SlideShare a Scribd company logo
FURTHERPURE3SKE
FURTHERCOORDINATESYSTEMS
Philosophy of the course
• The course does not aim to present a teaching plan for any of
the FP3 topics. This is left to your professional judgement as a
teacher.
• The course is more about presenting each topic in a way that
provides insights into the topic beyond the syllabus.
• In general the course will present the necessary knowledge and
skills to teach the Edexcel FP3 module effectively.
• Relevant examination problem solving techniques will be
demonstrated.
Session structure
• Section 1: Introduction to the ellipse and hyperbola.
• Section 2: Cartesian and parametric equations of the ellipse and
hyperbola.
• Section 3: Properties of the ellipse and hyperbola: eccentricity,
foci and directrices.
• Section 4: Tangents and normals to the ellipse and hyperbola.
• Section 5. Typical examination questions.
•Section 1: Introduction to the
ellipse and hyperbola.
We get the hyperbola
and the ellipse.
If a double
cone is cut in
a certain way.
The circle, ellipse, parabola and hyperbola are called the conic
sections. This web page http://bit.ly/1dJzJ1Y gives an animation of
how an ellipse might be generated from a cone.
Essentially this topic extends the study of FP1 Coordinate geometry which
introduced some fundamental properties of the parabola and hyperbola. Here we
study the ellipse and the hyperbola to a greater depth.
The ellipse and the hyperbola are from a family of curves called the conic sections.
• Apollonius of Perga (approx. 262 BC–190 BC) was a Greek geometer who
studied with Euclid. He is best known for his work on cross sections of a cone.
This is the first recorded study of the conic sections and led to a school of
mathematics which developed the important work of Apollonius.
• Important Arabic additions to the conics from the tenth and eleventh century
were also crucial to the mathematics of the scientific revolution.
• In fact, even to this day, large parts The Conics of Apollonius do not exist in
their original Greek form, and are known to us only through Arabic translations.
• http://www.quadrivium.info/MathInt/Notes/Apollonius.pdf
Abrief history of the conic sections.
The importance of the ellipse.
Kepler model of the elliptical orbits of
planets in a solar system →
The ellipse was brought into scientific prominence when Johannes
Kepler proved that planetary orbits were not circular but elliptical.
http://csep10.phys.utk.edu/astr161/lect/history/kepler.html
Keplers laws of planetary motion:
First Law: The orbit of every planet is an ellipse with the sun at one of the
foci.
Second Law: A line joining a planet and the Sun sweeps out equal areas
during equal intervals of time.
Third Law: The square of the orbital period of a planet is directly
proportional to the cube of the semi-major axis of its orbit.
Hyperbolae are also important in astronomy:
The majority of comets are
in hyperbolic or parabolic
orbits.
If a comet’s initial velocity is
insignificant the path is
parabolic, whereas if the
initial velocity is significant,
the path is hyperbolic.
http://bit.ly/1f5Xi21
Ellipses and hyperbolae are also important
in other aspects of science and in
economics. You can find more here:
http://bit.ly/1igiw26
•Section 2: Cartesian and
parametric equations of the
ellipse and hyperbola.
The ellipse as a transformed circle.
a
O
.
,
value
fixed
by the
circle
on the
points
all
of
coordinate
he
Multiply t
:
way
in this
circle
the
transform
Now
a
b
a
b
P
y

:
0
,
circle
he
Consider t 2
2
2


 a
a
y
x
●(x, y)
● 





y
a
b
x,
circle.
on the
lies
)
,
(
then
ellipse
on the
lies
)
,
(
If
:
follows
as
found
be
can
ellipse
the
of
equation
The
Y
b
a
X
Y
X
ellipse.
general
the
of
equation
Cartesian
The
1
So
2
2
2
2
2
2
2











b
Y
a
X
a
Y
b
a
X
red.
in
shown
ellipse,
an
is
circle
ed
transform
The
Fundamental properties of the ellipse.
A: (a, 0)
O
b
y
b
y
x
y
a
x
a
x
y
x
b
y
a
x














1
0
when
axis
the
intersects
1
0
when
axis
the
intersects
1
equation
Cartesian
with
ellipse
The
2
2
2
2
2
2
2
2
B (–a, 0)
C (0, b)
D (0, –b)
If a > b then AB is called the
major axis and CD is called the
minor axis of the ellipse.
If the other case when b < a,
AB will be the minor and CD
the major axis.
Parametric equations of the ellipse.
(a, 0)
O
diagram.
in the
indicated
are
2π
,
2
3π
π,
,
2
π
,
0
with
ellipse
on the
points
The
(1).
equation
Cartesian
with
ellipse
this
of
equations
parametric
the
gives
)
2
(
)
2
(
..........
sin
,
cos
or
sin
,
cos
writing
to
us
leads
This
1
sin
cos
it with
comparing
by
ed
parametris
be
can
)
1
.(
..........
1
equation
Cartesian
with
ellipse
The
2
2
2
2
2
2









t
t
b
y
t
a
x
t
b
y
t
a
x
t
t
b
y
a
x
(0, b)
t = 0
t = 𝟏
𝟐

t = 
t = 3
2

t = 2
Rectangular to general hyperbolae
   








































































hyperbola
ed
transform
the
of
equation
the
:
2
2
are
s
coordinate
new
the
So
matrix
the
by
ed
transform
are
s
coordinate
the
know
we
FP1
From
clockwise.
4
by
graph
this
rotate
we
Now
graph
has
This
FP1.
in
met
hyperbola
r
rectangula
he
Consider t
2
2
2
2
2
2
1
2
2
1
2
2
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
c
Y
X
xy
Y
X
y
x
y
x
Y
X
y
x
y
x
Y
X
y
x
Y
X
c
xy

↓ rotate ¼
clockwise
Note: x = 0 and y = 0
are lines of symmetry
Rectangular to general hyperbolae




 c
Y
X
c
xy 2
2
2
Perpendicular
asymptotes.
Perpendicular
asymptotes.
later.
verified
be
will
This
:
1
is
0
and
0
symmetry
of
lines
with
hyperbolae
general
the
of
equation
Cartesian
The
asymptotes
lar
perpendicu
have
not
do
hyperbolae
general
In
2
2
2
2





b
y
a
x
y
x
Properties and parametric equations of the hyperbola.
)
1
....(
tan
,
sec
s
coordinate
parametric
implies
1
tan
sec
identity
The
).
0
,
(
and
)
0
,
(
at
axis
Intersects
1
2
2
2
2
2
2
t
b
y
t
a
x
t
t
a
a
x
b
y
a
x








(– a, 0) (a, 0)
t = 0
t = 
)
2
....(
sinh
,
cosh
use
we
,
For
.
1
cosh
because
when
applies
only
But this
)
2
....(
sinh
,
cosh
s
coordinate
parametric
implies
1
sinh
cosh
and
1
Also 2
2
2
2
2
2
a
t
b
y
t
a
x
a
x
t
a
x
t
b
y
t
a
x
t
t
b
y
a
x












(a, 0)
t = 0
Exercises: Equations of the ellipse and hyperbola
functions.
tric
trigonome
of
in terms
form
parametric
the
Give
.
graph.
sketch
a
Provide
.
1
form
equivalent
the
Give
:
above
equations
the
of
each
For
144
16
36
.
4
36
9
4
.
3
36
4
9
.
2
16
4
.
1
2
2
2
2
2
2
2
2
2
2
2
2
iii
ii
b
y
a
x
i.
y
x
y
x
y
x
y
x










Exercises: Equations of the ellipse and hyperbola (solutions)
.
sin
2
,
cos
4
:
is
form
parametric
The
.
:
is
graph
sketch
A
.
1
2
4
16
4
16
4
.
1
2
2
2
2
2
2
2
2

 








y
x
iii
ii
y
x
y
x
i.
y
x
4
– 4
– 2
2
.
sin
3
,
cos
2
:
is
form
parametric
The
.
:
is
graph
sketch
A
.
1
3
2
36
4
9
36
4
9
.
2
2
2
2
2
2
2
2
2

 








y
x
iii
ii
y
x
y
x
i.
y
x
2
– 2
– 3
3
.
tan
2
,
sec
3
:
is
form
parametric
The
.
:
is
graph
sketch
A
.
1
2
3
36
9
4
36
9
4
.
3
2
2
2
2
2
2
2
2

 








y
x
iii
ii
y
x
y
x
i.
y
x
3
– 3
.
tan
3
,
sec
2
:
is
form
parametric
The
.
:
is
graph
sketch
A
.
1
3
2
144
16
36
144
16
36
.
4
2
2
2
2
2
2
2
2

 








y
x
iii
ii
y
x
y
x
i.
y
x
2
– 2
•Section 3: Properties of the
ellipse and hyperbola:
eccentricity, foci and directrices.
Geometrical derivation of the ellipse.
•One way (but not the only one) to define the conic sections -
parabola, hyperbola and ellipse – is the following :
•They are the loci of points P in the plane that satisfy the
following condition:
•The distance of P from a fixed point S = e the distance
of P from a fixed line L.
•The fixed point S is called the focus of the conic section.
•The fixed line L is called its directrix.
•The constant multiple e is called its eccentricity.
• e =1 for the parabola, 0 < e < 1 for the ellipse and e > 1 for the
hyperbola.
Focus, directrix and Cartesian equation of the parabola.
● S (a, 0)
L: x = – a
Let the focus be the point S (a, 0)
and the directrix L: x = – a.
Points P (x, y) on the parabola
satisfy: PS = 1PT.
● P (x, y)
T (– a , y)●
Or PS2 = PT2
ax
y
ax
a
x
y
ax
a
x
a
x
y
a
x
4
2
2
)
(
)
(
2
2
2
2
2
2
2
2
2














Focus, directrix and Cartesian equation of the ellipse.
● S (ae, 0)
L: x = a/e
Here we let the focus be the point S
(ae, 0) and the directrix
L: x = a/e, where 0 < e < 1, is the
eccentricity of the ellipse.
Points P (x, y) on the ellipse
satisfy: PS = ePT : 0 < e < 1
● P (x, y) ● T (a/e , y)
Or PS2 = e2PT2
)
1
(
where
,
1
or
1
)
1
(
)
1
(
)
1
(
2
2
)
(
)
(
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
e
a
b
b
y
a
x
e
a
y
a
x
e
a
y
e
x
aex
a
x
e
y
aex
e
a
x
x
e
a
e
y
ae
x

























Focus, directrix and Cartesian equation of the ellipse.
● S (ae, 0)
L: x = a/e
As the equation of the ellipse has even
powers of x and of y it is symmetrical
about both axes.
This symmetry implies that the ellipse
has two foci and two directrices.
The other focus is S′ (–ae, 0) and other
directrix is L′ : x = –a/e.
● P (x, y) ● T (a/e , y)
.
1
0
),
1
(
where
,
1
is
ellipse
the
of
equation
general
The
2
2
2
2
2
2
2





 e
e
a
b
b
y
a
x
L′ : x = –a/e
S′ (–ae, 0) ●
)
0
,
(
and
)
0
,
(
are
intercepts
the
So
.
1
0
)
0
,
(
and
)
0
,
(
are
intercepts
the
So
.
1
0
2
2
2
2
b
b
y
b
y
b
y
x
a
a
x
a
x
a
x
y














(a, 0)
(–a, 0)
(–b, 0)
(b, 0)
Focus, directrix and Cartesian equation of the hyperbola.
● S (ae, 0)
L: x = a/e
Here we let the focus be the point S
(ae, 0) and the directrix
L: x = a/e, where e, e >1, is the
eccentricity of the hyperbola.
Points P (x, y) on the hyperbola
satisfy: PS = ePT : e > 1
● P (x, y)
T (a/e , y)●
Or PS2 = e2PT2
0
ensure
to
:
)
1
(
write
to
need
t we
reason tha
the
Note
)
1
(
where
,
1
or
1
)
1
(
)
1
(
)
1
(
)
1
(
)
1
(
2
2
)
(
)
(
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
































b
e
e
a
b
b
y
a
x
e
a
y
a
x
e
a
y
e
x
e
a
y
e
x
aex
a
x
e
y
aex
e
a
x
e
a
x
e
y
ae
x
Focus, directrix and Cartesian equation of the hyperbola.
Again the equation of the hyperbola has
even powers of x and of y it is
symmetrical about both axes.
The symmetry implies that it has two
foci and two directrices.
The other focus is S′ (–ae, 0) and other
directrix is L′ : x = –a/e.
.
1
),
1
(
where
,
1
is
hyperbola
the
of
equation
general
The
2
2
2
2
2
2
2




 e
e
a
b
b
y
a
x
.
intercepts
no
Hence
.
impossible
is
which
,
1
0
)
0
,
(
and
)
0
,
(
are
intercepts
the
So
.
1
0
2
2
2
2
y
b
y
x
a
a
x
a
x
a
x
y











(a, 0)● ● S (ae, 0)
L: x = a/e
T (a/e , y)●
L′ : x = –a/e
S′ (–ae, 0) ●
● P (x, y)
(–a, 0)
●
Example: Focus and directrix of the ellipse.
12
12
)
4
1
1
(
16
),
1
(
As
4
(1)
Then
)
ellipse
the
for
1
0
(
2
1
4
1
2
8
)
2
(
and
)
1
(
)
2
(
..........
2
So
).
0
,
(
0)
(2,
focus
The
)
1
(
..........
8
So
.
8
directrix
The
:
2
2
2
2
2






















b
b
e
a
b
a
e
e
e
e
e
e
a
ae
e
a
e
a
x
Solution
Example: Focus and directrix of the hyperbola.
5
16
are
s
directrice
The
)
0
,
5
(
)
0
,
(
are
foci
The
hyperbola)
for the
1
(
4
5
16
25
16
9
)
1
(
)
1
(
16
9
So
)
1
(
hyperbola
For the
.
3
and
4
get
we
1
form
standard
with the
1
9
16
Comparing
.
directices
and
foci
the
showing
hyperbola
Sketch the
s.
directrice
its
of
equations
the
and
foci
its
of
s
coordinate
the
Find
1
9
16
equation
has
hyperbola
A
2
2
2
2
2
2
2
2
2
2
2
2
2
2



























e
a
x
ae
e
e
e
e
e
e
a
b
b
a
b
y
a
x
y
x
Solution:
y
x
●
S (5, 0)
S ′(– 5, 0)
●
x = 3.2
x = – 3.2
Exercises: Focus and directrix
above.
sections
conic
the
of
each
for
s
directrice
and
foci
the
Find
1
7
16
.
3
1
3
4
.
2
1
3
4
.
1
2
2
2
2
2
2






y
x
y
x
y
x
Exercises: Focus and directrix (solutions)
3
16
s
Directrice
);
0
,
3
(
)
0
,
(
Foci
.
4
3
.
16
9
)
1
(
16
7
)
1
(
.
7
,
16
ellipse.
An
.
1
7
16
.
3
7
7
4
7
4
s
Directrice
);
0
,
7
(
)
0
,
(
Foci
.
2
7
.
4
7
)
1
(
4
3
so
),
1
(
Here
.
3
,
4
1
:
hyperbola
a
of
equation
the
is
This
.
1
3
4
.
2
4
s
Directrice
);
0
,
1
(
)
0
,
(
Foci
.
2
1
.
4
1
)
1
(
4
3
so
),
1
(
Here
.
3
,
4
1
:
ellipse
an
of
equation
the
is
This
.
1
3
4
.
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2


































































e
a
x
ae
e
e
e
e
a
b
b
a
y
x
e
a
x
ae
e
e
e
e
a
b
b
a
b
y
a
x
y
x
e
a
x
ae
e
e
e
e
a
b
b
a
b
y
a
x
y
x
•Section 4: Tangents and
normals to the ellipse and
hyperbola.
The gradient function of the ellipse.
(1)}
in
s
coordinate
parametric
the
subs
by
(1)
from
derived
be
can
(2)
{n.b.
)
2
.........(
sin
3
cos
2
cos
2
,
sin
2
sin
2
,
cos
3
are
1
4
9
of
s
coordinate
parametric
The
:
ation
differenti
parametric
By
2.
)
1
(
..........
9
4
0
9
4
0
4
2
9
2
1
4
9
:
ation
differenti
implicit
By
1.
:
ways
in two
determined
be
can
function
gradient
The
.
1
4
9
ellipse
he
Consider t
2
2
2
2
2
2
t
t
dx
dy
dt
dx
dt
dy
dx
dy
t
dt
dy
t
dt
dx
t
y
t
x
y
x
y
x
dx
dy
dx
dy
y
x
dx
dy
y
x
y
x
y
x


























The gradient function of the ellipse generalised.
)
2
.........(
sin
cos
)
1
(
..........
.
1
ellipse
For the
:
general
made
be
easily
can
slide
previous
the
of
n
calculatio
The
2
2
2
2
2
2
t
a
t
b
dx
dy
y
a
x
b
dx
dy
b
y
a
x






The equations of the tangent and normal of the ellipse.
before)
as
(
3
2
sin
3
cos
2
sin
3
cos
2
tangent
the
of
gradient
Then the
n
calculatio
or
inspection
By
).
,
(
)
sin
2
,
cos
3
(
in
find
to
need
tion we
differenta
parametric
using
gradient
the
find
To
.
n.b
0
cos
6
sin
6
2
3
or
cos
6
2
sin
6
3
)
cos
3
(
2
)
sin
2
(
3
)
cos
3
(
3
2
)
sin
2
(
:
is
tangent
the
of
equation
an
So
)
sin
2
,
cos
3
(
are
s
coordinate
parametric
The
:
form
parametric
In
2.
0
2
6
2
3
2
3
)
(
2
)
(
3
)
(
3
2
)
(
:
is
tangent
the
of
equation
an
So
3
2
9
4
9
4
tangent
the
of
gradient
The
:
form
Cartesian
In
1.
:
ways
in two
determined
be
can
)
,
(
at
ellipse
this
o
tangent t
the
of
equation
An
.
1
4
9
ellipse
on the
)
,
(
point
he
Consider t
4
4
4
2
2
2
2
2
3
2
2
6
2
2
6
2
2
3
2
2
2
2
2
3
2
2
2
2
2
2
2
2
3
2
2
2
2
2
3
2
2
2
2
2
2
2
3



























































t
t
dx
dy
t
t
t
t
t
t
x
y
t
x
t
y
t
x
t
y
t
x
t
y
t
t
x
y
x
y
x
y
x
y
y
x
dx
dy
y
x
The gradient function of the hyperbola
(1)}
in
s
coordinate
parametric
relevant
the
subs
by
(1)
from
derived
be
can
(3)
and
(2)
{n.b.
)
3
.........(
sinh
3
cosh
2
cosh
2
2
2
,
sinh
3
2
3
2
2
sinh
2
,
2
3
cosh
3
are
here
s
coordinate
parametric
The
:
ation
differenti
parametric
By
2b.
)
2
.........(
tan
3
sec
2
tan
sec
3
sec
2
sec
2
,
tan
sec
3
tan
2
,
sec
3
are
here
s
coordinate
parametric
The
:
ation
differenti
parametric
By
2a.
)
1
(
..........
9
4
0
9
4
0
4
2
9
2
1
4
9
:
ation
differenti
implicit
By
1.
.
1
4
9
hyperbola
he
Consider t
ellipse.
the
of
that
similar to
are
methods
This
2
2
2
2
2
2
t
t
dx
dy
t
e
e
dt
dy
t
e
e
dt
dx
e
e
t
y
e
e
t
x
t
t
t
t
t
dx
dy
t
dt
dy
t
t
dt
dx
t
y
t
x
y
x
dx
dy
dx
dy
y
x
dx
dy
y
x
y
x
y
x
x
x
x
x
x
x
x
x










 









 









 









 


























The gradient function of the hyperbola: generalised.
)
3
.........(
sinh
cosh
sinh
,
cosh
s
coordinate
parametric
With
)
2
.........(
tan
sec
tan
,
sec
s
coordinate
parametric
With
)
1
(
..........
:
that
see
to
difficult
not
is
it
1
hyperbola
the
general
For the
2
2
2
2
2
2
t
a
t
b
dx
dy
t
b
y
t
a
x
t
a
t
b
dx
dy
t
b
y
t
a
x
y
a
x
b
dx
dy
b
y
a
x









The equations of the tangent and normal of the hyperbola.
(2)
into
sub
now
;
2
cosh
;
1
sinh
)
2
,
2
(3
)
sinh
2
,
cosh
3
(
in
find
Or
(1)
into
sub
now
;
)
2
,
2
(3
)
tan
2
,
sec
3
(
in
find
Then
tion
differenta
parametric
using
gradient
the
find
to
required
is
it
If
.
n.b
)
2
.......(
0
cosh
2
6
sinh
6
2
2
3
cosh
2
6
2
2
sinh
6
3
)
cosh
3
(
2
2
)
sinh
2
(
3
)
cosh
3
(
3
2
2
)
sinh
2
(
:
is
tangent
the
of
equation
An
)
sinh
2
,
cosh
3
(
are
s
coordinate
parametric
the
If
3.
)
1
......(
0
sec
2
6
tan
6
2
2
3
sec
2
6
2
2
tan
6
3
)
sec
3
(
2
2
)
tan
2
(
3
)
sec
3
(
3
2
2
)
tan
2
(
:
is
tangent
the
of
equation
An
)
tan
2
,
sec
3
(
are
s
coordinate
parametric
the
If
2.
...(*)
0
6
2
2
3
12
2
2
6
3
)
2
3
(
2
2
)
2
(
3
)
2
3
(
3
2
2
)
2
(
:
is
tangent
the
of
equation
an
So
3
2
2
2
9
2
3
4
9
4
tangent
the
of
gradient
The
:
form
Cartesian
In
1.
:
ways
3
in
determined
be
can
course,
of
),
2
,
2
(3
at
hyperbola
this
o
tangent t
The
.
1
4
9
hyperbola
on the
)
2
,
2
(3
point
he
Consider t
4
2
2






























































t
t
t
t
t
t
t
t
t
t
t
x
y
t
x
t
y
t
x
t
y
t
x
t
y
t
t
t
t
x
y
t
x
t
y
t
x
t
y
t
x
t
y
t
t
x
y
x
y
x
y
x
y
y
x
dx
dy
y
x

v
v
v
v
v
Example:A locus problem involving tangents
)
2
......(
0
cos
sin
0
)
cos
(sin
cos
sin
)
cos
(
sin
cos
)
sin
(
is
of
equation
sin
cos
0
2
2
ation
differenti
implicit
,
circle
the
For
)
1
......(
0
cos
sin
0
)
cos
(sin
cos
sin
)
cos
(
sin
cos
)
sin
(
is
of
equation
an
So
sin
cos
sin
cos
0
2
2
ation
differenti
implicit
1,
ellipse
the
For
.
and
of
equations
parametric
the
find
to
need
we
Here
:
Solution
varies.
as
of
locus
the
Find
.
at
meet
and
).
sin
,
cos
(
point
at the
tangent
has
circle
the
and
)
sin
,
cos
(
point
at the
tangent
has
1
ellipse
The
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
1
2
2
2
2
1
2
2
2
2





















































a
t
x
t
y
t
t
a
t
x
t
y
t
a
x
t
t
t
a
y
l
t
t
y
x
dx
dy
dx
dy
y
x
a
y
x
ab
t
bx
t
ay
t
t
ab
t
bx
t
ay
t
a
x
t
a
t
b
t
b
y
l
t
a
t
b
t
b
a
t
a
b
y
a
x
b
dx
dy
dx
dy
b
y
a
x
b
y
a
x
l
l
t
P
P
l
l
t
a
t
a
l
a
y
x
t
b
t
a
l
b
y
a
x
Contd >>
Example:Alocus problem involving tangents (contd)
 
0)
(
axis
just the
is
varies
as
of
locus
the
)
0
,
cos
(
s
coordinate
has
0
0
sin
)
(
)
2
......(
0
cos
sin
)
1
......(
0
cos
sin
assume
must
we
ellipse
for the
cos
)
(
cos
)
(
cos
)
(
)
2
......(
0
cos
sin
)
1
......(
0
cos
sin
:
(2)
and
(1)
solve
we
find
To
)
2
......(
0
cos
sin
is
of
equation
The
)
1
......(
0
cos
sin
is
of
equation
The
:
Solution
varies.
as
of
locus
the
Find
.
at
meet
and
).
sin
,
cos
(
point
at the
tangent
has
circle
the
and
)
sin
,
cos
(
point
at the
tangent
has
1
ellipse
The
2
2
2
1
2
1
2
2
2
2
1
2
2
2
2











































y
x
t
P
t
a
P
y
t
y
b
a
b
ab
t
bx
t
by
ab
t
bx
t
ay
b
a
t
a
x
a
b
a
t
x
a
b
a
ab
t
x
a
b
a
a
t
ax
t
ay
ab
t
bx
t
ay
P
a
t
x
t
y
l
ab
t
bx
t
ay
l
t
P
P
l
l
t
a
t
a
l
a
y
x
t
b
t
a
l
b
y
a
x
Exercises: Tangents and normals of the ellipse and hyperbola.
)
tan
3
,
sec
5
(
at
1
9
25
2.
)
sin
,
cos
2
(
at
1
4
1.
:
specified
point
at the
sections
conic
following
the
of
normal
and
tangent
the
of
equations
the
Find
2
2
2
2








y
x
y
x
Exercises: Tangents and normals of the ellipse and hyperbola
(solutions).
0
cos
sin
3
sin
2
cos
cos
sin
4
sin
2
cos
sin
cos
)
cos
2
(
sin
2
)
sin
(
cos
)
cos
2
(
cos
sin
2
)
sin
(
:
is
normal
the
of
equation
The
0
2
cos
sin
2
0
)
cos
(sin
2
cos
sin
2
cos
2
cos
sin
2
sin
2
)
cos
2
(
cos
)
sin
(
sin
2
)
cos
2
(
sin
2
cos
)
sin
(
:
is
tangent
the
of
equation
an
So
sin
2
cos
sin
4
cos
2
),
sin
,
cos
2
(
At
4
tangent
the
of
gradient
The
0
2
4
2
1
1
4
.
1
2
2
2
2
2
2




























































































x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
dx
dy
y
x
dx
dy
dx
dy
y
x
y
x
Exercises: Tangents and normals of the ellipse and hyperbola
(solutions).
0
tan
sec
34
tan
5
sec
3
tan
sec
25
tan
5
tan
sec
9
sec
3
)
sec
5
(
tan
5
)
tan
3
(
sec
3
)
sec
5
(
sec
3
tan
5
)
tan
3
(
:
is
normal
the
of
equation
An
0
15
sec
3
tan
5
0
)
tan
(sec
15
sec
3
tan
5
sec
15
sec
3
tan
15
tan
5
)
sec
5
(
sec
3
)
tan
3
(
tan
5
)
sec
5
(
tan
5
sec
3
)
tan
3
(
:
is
tangent
the
of
equation
an
So
tan
5
sec
3
tan
3
25
sec
5
9
),
tan
3
,
sec
5
(
At
25
9
tangent
the
of
gradient
The
0
9
2
25
2
1
9
25
.
2
2
2
2
2
2
2



























































































x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
dx
dy
y
x
dx
dy
dx
dy
y
x
y
x
•Section 5. Typical examination
questions.
Example 1

2
0
for
,
of
values
possible
the
determine
b)
origin,
the
is
where
,
3
that
and
,
2
3
is
of
ty
eccentrici
Given that
.
of
focus
a
is
and
point
at the
axis
-
x
the
cuts
at
to
normal
The
)
6
(
tan
)
(
sin
is
)
tan
,
sec
(
at
normal
the
of
equation
that the
Show
)
.
1
equation
has
hyperbola
The
2
2
2
2
2
2








t
t
O
OS
OA
C
C
S
A
P
C
t
b
a
by
t
ax
t
b
t
a
P
a
b
y
a
x
C
Contd >>
Example 1

2
0
for
,
of
values
possible
the
determine
b)
origin,
the
is
where
,
3
that
and
,
2
3
is
of
ty
eccentrici
Given that
.
of
focus
a
is
and
point
at the
axis
-
x
the
cuts
at
to
normal
The
)
6
(
tan
)
(
sin
is
)
tan
,
sec
(
at
normal
the
of
equation
that the
Show
)
.
1
equation
has
hyperbola
The
2
2
2
2
2
2








t
t
O
OS
OA
C
C
S
A
P
C
t
b
a
by
t
ax
t
b
t
a
P
a
b
y
a
x
C
Example 2
Example 3
Contd >>
Example 3
●
S (5, 0)
P (5, 9/4) ●
● R
Example 4
Contd >>
v
v
v
vvvv
vvvv vvvv vvvv
vvvvv
vvvvv
vvvvv
Example 4 contd.
v v v
v
v
v
v
v
v v
v

More Related Content

PPT
Pc9-1 polar coordinates
PPTX
t6 polar coordinates
PPTX
19 polar equations and graphs x
PPTX
Futher pure mathematics 3 hyperbolic functions
PPT
Lesson 8 conic sections - parabola
PPT
Chapter 7.2 parabola
PDF
10.1 Parabolas
PPT
Parabola 091102134314-phpapp01
 
Pc9-1 polar coordinates
t6 polar coordinates
19 polar equations and graphs x
Futher pure mathematics 3 hyperbolic functions
Lesson 8 conic sections - parabola
Chapter 7.2 parabola
10.1 Parabolas
Parabola 091102134314-phpapp01
 

What's hot (19)

PPT
3 ellipses
PPTX
Conic sections and introduction to circles
PPTX
Lecture 20 section 10-2 - the parabola
PPT
Conic sectioins
PPTX
11. polar equations and graphs x
PDF
Conic sections
PPTX
36 area in polar coordinate
DOCX
Polar coordinates
PPTX
34 polar coordinate and equations
PPTX
18 polar coordinates x
PPTX
Slideshare
PPTX
17 conic sections circles-x
PPTX
Lecture #6 analytic geometry
PPT
Introduction To Polar Coordinates And Graphs
PPTX
Polar Curves
PPTX
35 tangent and arc length in polar coordinates
PPTX
EQUATION OF A PARABOLA FROM THE VERTEX AND DIRECTRIX
PPT
parabola class 12
PPTX
20 polar equations and graphs
3 ellipses
Conic sections and introduction to circles
Lecture 20 section 10-2 - the parabola
Conic sectioins
11. polar equations and graphs x
Conic sections
36 area in polar coordinate
Polar coordinates
34 polar coordinate and equations
18 polar coordinates x
Slideshare
17 conic sections circles-x
Lecture #6 analytic geometry
Introduction To Polar Coordinates And Graphs
Polar Curves
35 tangent and arc length in polar coordinates
EQUATION OF A PARABOLA FROM THE VERTEX AND DIRECTRIX
parabola class 12
20 polar equations and graphs
Ad

Similar to Further pure mathematics 3 coordinate systems (20)

PDF
Pre c alc module 1-conic-sections
PDF
Astronomy Projects For Calculus And Differential Equations
PPTX
Ellipse.pptx
PPT
ellipse
PPTX
MODULE 6 PRE CALCULUS STEM 11 THE ELLIPSE
PPTX
1-ELLIPSE.pptx
PPTX
Cirlces day 1 and day 2 together
PPTX
Mathematics presentation - Conic section.pptx
PDF
Conic section
PPTX
Analisis unidad 3
PPTX
Ellipse.pptx
PPTX
Paso 4 grupo29
PPTX
Paso 4_Álgebra, trigonometría y Geometría Analítica
PPTX
QUANTUM-NUMBERS-AND-ELECTRON-CONFIGURATION-lesson2AND3.pptx
PPTX
QUANTUM-NUMBERS-AND-ELECTRON-CONFIGURATION-lesson2AND3.pptx
PPT
Lecture 7
PPTX
PDF
10.2 Ellipses
Pre c alc module 1-conic-sections
Astronomy Projects For Calculus And Differential Equations
Ellipse.pptx
ellipse
MODULE 6 PRE CALCULUS STEM 11 THE ELLIPSE
1-ELLIPSE.pptx
Cirlces day 1 and day 2 together
Mathematics presentation - Conic section.pptx
Conic section
Analisis unidad 3
Ellipse.pptx
Paso 4 grupo29
Paso 4_Álgebra, trigonometría y Geometría Analítica
QUANTUM-NUMBERS-AND-ELECTRON-CONFIGURATION-lesson2AND3.pptx
QUANTUM-NUMBERS-AND-ELECTRON-CONFIGURATION-lesson2AND3.pptx
Lecture 7
10.2 Ellipses
Ad

More from Dennis Almeida (9)

PDF
Year 13 challenge mathematics problems 107
PPT
How to decode a Vigenere code
PPTX
Teach secondary school algebra
PPTX
Further pure mathmatics 3 vectors
PPTX
Further pure mathematics 3 matrix algebra
PPTX
Anecdotes from the history of mathematics ways of selling mathemati
DOC
Lesson plan equiv fractions
PPT
Misconceptions in mathematics
PPT
Teaching equivalent fractions
Year 13 challenge mathematics problems 107
How to decode a Vigenere code
Teach secondary school algebra
Further pure mathmatics 3 vectors
Further pure mathematics 3 matrix algebra
Anecdotes from the history of mathematics ways of selling mathemati
Lesson plan equiv fractions
Misconceptions in mathematics
Teaching equivalent fractions

Recently uploaded (20)

PPTX
Virtual and Augmented Reality in Current Scenario
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
IGGE1 Understanding the Self1234567891011
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
My India Quiz Book_20210205121199924.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Computer Architecture Input Output Memory.pptx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
HVAC Specification 2024 according to central public works department
PPTX
20th Century Theater, Methods, History.pptx
Virtual and Augmented Reality in Current Scenario
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Computing-Curriculum for Schools in Ghana
Introduction to pro and eukaryotes and differences.pptx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
B.Sc. DS Unit 2 Software Engineering.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Share_Module_2_Power_conflict_and_negotiation.pptx
IGGE1 Understanding the Self1234567891011
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Paper A Mock Exam 9_ Attempt review.pdf.
My India Quiz Book_20210205121199924.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Computer Architecture Input Output Memory.pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
HVAC Specification 2024 according to central public works department
20th Century Theater, Methods, History.pptx

Further pure mathematics 3 coordinate systems

  • 2. Philosophy of the course • The course does not aim to present a teaching plan for any of the FP3 topics. This is left to your professional judgement as a teacher. • The course is more about presenting each topic in a way that provides insights into the topic beyond the syllabus. • In general the course will present the necessary knowledge and skills to teach the Edexcel FP3 module effectively. • Relevant examination problem solving techniques will be demonstrated.
  • 3. Session structure • Section 1: Introduction to the ellipse and hyperbola. • Section 2: Cartesian and parametric equations of the ellipse and hyperbola. • Section 3: Properties of the ellipse and hyperbola: eccentricity, foci and directrices. • Section 4: Tangents and normals to the ellipse and hyperbola. • Section 5. Typical examination questions.
  • 4. •Section 1: Introduction to the ellipse and hyperbola.
  • 5. We get the hyperbola and the ellipse. If a double cone is cut in a certain way. The circle, ellipse, parabola and hyperbola are called the conic sections. This web page http://bit.ly/1dJzJ1Y gives an animation of how an ellipse might be generated from a cone. Essentially this topic extends the study of FP1 Coordinate geometry which introduced some fundamental properties of the parabola and hyperbola. Here we study the ellipse and the hyperbola to a greater depth. The ellipse and the hyperbola are from a family of curves called the conic sections.
  • 6. • Apollonius of Perga (approx. 262 BC–190 BC) was a Greek geometer who studied with Euclid. He is best known for his work on cross sections of a cone. This is the first recorded study of the conic sections and led to a school of mathematics which developed the important work of Apollonius. • Important Arabic additions to the conics from the tenth and eleventh century were also crucial to the mathematics of the scientific revolution. • In fact, even to this day, large parts The Conics of Apollonius do not exist in their original Greek form, and are known to us only through Arabic translations. • http://www.quadrivium.info/MathInt/Notes/Apollonius.pdf Abrief history of the conic sections.
  • 7. The importance of the ellipse. Kepler model of the elliptical orbits of planets in a solar system → The ellipse was brought into scientific prominence when Johannes Kepler proved that planetary orbits were not circular but elliptical. http://csep10.phys.utk.edu/astr161/lect/history/kepler.html Keplers laws of planetary motion: First Law: The orbit of every planet is an ellipse with the sun at one of the foci. Second Law: A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. Third Law: The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
  • 8. Hyperbolae are also important in astronomy: The majority of comets are in hyperbolic or parabolic orbits. If a comet’s initial velocity is insignificant the path is parabolic, whereas if the initial velocity is significant, the path is hyperbolic. http://bit.ly/1f5Xi21 Ellipses and hyperbolae are also important in other aspects of science and in economics. You can find more here: http://bit.ly/1igiw26
  • 9. •Section 2: Cartesian and parametric equations of the ellipse and hyperbola.
  • 10. The ellipse as a transformed circle. a O . , value fixed by the circle on the points all of coordinate he Multiply t : way in this circle the transform Now a b a b P y  : 0 , circle he Consider t 2 2 2    a a y x ●(x, y) ●       y a b x, circle. on the lies ) , ( then ellipse on the lies ) , ( If : follows as found be can ellipse the of equation The Y b a X Y X ellipse. general the of equation Cartesian The 1 So 2 2 2 2 2 2 2            b Y a X a Y b a X red. in shown ellipse, an is circle ed transform The
  • 11. Fundamental properties of the ellipse. A: (a, 0) O b y b y x y a x a x y x b y a x               1 0 when axis the intersects 1 0 when axis the intersects 1 equation Cartesian with ellipse The 2 2 2 2 2 2 2 2 B (–a, 0) C (0, b) D (0, –b) If a > b then AB is called the major axis and CD is called the minor axis of the ellipse. If the other case when b < a, AB will be the minor and CD the major axis.
  • 12. Parametric equations of the ellipse. (a, 0) O diagram. in the indicated are 2π , 2 3π π, , 2 π , 0 with ellipse on the points The (1). equation Cartesian with ellipse this of equations parametric the gives ) 2 ( ) 2 ( .......... sin , cos or sin , cos writing to us leads This 1 sin cos it with comparing by ed parametris be can ) 1 .( .......... 1 equation Cartesian with ellipse The 2 2 2 2 2 2          t t b y t a x t b y t a x t t b y a x (0, b) t = 0 t = 𝟏 𝟐  t =  t = 3 2  t = 2
  • 13. Rectangular to general hyperbolae                                                                             hyperbola ed transform the of equation the : 2 2 are s coordinate new the So matrix the by ed transform are s coordinate the know we FP1 From clockwise. 4 by graph this rotate we Now graph has This FP1. in met hyperbola r rectangula he Consider t 2 2 2 2 2 2 1 2 2 1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 c Y X xy Y X y x y x Y X y x y x Y X y x Y X c xy  ↓ rotate ¼ clockwise Note: x = 0 and y = 0 are lines of symmetry
  • 14. Rectangular to general hyperbolae      c Y X c xy 2 2 2 Perpendicular asymptotes. Perpendicular asymptotes. later. verified be will This : 1 is 0 and 0 symmetry of lines with hyperbolae general the of equation Cartesian The asymptotes lar perpendicu have not do hyperbolae general In 2 2 2 2      b y a x y x
  • 15. Properties and parametric equations of the hyperbola. ) 1 ....( tan , sec s coordinate parametric implies 1 tan sec identity The ). 0 , ( and ) 0 , ( at axis Intersects 1 2 2 2 2 2 2 t b y t a x t t a a x b y a x         (– a, 0) (a, 0) t = 0 t =  ) 2 ....( sinh , cosh use we , For . 1 cosh because when applies only But this ) 2 ....( sinh , cosh s coordinate parametric implies 1 sinh cosh and 1 Also 2 2 2 2 2 2 a t b y t a x a x t a x t b y t a x t t b y a x             (a, 0) t = 0
  • 16. Exercises: Equations of the ellipse and hyperbola functions. tric trigonome of in terms form parametric the Give . graph. sketch a Provide . 1 form equivalent the Give : above equations the of each For 144 16 36 . 4 36 9 4 . 3 36 4 9 . 2 16 4 . 1 2 2 2 2 2 2 2 2 2 2 2 2 iii ii b y a x i. y x y x y x y x          
  • 17. Exercises: Equations of the ellipse and hyperbola (solutions) . sin 2 , cos 4 : is form parametric The . : is graph sketch A . 1 2 4 16 4 16 4 . 1 2 2 2 2 2 2 2 2            y x iii ii y x y x i. y x 4 – 4 – 2 2 . sin 3 , cos 2 : is form parametric The . : is graph sketch A . 1 3 2 36 4 9 36 4 9 . 2 2 2 2 2 2 2 2 2            y x iii ii y x y x i. y x 2 – 2 – 3 3 . tan 2 , sec 3 : is form parametric The . : is graph sketch A . 1 2 3 36 9 4 36 9 4 . 3 2 2 2 2 2 2 2 2            y x iii ii y x y x i. y x 3 – 3 . tan 3 , sec 2 : is form parametric The . : is graph sketch A . 1 3 2 144 16 36 144 16 36 . 4 2 2 2 2 2 2 2 2            y x iii ii y x y x i. y x 2 – 2
  • 18. •Section 3: Properties of the ellipse and hyperbola: eccentricity, foci and directrices.
  • 19. Geometrical derivation of the ellipse. •One way (but not the only one) to define the conic sections - parabola, hyperbola and ellipse – is the following : •They are the loci of points P in the plane that satisfy the following condition: •The distance of P from a fixed point S = e the distance of P from a fixed line L. •The fixed point S is called the focus of the conic section. •The fixed line L is called its directrix. •The constant multiple e is called its eccentricity. • e =1 for the parabola, 0 < e < 1 for the ellipse and e > 1 for the hyperbola.
  • 20. Focus, directrix and Cartesian equation of the parabola. ● S (a, 0) L: x = – a Let the focus be the point S (a, 0) and the directrix L: x = – a. Points P (x, y) on the parabola satisfy: PS = 1PT. ● P (x, y) T (– a , y)● Or PS2 = PT2 ax y ax a x y ax a x a x y a x 4 2 2 ) ( ) ( 2 2 2 2 2 2 2 2 2              
  • 21. Focus, directrix and Cartesian equation of the ellipse. ● S (ae, 0) L: x = a/e Here we let the focus be the point S (ae, 0) and the directrix L: x = a/e, where 0 < e < 1, is the eccentricity of the ellipse. Points P (x, y) on the ellipse satisfy: PS = ePT : 0 < e < 1 ● P (x, y) ● T (a/e , y) Or PS2 = e2PT2 ) 1 ( where , 1 or 1 ) 1 ( ) 1 ( ) 1 ( 2 2 ) ( ) ( 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 e a b b y a x e a y a x e a y e x aex a x e y aex e a x x e a e y ae x                         
  • 22. Focus, directrix and Cartesian equation of the ellipse. ● S (ae, 0) L: x = a/e As the equation of the ellipse has even powers of x and of y it is symmetrical about both axes. This symmetry implies that the ellipse has two foci and two directrices. The other focus is S′ (–ae, 0) and other directrix is L′ : x = –a/e. ● P (x, y) ● T (a/e , y) . 1 0 ), 1 ( where , 1 is ellipse the of equation general The 2 2 2 2 2 2 2       e e a b b y a x L′ : x = –a/e S′ (–ae, 0) ● ) 0 , ( and ) 0 , ( are intercepts the So . 1 0 ) 0 , ( and ) 0 , ( are intercepts the So . 1 0 2 2 2 2 b b y b y b y x a a x a x a x y               (a, 0) (–a, 0) (–b, 0) (b, 0)
  • 23. Focus, directrix and Cartesian equation of the hyperbola. ● S (ae, 0) L: x = a/e Here we let the focus be the point S (ae, 0) and the directrix L: x = a/e, where e, e >1, is the eccentricity of the hyperbola. Points P (x, y) on the hyperbola satisfy: PS = ePT : e > 1 ● P (x, y) T (a/e , y)● Or PS2 = e2PT2 0 ensure to : ) 1 ( write to need t we reason tha the Note ) 1 ( where , 1 or 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( 2 2 ) ( ) ( 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                 b e e a b b y a x e a y a x e a y e x e a y e x aex a x e y aex e a x e a x e y ae x
  • 24. Focus, directrix and Cartesian equation of the hyperbola. Again the equation of the hyperbola has even powers of x and of y it is symmetrical about both axes. The symmetry implies that it has two foci and two directrices. The other focus is S′ (–ae, 0) and other directrix is L′ : x = –a/e. . 1 ), 1 ( where , 1 is hyperbola the of equation general The 2 2 2 2 2 2 2      e e a b b y a x . intercepts no Hence . impossible is which , 1 0 ) 0 , ( and ) 0 , ( are intercepts the So . 1 0 2 2 2 2 y b y x a a x a x a x y            (a, 0)● ● S (ae, 0) L: x = a/e T (a/e , y)● L′ : x = –a/e S′ (–ae, 0) ● ● P (x, y) (–a, 0) ●
  • 25. Example: Focus and directrix of the ellipse. 12 12 ) 4 1 1 ( 16 ), 1 ( As 4 (1) Then ) ellipse the for 1 0 ( 2 1 4 1 2 8 ) 2 ( and ) 1 ( ) 2 ( .......... 2 So ). 0 , ( 0) (2, focus The ) 1 ( .......... 8 So . 8 directrix The : 2 2 2 2 2                       b b e a b a e e e e e e a ae e a e a x Solution
  • 26. Example: Focus and directrix of the hyperbola. 5 16 are s directrice The ) 0 , 5 ( ) 0 , ( are foci The hyperbola) for the 1 ( 4 5 16 25 16 9 ) 1 ( ) 1 ( 16 9 So ) 1 ( hyperbola For the . 3 and 4 get we 1 form standard with the 1 9 16 Comparing . directices and foci the showing hyperbola Sketch the s. directrice its of equations the and foci its of s coordinate the Find 1 9 16 equation has hyperbola A 2 2 2 2 2 2 2 2 2 2 2 2 2 2                            e a x ae e e e e e e a b b a b y a x y x Solution: y x ● S (5, 0) S ′(– 5, 0) ● x = 3.2 x = – 3.2
  • 27. Exercises: Focus and directrix above. sections conic the of each for s directrice and foci the Find 1 7 16 . 3 1 3 4 . 2 1 3 4 . 1 2 2 2 2 2 2       y x y x y x
  • 28. Exercises: Focus and directrix (solutions) 3 16 s Directrice ); 0 , 3 ( ) 0 , ( Foci . 4 3 . 16 9 ) 1 ( 16 7 ) 1 ( . 7 , 16 ellipse. An . 1 7 16 . 3 7 7 4 7 4 s Directrice ); 0 , 7 ( ) 0 , ( Foci . 2 7 . 4 7 ) 1 ( 4 3 so ), 1 ( Here . 3 , 4 1 : hyperbola a of equation the is This . 1 3 4 . 2 4 s Directrice ); 0 , 1 ( ) 0 , ( Foci . 2 1 . 4 1 ) 1 ( 4 3 so ), 1 ( Here . 3 , 4 1 : ellipse an of equation the is This . 1 3 4 . 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                   e a x ae e e e e a b b a y x e a x ae e e e e a b b a b y a x y x e a x ae e e e e a b b a b y a x y x
  • 29. •Section 4: Tangents and normals to the ellipse and hyperbola.
  • 30. The gradient function of the ellipse. (1)} in s coordinate parametric the subs by (1) from derived be can (2) {n.b. ) 2 .........( sin 3 cos 2 cos 2 , sin 2 sin 2 , cos 3 are 1 4 9 of s coordinate parametric The : ation differenti parametric By 2. ) 1 ( .......... 9 4 0 9 4 0 4 2 9 2 1 4 9 : ation differenti implicit By 1. : ways in two determined be can function gradient The . 1 4 9 ellipse he Consider t 2 2 2 2 2 2 t t dx dy dt dx dt dy dx dy t dt dy t dt dx t y t x y x y x dx dy dx dy y x dx dy y x y x y x                          
  • 31. The gradient function of the ellipse generalised. ) 2 .........( sin cos ) 1 ( .......... . 1 ellipse For the : general made be easily can slide previous the of n calculatio The 2 2 2 2 2 2 t a t b dx dy y a x b dx dy b y a x      
  • 32. The equations of the tangent and normal of the ellipse. before) as ( 3 2 sin 3 cos 2 sin 3 cos 2 tangent the of gradient Then the n calculatio or inspection By ). , ( ) sin 2 , cos 3 ( in find to need tion we differenta parametric using gradient the find To . n.b 0 cos 6 sin 6 2 3 or cos 6 2 sin 6 3 ) cos 3 ( 2 ) sin 2 ( 3 ) cos 3 ( 3 2 ) sin 2 ( : is tangent the of equation an So ) sin 2 , cos 3 ( are s coordinate parametric The : form parametric In 2. 0 2 6 2 3 2 3 ) ( 2 ) ( 3 ) ( 3 2 ) ( : is tangent the of equation an So 3 2 9 4 9 4 tangent the of gradient The : form Cartesian In 1. : ways in two determined be can ) , ( at ellipse this o tangent t the of equation An . 1 4 9 ellipse on the ) , ( point he Consider t 4 4 4 2 2 2 2 2 3 2 2 6 2 2 6 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 3                                                            t t dx dy t t t t t t x y t x t y t x t y t x t y t t x y x y x y x y y x dx dy y x
  • 33. The gradient function of the hyperbola (1)} in s coordinate parametric relevant the subs by (1) from derived be can (3) and (2) {n.b. ) 3 .........( sinh 3 cosh 2 cosh 2 2 2 , sinh 3 2 3 2 2 sinh 2 , 2 3 cosh 3 are here s coordinate parametric The : ation differenti parametric By 2b. ) 2 .........( tan 3 sec 2 tan sec 3 sec 2 sec 2 , tan sec 3 tan 2 , sec 3 are here s coordinate parametric The : ation differenti parametric By 2a. ) 1 ( .......... 9 4 0 9 4 0 4 2 9 2 1 4 9 : ation differenti implicit By 1. . 1 4 9 hyperbola he Consider t ellipse. the of that similar to are methods This 2 2 2 2 2 2 t t dx dy t e e dt dy t e e dt dx e e t y e e t x t t t t t dx dy t dt dy t t dt dx t y t x y x dx dy dx dy y x dx dy y x y x y x x x x x x x x x                                                                       
  • 34. The gradient function of the hyperbola: generalised. ) 3 .........( sinh cosh sinh , cosh s coordinate parametric With ) 2 .........( tan sec tan , sec s coordinate parametric With ) 1 ( .......... : that see to difficult not is it 1 hyperbola the general For the 2 2 2 2 2 2 t a t b dx dy t b y t a x t a t b dx dy t b y t a x y a x b dx dy b y a x         
  • 35. The equations of the tangent and normal of the hyperbola. (2) into sub now ; 2 cosh ; 1 sinh ) 2 , 2 (3 ) sinh 2 , cosh 3 ( in find Or (1) into sub now ; ) 2 , 2 (3 ) tan 2 , sec 3 ( in find Then tion differenta parametric using gradient the find to required is it If . n.b ) 2 .......( 0 cosh 2 6 sinh 6 2 2 3 cosh 2 6 2 2 sinh 6 3 ) cosh 3 ( 2 2 ) sinh 2 ( 3 ) cosh 3 ( 3 2 2 ) sinh 2 ( : is tangent the of equation An ) sinh 2 , cosh 3 ( are s coordinate parametric the If 3. ) 1 ......( 0 sec 2 6 tan 6 2 2 3 sec 2 6 2 2 tan 6 3 ) sec 3 ( 2 2 ) tan 2 ( 3 ) sec 3 ( 3 2 2 ) tan 2 ( : is tangent the of equation An ) tan 2 , sec 3 ( are s coordinate parametric the If 2. ...(*) 0 6 2 2 3 12 2 2 6 3 ) 2 3 ( 2 2 ) 2 ( 3 ) 2 3 ( 3 2 2 ) 2 ( : is tangent the of equation an So 3 2 2 2 9 2 3 4 9 4 tangent the of gradient The : form Cartesian In 1. : ways 3 in determined be can course, of ), 2 , 2 (3 at hyperbola this o tangent t The . 1 4 9 hyperbola on the ) 2 , 2 (3 point he Consider t 4 2 2                                                               t t t t t t t t t t t x y t x t y t x t y t x t y t t t t x y t x t y t x t y t x t y t t x y x y x y x y y x dx dy y x  v v v v v
  • 36. Example:A locus problem involving tangents ) 2 ......( 0 cos sin 0 ) cos (sin cos sin ) cos ( sin cos ) sin ( is of equation sin cos 0 2 2 ation differenti implicit , circle the For ) 1 ......( 0 cos sin 0 ) cos (sin cos sin ) cos ( sin cos ) sin ( is of equation an So sin cos sin cos 0 2 2 ation differenti implicit 1, ellipse the For . and of equations parametric the find to need we Here : Solution varies. as of locus the Find . at meet and ). sin , cos ( point at the tangent has circle the and ) sin , cos ( point at the tangent has 1 ellipse The 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2                                                      a t x t y t t a t x t y t a x t t t a y l t t y x dx dy dx dy y x a y x ab t bx t ay t t ab t bx t ay t a x t a t b t b y l t a t b t b a t a b y a x b dx dy dx dy b y a x b y a x l l t P P l l t a t a l a y x t b t a l b y a x Contd >>
  • 37. Example:Alocus problem involving tangents (contd)   0) ( axis just the is varies as of locus the ) 0 , cos ( s coordinate has 0 0 sin ) ( ) 2 ......( 0 cos sin ) 1 ......( 0 cos sin assume must we ellipse for the cos ) ( cos ) ( cos ) ( ) 2 ......( 0 cos sin ) 1 ......( 0 cos sin : (2) and (1) solve we find To ) 2 ......( 0 cos sin is of equation The ) 1 ......( 0 cos sin is of equation The : Solution varies. as of locus the Find . at meet and ). sin , cos ( point at the tangent has circle the and ) sin , cos ( point at the tangent has 1 ellipse The 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2                                            y x t P t a P y t y b a b ab t bx t by ab t bx t ay b a t a x a b a t x a b a ab t x a b a a t ax t ay ab t bx t ay P a t x t y l ab t bx t ay l t P P l l t a t a l a y x t b t a l b y a x
  • 38. Exercises: Tangents and normals of the ellipse and hyperbola. ) tan 3 , sec 5 ( at 1 9 25 2. ) sin , cos 2 ( at 1 4 1. : specified point at the sections conic following the of normal and tangent the of equations the Find 2 2 2 2         y x y x
  • 39. Exercises: Tangents and normals of the ellipse and hyperbola (solutions). 0 cos sin 3 sin 2 cos cos sin 4 sin 2 cos sin cos ) cos 2 ( sin 2 ) sin ( cos ) cos 2 ( cos sin 2 ) sin ( : is normal the of equation The 0 2 cos sin 2 0 ) cos (sin 2 cos sin 2 cos 2 cos sin 2 sin 2 ) cos 2 ( cos ) sin ( sin 2 ) cos 2 ( sin 2 cos ) sin ( : is tangent the of equation an So sin 2 cos sin 4 cos 2 ), sin , cos 2 ( At 4 tangent the of gradient The 0 2 4 2 1 1 4 . 1 2 2 2 2 2 2                                                                                             x y x y x y x y x y x y x y x y x y dx dy y x dx dy dx dy y x y x
  • 40. Exercises: Tangents and normals of the ellipse and hyperbola (solutions). 0 tan sec 34 tan 5 sec 3 tan sec 25 tan 5 tan sec 9 sec 3 ) sec 5 ( tan 5 ) tan 3 ( sec 3 ) sec 5 ( sec 3 tan 5 ) tan 3 ( : is normal the of equation An 0 15 sec 3 tan 5 0 ) tan (sec 15 sec 3 tan 5 sec 15 sec 3 tan 15 tan 5 ) sec 5 ( sec 3 ) tan 3 ( tan 5 ) sec 5 ( tan 5 sec 3 ) tan 3 ( : is tangent the of equation an So tan 5 sec 3 tan 3 25 sec 5 9 ), tan 3 , sec 5 ( At 25 9 tangent the of gradient The 0 9 2 25 2 1 9 25 . 2 2 2 2 2 2 2                                                                                            x y x y x y x y x y x y x y x y x y dx dy y x dx dy dx dy y x y x
  • 41. •Section 5. Typical examination questions.
  • 42. Example 1  2 0 for , of values possible the determine b) origin, the is where , 3 that and , 2 3 is of ty eccentrici Given that . of focus a is and point at the axis - x the cuts at to normal The ) 6 ( tan ) ( sin is ) tan , sec ( at normal the of equation that the Show ) . 1 equation has hyperbola The 2 2 2 2 2 2         t t O OS OA C C S A P C t b a by t ax t b t a P a b y a x C Contd >>
  • 43. Example 1  2 0 for , of values possible the determine b) origin, the is where , 3 that and , 2 3 is of ty eccentrici Given that . of focus a is and point at the axis - x the cuts at to normal The ) 6 ( tan ) ( sin is ) tan , sec ( at normal the of equation that the Show ) . 1 equation has hyperbola The 2 2 2 2 2 2         t t O OS OA C C S A P C t b a by t ax t b t a P a b y a x C
  • 46. Example 3 ● S (5, 0) P (5, 9/4) ● ● R
  • 47. Example 4 Contd >> v v v vvvv vvvv vvvv vvvv vvvvv vvvvv vvvvv
  • 48. Example 4 contd. v v v v v v v v v v v