networks
PPTX
Parabolic Antenna
PDF
GSM Link Budget
PDF
Introduction To Antenna Impedance Tuner And Aperture Switch
PPTX
Optical multiplexers
PPTX
Analog RF Front End Architecture
Introduction to RF & Wireless - Part 1
RF Basics & Getting Started Guide by Anaren
Introduction to RF & Wireless - Part 2
Signal Integrity Testing With a Vector Network Analyzer
RF fundamentals
RF Module Design - [Chapter 4] Transceiver Architecture
802.11ac WIFI Fundamentals
Rf fundamentals
Fundamental of Radio Frequency
lecture4.ppt
Spectrum Analyzer Fundamentals/Advanced Spectrum Analysis
Rf receiver design case studies
RF Module Design - [Chapter 3] Linearity
Understanding RF Fundamentals and the Radio Design of Wireless Networks
Parabolic Antenna
GSM Link Budget
Introduction To Antenna Impedance Tuner And Aperture Switch
Optical multiplexers
Analog RF Front End Architecture
Ad

Viewers also liked (6)

PPT
Field Effect Transistor
PPT
Impedance Matching
PPT
Transmission Line
PPT
Smith Chart
PPT
Bipolar Junction Transistor
PDF
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
Field Effect Transistor
Impedance Matching
Transmission Line
Smith Chart
Bipolar Junction Transistor
ICT+UD 융합작품 개발문서(스마트디바이스지능통신)
Ad

Similar to Fundamentals of RF Systems (6)

PPT
Microwave Systems
PPT
Introduction to Communication System
PPT
Introduction to Electronic Circuit
PPT
327997117-Ch-4-Digital-Communication.ppt
PPTX
PDF
R18 b.tech 3 2 ece syllabus
Microwave Systems
Introduction to Communication System
Introduction to Electronic Circuit
327997117-Ch-4-Digital-Communication.ppt
R18 b.tech 3 2 ece syllabus

More from Yong Heui Cho (20)

PPTX
Android - Sensor Manager
PPTX
Android - Broadcast Receiver
PPTX
Android - Message
PPTX
Cloud Computing
PPTX
Computing Paradigm
DOCX
TestBCD2018-2(answer)
DOCX
TestSDS2018-2(answer)
DOCX
TestEC2018-2(answer)
DOCX
TestEC2018-1(answer)
DOCX
TestBCD2018-1(answer)
DOCX
TestSDS2018-1(answer)
PPTX
BJT - Analysis of Bias
DOCX
TestCloud2018-2(answer)
DOCX
TestECD2018-1(answer)
DOCX
Test-SDIC2018-2(answer)
DOCX
TestCloud2018-1(answer)
PPTX
Cloud Service Model
DOCX
Test-SDIC2018-1(Answer)
DOCX
RF 증폭기 설계(Design of RF Amplifier)-rev1
PPTX
Computing Paradigm - rev1
Android - Sensor Manager
Android - Broadcast Receiver
Android - Message
Cloud Computing
Computing Paradigm
TestBCD2018-2(answer)
TestSDS2018-2(answer)
TestEC2018-2(answer)
TestEC2018-1(answer)
TestBCD2018-1(answer)
TestSDS2018-1(answer)
BJT - Analysis of Bias
TestCloud2018-2(answer)
TestECD2018-1(answer)
Test-SDIC2018-2(answer)
TestCloud2018-1(answer)
Cloud Service Model
Test-SDIC2018-1(Answer)
RF 증폭기 설계(Design of RF Amplifier)-rev1
Computing Paradigm - rev1

Recently uploaded (20)

PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
Spectroscopy.pptx food analysis technology
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Machine learning based COVID-19 study performance prediction
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Electronic commerce courselecture one. Pdf
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Big Data Technologies - Introduction.pptx
PDF
cuic standard and advanced reporting.pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
NewMind AI Weekly Chronicles - August'25 Week I
Diabetes mellitus diagnosis method based random forest with bat algorithm
Advanced methodologies resolving dimensionality complications for autism neur...
Per capita expenditure prediction using model stacking based on satellite ima...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Spectroscopy.pptx food analysis technology
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
sap open course for s4hana steps from ECC to s4
Machine learning based COVID-19 study performance prediction
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
“AI and Expert System Decision Support & Business Intelligence Systems”
Reach Out and Touch Someone: Haptics and Empathic Computing
The AUB Centre for AI in Media Proposal.docx
Electronic commerce courselecture one. Pdf
Encapsulation_ Review paper, used for researhc scholars
Big Data Technologies - Introduction.pptx
cuic standard and advanced reporting.pdf

Fundamentals of RF Systems

  • 2. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실2 1. Microwave systems Transmission   Information - Channel bandwidth - Base band - Inefficient wave radiation  Modulation – center frequency Time domain Frequency domain 출처 : RFDH.com
  • 3. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실3 Why’s modulation need?   Transmission efficiency - Multiplexing - Antenna length: wavelength - Wave radiation: comparison with DC Battery: DC Antenna: AC 1. Microwave systems
  • 4. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실4 Microwave transmitter (Tx)   Up-conversion: frequency ( ))cos()cos( 2 1 )cos()cos( yxyxyx −++= BBf BBLO ff ± BBLO ff ± 1. Microwave systems  출처 : RFDH.com
  • 5. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실5 Microwave receiver (Rx)   Down-conversion: frequency ( ))cos()cos( 2 1 )cos()cos( yxyxyx −++= BBfBBIF ff ±BBLO ff ± IFLO fff −= IFff = 1. Microwave systems  출처 : RFDH.com
  • 6. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실6 Microwave transceiver   Duplexer: bandpass filter or switch - Loss, tx suppression, channel selection IF: superheterodyne No IF: direct conversion 1. Microwave systems 출처 : RFDH.com
  • 7. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실7 FDMA (FDM Access) 1. Microwave systems   Resource: frequency  Guard band  Simple transceiver  Interference
  • 8. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실8 DS(Direct Sequence)-CDMA 1. Microwave systems QPSK: Quadrature Phase Shift Keying
  • 9. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실9 Fundamentals   Antenna gain: anisotropic radiation (G > 1) isotropic radiation (G = 1)  Directivity and efficiency:  Angular beamwidth: 3dB Radiation pattern [dBi]: dB isotropic 2. Antennas DG η=
  • 10. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실10 2. Antennas Dipole antenna   Simple but long structure  Low efficiency Microstrip type
  • 11. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실11 Handy phone antenna Helical antenna 2. Antennas   Complicated structure  Medium efficiency
  • 12. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실12 Antenna simulation Ansoft: Ensemble CST: MWS Ansoft: HFSS 2. Antennas
  • 13. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실13 Wave propagation }Re{ }Re{ )cos(),( )( tjzjj o ztj o o eeeV eV ztVtzV ωβφ φβω φβω − +− = = +−= 3. Tx line theory
  • 14. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실14 Distributed element   Lumped element: R, L, C   Distributed element: tx line 3. Tx line theory
  • 15. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실15 Wave solution   Traveling wave solution - Voltage: - Current: zz s eVeVzV γγ −−+ += 00)( zz s eIeIzI γγ −−+ −= 00)( )())(( )( 2 2 zVCjGLjR dz zVd s s ωω ++= ))(( CjGLjRj ωωβαγ ++=+= 3. Tx line theory
  • 16. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실16 Characteristic impedance   Important parameter in tx line: - - CjG LjR Z ω ω + + =0 − − + + == 0 0 0 0 0 I V I V Z 3. Tx line theory 0Z
  • 17. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실17 Reflection coefficient 0 0 0 11 || ZZ ZZ V V e L Loj + − ==Γ=Γ + − φ    Voltage wave continuity conditions  Current wave continuity conditions 3. Tx line theory
  • 18. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실18 Wave power ( ) ( )2 0 2 0* 1 2 Re 2 1 Γ−== + Z V VIP 3. Tx line theory
  • 19. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실19 SWR (Standing Wave Ratio)   SWR: field theory  VSWR (Voltage SWR): tx line theory ||1 ||1 min max Γ− Γ+ = = V V s Experiment 3. Tx line theory
  • 20. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실20 Smith chart  Graphical method  Essential diagram for microwave engineering  P. Smith in 1939 3. Tx line theory
  • 21. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실21 Induction of Smith chart  S-parameter: reflection coefficient  |S11| = 0: all transmission  |S11| = 1: all reflection  3. Tx line theory
  • 22. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실22 VNA (Vector Network Analyzer)  Measurement equipment  Reflection coefficients with frequency sweep  3. Tx line theory
  • 23. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실23 Scattering matrix: Two-port network  Matrix definition: matched load gain: isolation: reflection:,where 21 12 2211 2 1 2221 1211 2 1 S S SS V V SS SS V V             =      + + − −  3. Tx line theory
  • 24. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실24 Antenna impedance   Antenna impedance (not infinity) matching  No reflection, power efficiency Handy phone antenna 3. Tx line theory
  • 25. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실25 Coaxial line 3. Tx line theory  Wide bandwidth (TEM)  Characteristic impedance: 50 Ohms  Shielding  Conductor and dielectric loss  Measurement  RG (Radio Government) series Coaxial line
  • 26. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실26 Connector  BNC (Bayonet Neill Concelman) connector  SMA (SubMiniature type A) connector  Type N connector  Type K connector  APC (Amphenol Precision Connector) 3. Tx line theory
  • 27. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실27 Microstrip line 3. Tx line theory   Quasi-TEM line  Easy fabrication: etching  Substrate  Characteristic impedance
  • 28. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실28 Substrate   Relative permittivity  Thickness of a substrate: mil (inch/1000)  Thickness of a metal: oz (almost 1.4 mils)  Loss: loss tangent  Temperature 3. Tx line theory Power amplifier module
  • 29. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실29 Etching: PCB (Printed Circuit Board)   FR4, RT/duroid 5880 (6010 …)  Film  Photoresist (PR)  Toluene  Ultraviolet  Iron chloride 3. Tx line theory
  • 30. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실30 Selection of active device 4. Amplifier pHEMT amplifier with package  Gain [dB]  Bandwidth [Hz]  Stability: oscillation  Noise figure [dB]: LNA  P1dB [dBm]: PA  Characteristics of active device: bias  Bare chip
  • 31. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실31 Wire bonding for bare chip Wire bonding vs. soldering  4. Amplifier
  • 32. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실32 Bias design  Assignment of AC and DC path 4. Amplifier
  • 33. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실33 S2P file: S-parameter information  Input impedance: S11  Output impedance: S22  Gain: S21  Isolation: S12  4. Amplifier
  • 34. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실34 Impedance matching  Lumped elements (L or C)  Stub matching  Conjugate matching: maximum power transfer  Noise matching: low noise  ( )* LL ZZ → 4. Amplifier
  • 35. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실35 Block diagram of cellular phone  LNA (Low Noise Amplifier), PA (Power Amplifier), Mixer, VCO, switch  Filter, duplexer  4. Amplifier
  • 36. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실36 Digital RF system Transmitter and receiver 4. Amplifier
  • 37. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실37 LNA (Low Noise Amplifier)  Noise figure: 2 dB  Amplifier gain: 15 dB  Return loss: 15 dB  Reverse isolation: 20 dB  Impedance matching: power and noise  4. Amplifier
  • 38. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실38  SNR: signal to noise ratio  Noiseless system: NF = 1  Noisy system: NF > 1  Ground  Noise figure (NF) 4. Amplifier in out out in out in N N S S SNR SNR NF ==
  • 39. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실39 Simulation of LNA Port OUT Num=2 Port IN Num=1 C C2 C=1.0pF C C1 C=1.0pF L L3 R= L=1.0nH L L2 R= L=1.0nH TSMC_CM025RF_PMOS_RF PMOS_RF1 finger=16 width=10um length=0.24um Type=2.5Vtwin-well TSMC_CM025RF_NMOS NMOS2 Width=0.30um Length=0.24um Type=2.5V_nom L L1 R= L=1.0nH R R3 R=50Ohm R R2 R=50OhmTSMC_CM025RF_NMOS NMOS1 Width=0.30um Length=0.24um Type=2.5V_nom R R1 R=50Ohm HP ADS (Advanced Design System)   AC and DC path 4. Amplifier
  • 40. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실40 HPA (High Power Amplifier)  Output power (P1dB), power gain  Linearity (OIP3)  Efficiency (PAE)  Temperature  Power amplifier scheme 4. Amplifier
  • 41. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실41 Characteristics 5. Filter  2 port network: S parameters  Pass band and stop band  Return loss and insertion loss  Ripple and selectivity (skirt)  Pole and zero  Group delay 
  • 42. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실42 Classification  LPF (Low Pass Filter)  HPF (High Pass Filter)  BPF (Band Pass Filter)  BSF (Band Stop Filter): notch filter  Duplexer: 2 BPF  Diplexer: LPF and HPF  5. Filter
  • 43. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실43 Power divider  Division of power: scattering matrix  Lossless system - - Scattering matrix: unitary matrix  3-port networks 5-port networks             −−− −− − = ββαα βαβα αα 222 22 2 lossy 11 1 10 S  [ ] [ ] [ ] [ ]** −−++ = VVVV TT 5. Filter
  • 44. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실44 T-junction power divider  Simple 3-port network  Waveguide or microstrip line  Lossless or all-port matched network  portat 021in YYYjBY ++= 5. Filter 출처 : RFDH.com
  • 45. Fundamentals of RF SystemsFundamentals of RF Systems 전자파연구실전자파연구실45 Frequency conversion   Mixer  VCO: Voltage Controlled Oscillator  PLL: Phase Locked Loop  TCXO: Temperature Compensated Crystal Oscillator 6. IF conversion 출처 : RFDH.com