SlideShare a Scribd company logo
1GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Name	
  of	
  Mee)ng	
  •	
  Loca)on	
  •	
  Date	
  	
  -­‐	
  	
  Change	
  in	
  Slide	
  Master	
  
Crea%ng	
  and	
  Calibra%ng	
  the	
  Large	
  Synop%c	
  Survey	
  
Telescope’s	
  Data	
  Products	
  
	
  
Mario	
  Juric	
  
LSST	
  Data	
  Management	
  Project	
  Scien5st	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
GAIACAL2014
July 9th, 2014
Robyn	
  Allsman,	
  
Yusra	
  AlSayyad,	
  
Tim	
  Axelrod,	
  
Jacek	
  Becla,	
  
Andrew	
  Becker,	
  	
  	
  
Steve	
  Bickerton,	
  
Jim	
  Bosch,	
  	
  
Bill	
  Chickering,	
  
Andy	
  Connolly,	
  	
  
Greg	
  Daues,	
  
Gregory	
  Dubois-­‐
Fellsman,	
  
Mike	
  Freemon,	
  
Andy	
  Hanushevsky,	
  
Fabrice	
  Jammes,	
  
Lynne	
  Jones,	
  
Jeff	
  Kantor,	
  
	
  
Kian-­‐Tat	
  Lim,	
  
Dus5n	
  Lang,	
  	
  
Ron	
  Lambert,	
  
Robert	
  Lupton	
  (the	
  Good),	
  	
  
Simon	
  Krughoff,	
  
Serge	
  Monkewitz,	
  
Jon	
  Myers,	
  
Russell	
  Owen,	
  
Steve	
  Pietrowicz,	
  
Ray	
  Plante,	
  
Paul	
  Price,	
  	
  
Andrei	
  Salnikov,	
  
Dick	
  Shaw,	
  
Schuyler	
  Van	
  Dyk,	
  
Daniel	
  Wang	
  
	
  
featuring	
  Chris	
  Stubbs	
  
and	
  the	
  LSST	
  Project	
  Team	
  
2GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Overview	
  
−  LSST	
  overview	
  and	
  status	
  
−  LSST	
  data	
  products:	
  what	
  will	
  be	
  measured	
  and	
  how	
  
−  Instrumental	
  and	
  Astrophysical	
  Calibra)on	
  
−  Dethroning	
  “the	
  catalog”	
  
−  Does	
  soccer	
  need	
  a	
  mercy	
  rule?	
  
3	
  GaiaCal	
  2014	
  •	
  Ringberg,	
  Germany	
  •	
  July	
  9,	
  2014	
  
LSST:	
  A	
  Deep,	
  Wide,	
  Fast,	
  Optical	
  Sky	
  Survey	
  
	
  
	
  
	
  
8.4m	
  telescope 	
  18000+	
  deg2 	
  10mas	
  astrom. 	
  r<24.5	
  (<27.5@10yr)	
  
	
  
ugrizy 	
  0.5-­‐1%	
  photometry	
  
3.2Gpix	
  camera 	
  30sec	
  exp/4sec	
  rd 	
   	
  	
  15TB/night 	
  37	
  B	
  objects	
  
	
  
Imaging	
  the	
  visible	
  sky,	
  once	
  every	
  ~3	
  days,	
  for	
  10	
  years	
  (825	
  revisits)	
  
4GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
A	
  Dedicated	
  Survey	
  Telescope	
  
−  A	
  wide	
  (half	
  the	
  sky),	
  deep	
  (24.5/27.5	
  mag),	
  fast	
  (image	
  the	
  sky	
  once	
  every	
  3	
  days)	
  
survey	
  telescope.	
  Beginning	
  in	
  2022,	
  it	
  will	
  repeatedly	
  image	
  the	
  sky	
  for	
  10	
  years.	
  
−  The	
  LSST	
  is	
  an	
  integrated	
  survey	
  system.	
  The	
  Observatory,	
  Telescope,	
  Camera	
  and	
  
Data	
  Management	
  system	
  are	
  all	
  built	
  to	
  support	
  the	
  LSST	
  survey.	
  There’s	
  no	
  PI	
  
mode,	
  proposals,	
  or	
  )me.	
  
	
  
−  The	
  ul%mate	
  deliverable	
  of	
  LSST	
  is	
  not	
  the	
  telescope,	
  nor	
  the	
  instruments;	
  it	
  is	
  
the	
  fully	
  reduced	
  data.	
  
•  All	
  science	
  will	
  be	
  come	
  from	
  survey	
  catalogs	
  and	
  images	
  
	
  
Telescope	
   	
  è 	
  	
  	
  	
  	
  Images	
   	
  è	
  	
  	
  	
  	
  Catalogs	
  
5GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Open	
  Data,	
  Open	
  Source:	
  A	
  Community	
  Resource	
  
−  LSST	
  data,	
  including	
  images	
  and	
  catalogs,	
  will	
  be	
  available	
  with	
  no	
  
proprietary	
  period	
  to	
  the	
  astronomical	
  community	
  of	
  the	
  United	
  States,	
  
Chile,	
  and	
  Interna%onal	
  Partners	
  
	
  
−  Alerts	
  to	
  variable	
  sources	
  (“transient	
  alerts”)	
  will	
  be	
  available	
  world-­‐wide	
  
within	
  60	
  seconds,	
  using	
  standard	
  protocols	
  
	
  
−  LSST	
  data	
  processing	
  stack	
  will	
  be	
  free	
  soKware	
  (licensed	
  under	
  the	
  GPL,	
  
v3-­‐or-­‐later)	
  
−  All	
  science	
  will	
  be	
  done	
  by	
  the	
  community	
  (not	
  the	
  Project!),	
  using	
  LSST’s	
  
data	
  products	
  
6GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
LSST	
  Survey	
  Themes	
  
	
  
Time	
  Domain	
  Science	
  
	
  
Census	
  of	
  the	
  Solar	
  System	
  
	
  
Mapping	
  the	
  Milky	
  Way	
  
	
  
Understanding	
  the	
  Nature	
  of	
  Dark	
  MaVer	
  and	
  Dark	
  Energy	
  
	
  
	
  
and	
  everything	
  in	
  between	
  …	
  
7GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Current	
  Status	
  
−  December	
  6th,	
  2013:	
  Passed	
  the	
  
NSF	
  Final	
  Design	
  Review;	
  declared	
  
ready	
  for	
  Construc<on.	
  
−  January	
  17th,	
  2014:	
  FY2014	
  
budget	
  signed,	
  with	
  NSF	
  
appropria<on	
  allowing	
  for	
  LSST	
  
start.	
  
−  May	
  8th,	
  2014:	
  NSB	
  authorizes	
  
NSF	
  Director	
  to	
  start	
  the	
  project.	
  
−  Expec5ng	
  the	
  signing	
  of	
  
coopera5ve	
  agreement	
  and	
  start	
  
of	
  construc5on	
  this	
  month.	
  
8GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Combined	
  Primary/Ter%ary	
  Mirror	
  
Thin	
  Meniscus	
  Secondary	
  
−  Primary-­‐Ter)ary	
  was	
  cast	
  in	
  the	
  spring	
  of	
  2008.	
  
−  Fabrica)on	
  underway	
  at	
  the	
  Steward	
  Observatory	
  
Mirror	
  Lab	
  -­‐	
  comple)on	
  by	
  the	
  end	
  of	
  2014.	
  
	
  
	
  
−  Secondary	
  substrate	
  fabricated	
  by	
  Corning	
  in	
  2009.	
  
−  Currently	
  in	
  storage	
  wai)ng	
  for	
  construc)on.	
  	
  
9GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
LSST	
  Camera	
  
Parameter	
   Value	
  
Diameter	
   1.65	
  m	
  
Length	
   3.7	
  m	
  
Weight	
   3000	
  kg	
  
F.P.	
  Diam	
   634	
  mm	
  
1.65 m
5’-5”
–  3.2 Gigapixels
–  0.2 arcsec pixels
–  9.6 square degree FOV
–  2 second readout
–  6 filters
GaiaCal2014: Creating and Calibrating LSST Data Product
11GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Bandpasses:	
  u,g,r,i,z,y	
  
R	
  ~	
  0.2	
  spectrograph	
  
12GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
LSST	
  Observatory	
  (cca.	
  late	
  ~2018)	
  
13GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
HQ	
  Site	
  
Science	
  Opera)ons	
  
Observatory	
  Management	
  
Educa)on	
  and	
  Public	
  Outreach	
  
Archive	
  Site	
  
Archive	
  Center	
  
Alert	
  Produc)on	
  
Data	
  Release	
  Produc)on	
  
Calibra)on	
  Products	
  Produc)on	
  
EPO	
  Infrastructure	
  
	
  Long-­‐term	
  Storage	
  (copy	
  2)	
  
Data	
  Access	
  Center	
  
Data	
  Access	
  and	
  User	
  Services	
  
Summit	
  and	
  Base	
  Sites	
  
Telescope	
  and	
  Camera	
  
Data	
  Acquisi)on	
  
Crosstalk	
  Correc)on	
  
Long-­‐term	
  storage	
  (copy	
  1)	
  
Chilean	
  Data	
  Access	
  Center	
  
Dedicated	
  Long	
  Haul	
  
Networks	
  
	
  
Two	
  redundant	
  40	
  Gbit	
  links	
  from	
  La	
  
Serena	
  to	
  Champaign,	
  IL	
  (exis)ng	
  fiber)	
  
14GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
	
  
LSST	
  Data	
  Products:	
  
Images	
  and	
  Catalogs	
  
15GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Why	
  We	
  Create	
  Catalogs?	
  
Model	
  	
  	
  	
  	
  ß	
  inference	
  –	
  	
  	
  	
  	
  Data	
  
And	
  
metadata!	
  
Model	
  	
  	
  	
  ß	
  inference	
  –	
  	
  	
  Catalog	
  	
  	
  	
  ß	
  Data	
  Processing	
  –	
  	
  	
  Data	
  
Project	
  Scien<sts	
  
Scien<sts	
  
Scien)sts	
   Project	
   Project	
   Project	
  Scien)sts	
  
Computa)onally	
  (and	
  cogni)vely)	
  
expensive,	
  science-­‐case	
  speciific	
  
Computa)onally	
  cheaper,	
  
Easier	
  to	
  understand,	
  
Science-­‐case	
  speciific	
  
•  Computa)onally	
  expensive,	
  general	
  
•  Reprojec)on;	
  may	
  or	
  may	
  not	
  involve	
  
compression	
  
•  Almost	
  always	
  introduces	
  some	
  
informa)on	
  loss	
  
•  Data	
  Processing	
  ==	
  Instrumental	
  
Calibra)on	
  +	
  Measurement	
  
16GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Guiding	
  Principles	
  for	
  LSST	
  Products	
  
−  There	
  are	
  virtually	
  infinite	
  op)ons	
  on	
  what	
  quan))es	
  one	
  can	
  measure	
  on	
  
images	
  
−  But	
  if	
  catalog	
  genera)on	
  is	
  understood	
  as	
  a	
  (generalized)	
  cost	
  reduc<on	
  
tool,	
  the	
  guiding	
  principles	
  become	
  easier	
  to	
  define	
  
−  Defining	
  principles	
  for	
  the	
  LSST	
  data	
  products:	
  
	
  
1.  Maximize	
  science	
  enabled	
  by	
  the	
  catalogs	
  
-  Working	
  with	
  images	
  takes	
  )me	
  and	
  resources;	
  a	
  large	
  frac)on	
  of	
  
LSST	
  science	
  cases	
  should	
  be	
  enabled	
  by	
  just	
  the	
  catalog.	
  
2.  Minimize	
  informa%on	
  loss	
  
-  Provide	
  (as	
  much	
  as	
  possible)	
  es)mates	
  of	
  likelihood	
  surfaces,	
  not	
  
just	
  single	
  point	
  es)mators	
  
3.  Provide	
  and	
  document	
  the	
  transforma%on	
  (the	
  soKware)	
  
17GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
LSST	
  From	
  the	
  User’s	
  Perspec%ve	
  
−  A	
  stream	
  of	
  ~10	
  million	
  )me-­‐domain	
  events	
  per	
  night,	
  detected	
  and	
  
transmiped	
  to	
  event	
  distribu)on	
  networks	
  within	
  60	
  seconds	
  of	
  
observa)on.	
  
−  A	
  catalog	
  of	
  orbits	
  for	
  ~6	
  million	
  bodies	
  in	
  the	
  Solar	
  System.	
  
−  A	
  catalog	
  of	
  ~37	
  billion	
  objects	
  (20B	
  galaxies,	
  17B	
  stars),	
  ~7	
  trillion	
  
single-­‐epoch	
  detec)ons	
  (“sources”),	
  and	
  ~30	
  trillion	
  forced	
  sources,	
  
produced	
  annually,	
  accessible	
  through	
  online	
  databases.	
  
−  Deep	
  co-­‐added	
  images.	
  
−  Services	
  and	
  compu)ng	
  resources	
  at	
  the	
  Data	
  Access	
  Centers	
  to	
  
enable	
  user-­‐specified	
  custom	
  processing	
  and	
  analysis.	
  
−  Soqware	
  and	
  APIs	
  enabling	
  development	
  of	
  analysis	
  codes.	
  
Level	
  3	
  Level	
  1	
  Level	
  2	
  
18GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
LSST	
  Catalog	
  Contents	
  (Level	
  2)	
  
−  Object	
  characteriza%on	
  (models):	
  
•  Moving	
  Point	
  Source	
  model	
  
•  Double	
  Sérsic	
  model	
  (bulge+disk)	
  
-  Maximum	
  likelihood	
  peak	
  
-  Samples	
  of	
  the	
  posterior	
  (hundreds)	
  
−  Object	
  characteriza%on	
  (non-­‐parametric):	
  
•  Centroid:	
  (α,	
  δ),	
  per	
  band	
  
•  Adap)ve	
  moments	
  and	
  ellip)city	
  
measures	
  (per	
  band)	
  
•  Aperture	
  fluxes	
  and	
  Petrosian	
  and	
  Kron	
  
fluxes	
  and	
  radii	
  (per	
  band)	
  
−  Colors:	
  
•  Seeing-­‐independent	
  measure	
  of	
  object	
  
color	
  
−  Variability	
  sta%s%cs:	
  
•  Period,	
  low-­‐order	
  light-­‐curve	
  moments,	
  
etc.	
  
LSST	
  Science	
  Book,	
  	
  
Fig.	
  9.3	
  
19GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Never	
  measure	
  off	
  the	
  coadds!	
  
−  Impossible	
  to	
  combine	
  mul)-­‐epoch	
  data	
  taken	
  in	
  different	
  seeings/
exposure	
  )mes	
  without	
  informa)on	
  loss	
  
•  Subop)mal	
  S/N	
  
−  Warping	
  and	
  resampling	
  correlates	
  pixel	
  values	
  and	
  noise;	
  correla)on	
  
matrices	
  are	
  (prac)cally)	
  impossible	
  to	
  carry	
  forward.	
  
•  Source	
  of	
  systema)c	
  error	
  
−  Detector	
  effects	
  have	
  to	
  be	
  taken	
  out	
  at	
  the	
  pixel	
  level	
  
•  Further	
  correlates	
  the	
  noise	
  
−  The	
  effec)ve	
  bandpass	
  changes	
  from	
  exposure	
  to	
  exposure.	
  
•  Coadding	
  different	
  sorts	
  of	
  apples…	
  
−  Stars	
  move!	
  
20GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Op%mal	
  Mul%-­‐Epoch	
  Measurement	
  
Exposure	
  1	
  
Exposure	
  2	
  
Exposure	
  3	
  
Coadd	
  
Galaxy	
  /	
  Star	
  Models	
  
Fiyng	
  
Warp,	
  
Convolve	
  
Coadd	
  Measurement	
  
Exposure	
  1	
  
Exposure	
  2	
  
Exposure	
  3	
  
Galaxy	
  /	
  
Star	
  
Models	
  
Transformed	
  Model	
  1	
  
Transformed	
  Model	
  2	
  
Transformed	
  Model	
  2	
  
Warp,	
  
Convolve	
  
Fiyng	
  
Mul)Fit	
  (Simultaneous	
  Mul)-­‐Epoch	
  Fiyng)	
  
Hard,	
  but	
  we	
  only	
  
have	
  to	
  do	
  it	
  once.	
  
Easy;	
  rela)vely	
  few	
  
data	
  points.	
  
Easier	
  (depends	
  on	
  
model),	
  but	
  we	
  have	
  to	
  
do	
  it	
  every	
  itera5on!	
  
Same	
  number	
  of	
  parameters,	
  
but	
  with	
  orders	
  of	
  magnitude	
  
more	
  data	
  points.	
  
21GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Sampling	
  and	
  retaining	
  the	
  posterior	
  (likelihood)	
  
Perform	
  importance	
  sampling	
  from	
  a	
  proposal	
  distribu<on	
  determined	
  on	
  the	
  coadd.	
  Plan	
  to	
  
characterize	
  (and	
  keep!)	
  the	
  full	
  posterior	
  for	
  each	
  object.	
  (Unexplored)	
  possibili5es	
  for	
  compression.	
  
22GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Op%mal	
  Mul%epoch	
  Source	
  Measurements	
  
Op)mal	
  measurement	
  of	
  
proper)es	
  of	
  objects	
  imaged	
  
in	
  mul)ple	
  epoch.	
  Leq:	
  
extrac)on	
  of	
  a	
  moving	
  point	
  
source	
  (Lang	
  2009).	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
Individual	
  exposures:	
  objects	
  are	
  
undetected	
  or	
  marginally	
  detected	
  
Moving	
  point-­‐source	
  and	
  galaxy	
  models	
  
are	
  indis)nguishable	
  on	
  the	
  coadd	
  
23GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Where	
  Does	
  Calibra%on	
  Come	
  In?	
  
−  With	
  mul)-­‐epoch	
  data,	
  (rela)ve)	
  instrument	
  calibra)on	
  becomes	
  
inextricably	
  connected	
  with	
  the	
  measurement	
  process.	
  
	
  
−  Instrumental:	
  
•  Photometric	
  
-  Provide	
  above-­‐the-­‐atmosphere	
  flux	
  es)mate	
  through	
  a	
  standard	
  passband	
  (rela)ve	
  
and	
  absolute).	
  
•  Astrometric	
  
-  Provide	
  the	
  posi)on	
  of	
  each	
  object	
  with	
  respect	
  to	
  an	
  external	
  (Gaia)	
  reference	
  
frame.	
  
•  Shapes	
  
-  Provide	
  an	
  unbiased	
  es)mate	
  of	
  some	
  measure	
  of	
  the	
  PSF-­‐deconvolved	
  shape	
  of	
  
each	
  object.	
  
	
  
−  Astrophysical:	
  
•  No	
  unique	
  answer,	
  as	
  it	
  depends	
  on	
  (subjec)ve)	
  externally	
  imposed	
  priors.	
  It	
  is	
  
not	
  a	
  data	
  product	
  of	
  the	
  LSST	
  project.	
  
•  Short	
  answer	
  (in	
  the	
  Galac)c	
  context):	
  Gaia!	
  
24GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
LSST	
  Photometric	
  Calibra%on	
  (In	
  Brief)	
  
−  Goal:	
  es)mate	
  (PSF)	
  flux	
  above	
  the	
  atmosphere	
  through	
  a	
  
standard	
  bandpass	
  that	
  does	
  not	
  change.	
  
	
  
−  Approach:	
  
•  Directly	
  measure	
  the	
  system	
  bandpass	
  (monochroma)c	
  flats)	
  
•  Measure	
  and	
  model	
  the	
  atmospheric	
  bandpass	
  
-  A	
  calibra)on	
  telescope	
  will	
  take	
  spectra	
  of	
  standard	
  stars	
  as	
  the	
  observing	
  
unfolds.	
  These	
  will	
  be	
  used	
  to	
  fit	
  a	
  nightly,	
  slowly	
  changing,	
  atmosphere	
  
model	
  (MODTRAN).	
  
-  Addi)onal	
  measurements	
  of	
  precipitable	
  water	
  vapor	
  will	
  be	
  collected	
  
with	
  a	
  GPS	
  system	
  and	
  a	
  co-­‐boresighted	
  microwave	
  radiometer.	
  Needed	
  
to	
  accurately	
  calibrate	
  the	
  y	
  band.	
  
-  Idea	
  being	
  explored:	
  It	
  is	
  possible	
  that	
  the	
  atmospheric	
  bandpasses	
  could	
  
be	
  derived	
  from	
  the	
  imaging	
  data	
  alone.	
  
•  Run	
  self-­‐calibra)on	
  (Ubercal)	
  to	
  determine	
  the	
  rela)ve	
  zero-­‐points.	
  
•  Tie	
  to	
  an	
  external	
  system	
  (DA	
  WD	
  standards	
  or	
  Gaia).	
  
25GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Astrometry:	
  Tree	
  Rings	
  
Above:	
  PRNU	
  (Photo-­‐response	
  non-­‐
uniformity)	
  of	
  an	
  LSST	
  sensor	
  segment.	
  One	
  
sees	
  tree	
  rings,	
  sensi)vity	
  varia)ons	
  at	
  at	
  a	
  
~percent	
  level.	
  
	
  
Due	
  to	
  varying	
  dopant	
  density	
  in	
  silicon	
  
boules,	
  which	
  creates	
  parasi)c	
  lateral	
  E	
  
fields.	
  
	
  
The	
  gotcha:	
  these	
  DO	
  NOT	
  behave	
  as	
  QE	
  
varia)ons.	
  If	
  you	
  try	
  to	
  flat	
  field	
  this,	
  you	
  
make	
  the	
  problem	
  WORSE	
  by	
  ~2x.	
  
26GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
27GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Astrometry/Photometry:	
  The	
  “Brighter-­‐Fafer	
  PSF”	
  
Effect	
  
Most	
  of	
  today’s	
  devices	
  (DES,	
  HSC,	
  
LSST,	
  GPC1)	
  are	
  thick.	
  The	
  photon	
  
conver)ng	
  at	
  the	
  top	
  has	
  a	
  long	
  way	
  
to	
  go	
  to	
  reach	
  the	
  bopom	
  
−  Tree	
  rings	
  (and	
  related	
  effects)	
  
−  “Brighter-­‐fafer”	
  effect	
  
As	
  the	
  poten)al	
  wells	
  fill	
  up	
  with	
  electrons,	
  
the	
  bias	
  voltage	
  drops	
  making	
  it	
  easier	
  for	
  
electrons	
  to	
  be	
  diverted	
  to	
  neighboring	
  
pixels.	
  
Correlates	
  the	
  values	
  of	
  neighboring	
  pixels;	
  
results	
  in	
  an	
  intensity-­‐dependent	
  PSF.	
  
HSC	
  
LSST	
  
28GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Astrophysical	
  Calibra%on:	
  Gaia,	
  the	
  “Great	
  Calibrator”	
  
−  Will	
  provide	
  a	
  network	
  of	
  astrometric	
  standards	
  covering	
  the	
  en)re	
  sky	
  
−  Similarly,	
  will	
  provide	
  an	
  internally	
  consistent	
  photometric	
  catalog	
  to	
  aid	
  
calibra)on	
  
−  Scien)fically,	
  it	
  will	
  determine	
  to	
  unprecedented	
  precision	
  a	
  number	
  of	
  
astrophysical	
  rela)ons	
  that	
  will	
  directly	
  enable	
  LSST	
  science:	
  
•  Directly	
  calibrate	
  color-­‐luminosity	
  (photometric	
  parallax)	
  rela)ons	
  for	
  MS	
  and	
  
other	
  stars	
  
•  Calibrate	
  period-­‐luminosity	
  rela)ons	
  for	
  a	
  wide	
  range	
  of	
  variables	
  
−  Enable	
  the	
  LSST	
  to	
  extend	
  Galac)c	
  census/maps	
  4-­‐7	
  magnitudes	
  deeper	
  
Eyer,	
  Ivezic	
  &	
  Monet	
  
	
  Sec<on	
  6.12,	
  	
  LSST	
  Science	
  Book	
  hVp://ls.st/sb	
  
29GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Chapter 6: Stellar Populations
Chapter 6: Stellar Populations
6: A comparison of photometric, proper motion and parallax errors for SDSS, Gaia and LSST, as a function
Table 6.6: Adopted Gaia and LSST Performance
Quantity Gaia LSST
Sky Coverage whole sky half sky
Mean number of epochs 70 over 5 yrs 1000 over 10 yrs
Mean number of observations 320a over 5 yrs 1000b over 10 yrs
Wavelength Coverage 320–1050 nm ugrizy
Depth per visit (5 , r band) 20 24.5; 27.5c
Bright limit (r band) 6 16-17
Point Spread Function (arcsec) 0.14⇥0.4 0.70 FWHM
Pixel count (Gigapix) 1.0 3.2
Syst. Photometric Err. (mag) 0.001, 0.0005d 0.005, 0.003e
Syst. Parallax Err. (mas) 0.007f 0.40f
Syst. Prop. Mot. Err. (mas/yr) 0.004 0.14
nsit includes the G-band photometry (data collected over 9 CCDs), BP and RP spec-
metry, and measurements by the SkyMapper and RVS instruments.
over all six bands (taken at di↵erent times).
dded data, assuming 230 visits.
ransit and the end-of-mission values for the G band (from SkyMapper; integrated BP
hotometry will be more than about 3 times less precise).
e visit and co-added observations, respectively.
tric errors depend on source color. The listed values correspond to a G2V star.
Gaia	
  and	
  LSST:	
  The	
  Science	
  
LSST	
  Science	
  Book:	
  hVp://ls.st/sb	
  
Gaia:	
  hVp://sci.esa.int/gaia	
  
30GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Figure	
  3.13,	
  	
  LSST	
  Science	
  Book	
  
hVp://ls.st/sb	
  
The	
  volume	
  number	
  density	
  
(stars/kpc3/mag,	
  log	
  scale	
  
according	
  to	
  legend)	
  of	
  ∼2.8	
  
million	
  SDSS	
  stars	
  with	
  	
  
14	
  <	
  r	
  <	
  21.5	
  and	
  b	
  >	
  70◦,	
  as	
  a	
  
func)on	
  of	
  their	
  distance	
  
modulus	
  (distances	
  range	
  from	
  
100	
  pc	
  to	
  25	
  kpc)	
  and	
  their	
  g	
  −	
  i	
  
color.	
  
	
  
The	
  sample	
  is	
  dominated	
  by	
  
color-­‐selected	
  main	
  sequence	
  
stars.	
  
31	
  GaiaCal	
  2014	
  |	
  Ringberg,	
  Germany	
  |	
  July	
  9,	
  2014	
  
LSST:	
  Mapping	
  the	
  Milky	
  Way	
  Halo	
  
RR	
  Lyrae	
  limit	
  
MS	
  stars	
  
limit	
  
Dwarf	
  Galaxies	
  
32GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
LSST:	
  Extended	
  Mapping	
  of	
  the	
  Milky	
  Way	
  
−  LSST	
  will	
  enable	
  extended	
  mapping	
  of	
  the	
  Milky	
  Way	
  because	
  of	
  
a	
  unique	
  combina)on	
  of	
  capabili)es:	
  
•  The	
  existence	
  of	
  the	
  u	
  band,	
  allowing	
  the	
  measurement	
  of	
  stellar	
  metallici<es	
  of	
  
near	
  turn-­‐off	
  stars	
  and	
  its	
  mapping	
  throughout	
  the	
  observed	
  disk	
  and	
  halo	
  
volume.	
  	
  
•  The	
  near-­‐IR	
  y	
  band,	
  allowing	
  the	
  mapping	
  of	
  stellar	
  number	
  densi<es	
  and	
  proper	
  
mo<ons	
  even	
  in	
  regions	
  of	
  high	
  ex<nc<on.	
  	
  
•  Well	
  sampled	
  <me	
  domain	
  informa<on,	
  allowing	
  for	
  the	
  unambiguous	
  
iden<fica<on	
  and	
  characteriza<on	
  of	
  variable	
  stars	
  (e.g.,	
  RR	
  Lyrae),	
  facilita<ng	
  
their	
  use	
  as	
  density	
  and	
  kinema<c	
  tracers	
  to	
  large	
  distances.	
  	
  
•  Proper	
  mo<on	
  measurements	
  for	
  stars	
  4	
  magnitudes	
  fainter	
  than	
  will	
  be	
  obtained	
  
by	
  Gaia	
  (see	
  LSST	
  Science	
  Book;	
  §	
  3.6).	
  	
  
•  The	
  depth	
  and	
  wide-­‐area	
  nature	
  of	
  the	
  survey,	
  which	
  combined	
  with	
  the	
  
characteris<cs	
  listed	
  above,	
  permits	
  a	
  uniquely	
  uniform,	
  comprehensive,	
  and	
  
global	
  view	
  of	
  all	
  luminous	
  Galac<c	
  components.	
  	
  
	
   Juric	
  &	
  Bullock	
  
	
  Sec<on	
  7.2	
  	
  LSST	
  Science	
  Book	
  hVp://ls.st/sb	
  
33GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Discussion	
  Point:	
  Can	
  We	
  Skip	
  the	
  Catalogs?	
  
−  As	
  our	
  measurements	
  become	
  more	
  and	
  more	
  systema)cs	
  limited,	
  what	
  
occurs	
  in	
  the	
  “Data	
  Processing”	
  box	
  above	
  becomes	
  incredibly	
  important.	
  
−  Some)mes,	
  an	
  assump)on	
  or	
  an	
  algorithmic	
  choice	
  that’s	
  been	
  made	
  there	
  
may	
  introduce	
  a	
  systema)c	
  that	
  drowns	
  out	
  the	
  signal	
  (or	
  eliminates	
  it).	
  
•  Different	
  deblending	
  algorithm	
  (or	
  no	
  deblending)	
  
•  Extremely	
  crowded	
  field	
  photometry	
  (e.g.,	
  globular	
  clusters)	
  
•  Searching	
  for	
  SNe	
  light	
  echos	
  
•  Characteriza)on	
  of	
  diffuse	
  structures	
  (e.g.,	
  ISM)	
  
−  For	
  op)mal	
  inference,	
  one	
  would	
  always	
  construct	
  a	
  measurement	
  that	
  
directly	
  forward-­‐models	
  the	
  aspect	
  of	
  the	
  imaging	
  data	
  they’re	
  interested	
  in,	
  
and	
  not	
  the	
  catalog.	
  Or	
  derive	
  a	
  more	
  appropriate	
  catalog.	
  Can	
  we	
  do	
  this?	
  
Model	
  	
  	
  	
  	
  ß	
  inference	
  –	
  	
  	
  	
  	
  Data	
  
Model	
  	
  	
  	
  ß	
  inference	
  –	
  	
  	
  Catalog	
  	
  	
  	
  ß	
  Data	
  Processing	
  –	
  	
  	
  Data	
  
34GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Discussion	
  Point:	
  Can	
  We	
  Skip	
  the	
  Catalogs?	
  
−  Some	
  reasons	
  we	
  don’t	
  do	
  this:	
  
1.  Computa)onally	
  (and	
  I/O	
  !!)	
  intensive	
  
2.  Conceptually	
  difficult	
  
-  Exper)ze	
  in	
  sta)s)cs,	
  applied	
  math,	
  and	
  soqware	
  engineering	
  is	
  oqen	
  not	
  there	
  
-  Catalogs	
  are	
  too	
  oqen	
  taken	
  as	
  “$DEITY	
  given”,	
  fundamental,	
  result	
  of	
  a	
  survey	
  
−  Things	
  are	
  changing	
  
•  Big	
  data	
  problems	
  are	
  becoming	
  increasingly	
  computa)onally	
  tractable	
  
-  Most	
  of	
  the	
  cost	
  of	
  LSST	
  DM	
  is	
  not	
  in	
  the	
  hardware,	
  it’s	
  in	
  the	
  people	
  wri)ng	
  the	
  
soqware.	
  LSST	
  compu)ng	
  hardware	
  in	
  ~2020	
  ==	
  ~$3-­‐5M/yr	
  (just	
  ~200	
  TFLOPS!).	
  
•  The	
  basic,	
  modular,	
  soqware	
  components	
  are	
  being	
  made	
  available	
  by	
  big	
  surveys,	
  
lowering	
  the	
  barrier	
  to	
  entry.	
  Average	
  astronomer	
  in	
  the	
  2020s	
  will	
  grow	
  up	
  with	
  
an	
  expecta)on	
  of	
  being	
  well	
  versed	
  in	
  Stats,	
  SE,	
  Appl.	
  Math.	
  
Model	
  	
  	
  	
  	
  ß	
  inference	
  –	
  	
  	
  	
  	
  Data	
  
Model	
  	
  	
  	
  ß	
  inference	
  –	
  	
  	
  Catalog	
  	
  	
  	
  ß	
  Data	
  Processing	
  –	
  	
  	
  Data	
  
35GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Discussion	
  Point:	
  Can	
  We	
  Skip	
  the	
  Catalogs?	
  
−  LSST	
  “Level	
  3”	
  concept	
  is	
  the	
  first	
  step	
  in	
  that	
  direc)on:	
  Enabling	
  the	
  
community	
  to	
  create	
  new	
  products	
  using	
  LSST’s	
  soqware,	
  services,	
  or	
  
compu)ng	
  resources.	
  This	
  means:	
  
•  Providing	
  the	
  soKware	
  primi%ves	
  to	
  construct	
  custom	
  
measurement/inference	
  codes	
  
•  Enabling	
  the	
  users	
  to	
  run	
  those	
  codes	
  at	
  the	
  LSST	
  data	
  center,	
  
leveraging	
  the	
  investment	
  in	
  I/O	
  (piggyback	
  onto	
  LSST’s	
  data	
  trains).	
  
	
  
−  Looking	
  ahead:	
  Right	
  now,	
  we	
  see	
  the	
  data	
  releases	
  as	
  the	
  key	
  product	
  of	
  
a	
  survey.	
  By	
  the	
  end	
  of	
  LSST,	
  I	
  wouldn’t	
  be	
  surprised	
  if	
  we	
  saw	
  the	
  
soKware	
  as	
  the	
  key	
  product,	
  with	
  hundreds	
  specialized	
  (and	
  likely	
  
ephemeral)	
  catalogs	
  being	
  generated	
  by	
  it.	
  
−  The	
  “data	
  releases”	
  will	
  just	
  be	
  some	
  of	
  those	
  catalogs,	
  designed	
  to	
  be	
  
more	
  broadly	
  useful	
  than	
  others,	
  and	
  retained	
  for	
  a	
  longer	
  period	
  of	
  )me.	
  
	
  
−  LSST	
  soKware	
  soKware	
  and	
  hardware	
  is	
  being	
  engineered	
  to	
  make	
  this	
  
possible.	
  
36GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
Summary	
  
−  LSST	
  will	
  provide	
  photometric	
  (ugrizy)	
  and	
  shape	
  characteriza)on	
  for	
  ~40B	
  
objects	
  (to	
  r=27.5)	
  over	
  ~half	
  the	
  sky	
  (southern	
  hemisphere),	
  with	
  
~800-­‐1000	
  epochs	
  per	
  object	
  (to	
  r=24.5).	
  
	
  
−  LSST	
  products	
  will	
  consist	
  of	
  images,	
  catalogs,	
  and	
  the	
  soqware	
  used	
  to	
  
produce	
  them.	
  We	
  try	
  to	
  minimize	
  informa)on	
  loss	
  by	
  retaining	
  the	
  
informa)on	
  about	
  the	
  likelihoods	
  (extended	
  sources	
  only	
  (for	
  now)).	
  We	
  
will	
  report	
  above-­‐the-­‐atmosphere	
  fluxes	
  calibrated	
  to	
  a	
  standard	
  band.	
  
	
  
−  Astrophysical	
  calibra)on	
  of	
  LSST	
  is	
  not	
  a	
  formal	
  part	
  of	
  the	
  project;	
  the	
  
community	
  (Science	
  Collabora)ons)	
  is	
  beginning	
  to	
  think	
  about	
  it.	
  In	
  the	
  
Galac)c	
  context,	
  Gaia	
  will	
  provide	
  crucial	
  calibra)ons	
  for	
  LSST.	
  
−  Going	
  forward,	
  we	
  expect	
  that	
  enabling	
  user-­‐generated	
  soqware	
  (“Level	
  
3”)	
  will	
  be	
  increasingly	
  important.	
  
GaiaCal2014: Creating and Calibrating LSST Data Product

More Related Content

PDF
LSST/DM: Building a Next Generation Survey Data Processing System
PPTX
AstroInformatics 2015: Large Sky Surveys: Entering the Era of Software-Bound ...
PPTX
ADASS XXV: LSST DM - Building the Data System for the Era of Petascale Optica...
PDF
A Recommender Story: Improving Backend Data Quality While Reducing Costs
PDF
SKA Regional Sciences Centres - A Platform for Global Astronomy
PDF
Computational Training and Data Literacy for Domain Scientists
PPTX
LSST Solar System Science: MOPS Status, the Science, and Your Questions
PPT
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...
LSST/DM: Building a Next Generation Survey Data Processing System
AstroInformatics 2015: Large Sky Surveys: Entering the Era of Software-Bound ...
ADASS XXV: LSST DM - Building the Data System for the Era of Petascale Optica...
A Recommender Story: Improving Backend Data Quality While Reducing Costs
SKA Regional Sciences Centres - A Platform for Global Astronomy
Computational Training and Data Literacy for Domain Scientists
LSST Solar System Science: MOPS Status, the Science, and Your Questions
Semantically-Enabling the Web of Things: The W3C Semantic Sensor Network Onto...

What's hot (20)

PPTX
Solar System Processing with LSST: A Status Update
PDF
Weather Station Data Publication at Irstea: an implementation Report.
PPT
Presentation
PDF
Data Science Education: Needs & Opportunities in Astronomy
PPTX
Novel Techniques & Connections Between High-Pressure Mineral Physics, Microto...
PPTX
Using the Data Cube vocabulary for Publishing Environmental Linked Data on la...
PPT
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
PDF
Data Infrastructure Development for SKA/Jasper Horrell
PPTX
Overview of hyperspectral remote sensing of impervious surfaces
PDF
FDL 2017 Lunar Water and Volatiles
PDF
Planet hunters x_kic_8462852_were__is_the_flux
PDF
NASA Advanced Computing Environment for Science & Engineering
PPT
LambdaGrids--Earth and Planetary Sciences Driving High Performance Networks a...
PDF
B0DEGA 3D VO Archive - IVOA 2010 Fall Interop
PDF
20131107 damasso great
PDF
FDL 2017 3D Shape Modeling
PDF
DSD-INT 2015 - Foreshore wave attenuation modelling with Xbeach using EO data...
PDF
FDL 2017 Solar Storm Prediction Presentation
PPTX
Linked Sensor Data cube
PDF
The search for_extraterrestrial_civilizations_with_large_energy_supplies
Solar System Processing with LSST: A Status Update
Weather Station Data Publication at Irstea: an implementation Report.
Presentation
Data Science Education: Needs & Opportunities in Astronomy
Novel Techniques & Connections Between High-Pressure Mineral Physics, Microto...
Using the Data Cube vocabulary for Publishing Environmental Linked Data on la...
Toward Real-Time Analysis of Large Data Volumes for Diffraction Studies by Ma...
Data Infrastructure Development for SKA/Jasper Horrell
Overview of hyperspectral remote sensing of impervious surfaces
FDL 2017 Lunar Water and Volatiles
Planet hunters x_kic_8462852_were__is_the_flux
NASA Advanced Computing Environment for Science & Engineering
LambdaGrids--Earth and Planetary Sciences Driving High Performance Networks a...
B0DEGA 3D VO Archive - IVOA 2010 Fall Interop
20131107 damasso great
FDL 2017 3D Shape Modeling
DSD-INT 2015 - Foreshore wave attenuation modelling with Xbeach using EO data...
FDL 2017 Solar Storm Prediction Presentation
Linked Sensor Data cube
The search for_extraterrestrial_civilizations_with_large_energy_supplies
Ad

Similar to GaiaCal2014: Creating and Calibrating LSST Data Product (20)

PDF
The OptIPlanet Collaboratory -- a Global CineGrid Testbed
PPTX
DGdefranceschi
PPT
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
PPT
Global Cyberinfrastructure to Support e-Research
PDF
BigDataEurope 1st SC5 Workshop, Project Teleios & LEO, by M. Koubarakis, Univ...
PDF
Cloud Testbeds for Standards Development and Innovation
PPT
Toward a Global Interactive Earth Observing Cyberinfrastructure
PPTX
Supporting the research lifecycle of geo-GSNL initiative through HPC and Rese...
PDF
PERICLES Preserving space data
PDF
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
PPTX
Big Data, Data and Information Mining for Earth Observation
PPT
A PRAGMA-OptIPlanet Collaboratory Partnership
PPT
Cyberinfrastructure to Support Ocean Observatories
PPTX
The Pacific Research Platform
PPT
Calit2-a Persistent UCSD/UCI Framework for Collaboration
PDF
AstroCV: A computer vision library for Astronomy
PPTX
Esri and the Scientific Community
PDF
The Evolution of Disaster Early Warning Systems in the TRIDEC Project
PDF
Astronomical Data Processing on the LSST Scale with Apache Spark
PDF
Resume_optics_Gupta Roy
The OptIPlanet Collaboratory -- a Global CineGrid Testbed
DGdefranceschi
The Emerging Cyberinfrastructure for Earth and Ocean Sciences
Global Cyberinfrastructure to Support e-Research
BigDataEurope 1st SC5 Workshop, Project Teleios & LEO, by M. Koubarakis, Univ...
Cloud Testbeds for Standards Development and Innovation
Toward a Global Interactive Earth Observing Cyberinfrastructure
Supporting the research lifecycle of geo-GSNL initiative through HPC and Rese...
PERICLES Preserving space data
Spark at NASA/JPL-(Chris Mattmann, NASA/JPL)
Big Data, Data and Information Mining for Earth Observation
A PRAGMA-OptIPlanet Collaboratory Partnership
Cyberinfrastructure to Support Ocean Observatories
The Pacific Research Platform
Calit2-a Persistent UCSD/UCI Framework for Collaboration
AstroCV: A computer vision library for Astronomy
Esri and the Scientific Community
The Evolution of Disaster Early Warning Systems in the TRIDEC Project
Astronomical Data Processing on the LSST Scale with Apache Spark
Resume_optics_Gupta Roy
Ad

Recently uploaded (20)

PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
The scientific heritage No 166 (166) (2025)
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
BIOMOLECULES PPT........................
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
2Systematics of Living Organisms t-.pptx
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PDF
Sciences of Europe No 170 (2025)
PDF
HPLC-PPT.docx high performance liquid chromatography
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
Comparative Structure of Integument in Vertebrates.pptx
The scientific heritage No 166 (166) (2025)
Derivatives of integument scales, beaks, horns,.pptx
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Biophysics 2.pdffffffffffffffffffffffffff
Taita Taveta Laboratory Technician Workshop Presentation.pptx
BIOMOLECULES PPT........................
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
Phytochemical Investigation of Miliusa longipes.pdf
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
. Radiology Case Scenariosssssssssssssss
2Systematics of Living Organisms t-.pptx
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
AlphaEarth Foundations and the Satellite Embedding dataset
Introduction to Fisheries Biotechnology_Lesson 1.pptx
Sciences of Europe No 170 (2025)
HPLC-PPT.docx high performance liquid chromatography
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Viruses (History, structure and composition, classification, Bacteriophage Re...
7. General Toxicologyfor clinical phrmacy.pptx

GaiaCal2014: Creating and Calibrating LSST Data Product

  • 1. 1GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Name  of  Mee)ng  •  Loca)on  •  Date    -­‐    Change  in  Slide  Master   Crea%ng  and  Calibra%ng  the  Large  Synop%c  Survey   Telescope’s  Data  Products     Mario  Juric   LSST  Data  Management  Project  Scien5st                       GAIACAL2014 July 9th, 2014 Robyn  Allsman,   Yusra  AlSayyad,   Tim  Axelrod,   Jacek  Becla,   Andrew  Becker,       Steve  Bickerton,   Jim  Bosch,     Bill  Chickering,   Andy  Connolly,     Greg  Daues,   Gregory  Dubois-­‐ Fellsman,   Mike  Freemon,   Andy  Hanushevsky,   Fabrice  Jammes,   Lynne  Jones,   Jeff  Kantor,     Kian-­‐Tat  Lim,   Dus5n  Lang,     Ron  Lambert,   Robert  Lupton  (the  Good),     Simon  Krughoff,   Serge  Monkewitz,   Jon  Myers,   Russell  Owen,   Steve  Pietrowicz,   Ray  Plante,   Paul  Price,     Andrei  Salnikov,   Dick  Shaw,   Schuyler  Van  Dyk,   Daniel  Wang     featuring  Chris  Stubbs   and  the  LSST  Project  Team  
  • 2. 2GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Overview   −  LSST  overview  and  status   −  LSST  data  products:  what  will  be  measured  and  how   −  Instrumental  and  Astrophysical  Calibra)on   −  Dethroning  “the  catalog”   −  Does  soccer  need  a  mercy  rule?  
  • 3. 3  GaiaCal  2014  •  Ringberg,  Germany  •  July  9,  2014   LSST:  A  Deep,  Wide,  Fast,  Optical  Sky  Survey         8.4m  telescope  18000+  deg2  10mas  astrom.  r<24.5  (<27.5@10yr)     ugrizy  0.5-­‐1%  photometry   3.2Gpix  camera  30sec  exp/4sec  rd      15TB/night  37  B  objects     Imaging  the  visible  sky,  once  every  ~3  days,  for  10  years  (825  revisits)  
  • 4. 4GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 A  Dedicated  Survey  Telescope   −  A  wide  (half  the  sky),  deep  (24.5/27.5  mag),  fast  (image  the  sky  once  every  3  days)   survey  telescope.  Beginning  in  2022,  it  will  repeatedly  image  the  sky  for  10  years.   −  The  LSST  is  an  integrated  survey  system.  The  Observatory,  Telescope,  Camera  and   Data  Management  system  are  all  built  to  support  the  LSST  survey.  There’s  no  PI   mode,  proposals,  or  )me.     −  The  ul%mate  deliverable  of  LSST  is  not  the  telescope,  nor  the  instruments;  it  is   the  fully  reduced  data.   •  All  science  will  be  come  from  survey  catalogs  and  images     Telescope    è          Images    è          Catalogs  
  • 5. 5GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Open  Data,  Open  Source:  A  Community  Resource   −  LSST  data,  including  images  and  catalogs,  will  be  available  with  no   proprietary  period  to  the  astronomical  community  of  the  United  States,   Chile,  and  Interna%onal  Partners     −  Alerts  to  variable  sources  (“transient  alerts”)  will  be  available  world-­‐wide   within  60  seconds,  using  standard  protocols     −  LSST  data  processing  stack  will  be  free  soKware  (licensed  under  the  GPL,   v3-­‐or-­‐later)   −  All  science  will  be  done  by  the  community  (not  the  Project!),  using  LSST’s   data  products  
  • 6. 6GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 LSST  Survey  Themes     Time  Domain  Science     Census  of  the  Solar  System     Mapping  the  Milky  Way     Understanding  the  Nature  of  Dark  MaVer  and  Dark  Energy       and  everything  in  between  …  
  • 7. 7GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Current  Status   −  December  6th,  2013:  Passed  the   NSF  Final  Design  Review;  declared   ready  for  Construc<on.   −  January  17th,  2014:  FY2014   budget  signed,  with  NSF   appropria<on  allowing  for  LSST   start.   −  May  8th,  2014:  NSB  authorizes   NSF  Director  to  start  the  project.   −  Expec5ng  the  signing  of   coopera5ve  agreement  and  start   of  construc5on  this  month.  
  • 8. 8GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Combined  Primary/Ter%ary  Mirror   Thin  Meniscus  Secondary   −  Primary-­‐Ter)ary  was  cast  in  the  spring  of  2008.   −  Fabrica)on  underway  at  the  Steward  Observatory   Mirror  Lab  -­‐  comple)on  by  the  end  of  2014.       −  Secondary  substrate  fabricated  by  Corning  in  2009.   −  Currently  in  storage  wai)ng  for  construc)on.    
  • 9. 9GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 LSST  Camera   Parameter   Value   Diameter   1.65  m   Length   3.7  m   Weight   3000  kg   F.P.  Diam   634  mm   1.65 m 5’-5” –  3.2 Gigapixels –  0.2 arcsec pixels –  9.6 square degree FOV –  2 second readout –  6 filters
  • 11. 11GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Bandpasses:  u,g,r,i,z,y   R  ~  0.2  spectrograph  
  • 12. 12GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 LSST  Observatory  (cca.  late  ~2018)  
  • 13. 13GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 HQ  Site   Science  Opera)ons   Observatory  Management   Educa)on  and  Public  Outreach   Archive  Site   Archive  Center   Alert  Produc)on   Data  Release  Produc)on   Calibra)on  Products  Produc)on   EPO  Infrastructure    Long-­‐term  Storage  (copy  2)   Data  Access  Center   Data  Access  and  User  Services   Summit  and  Base  Sites   Telescope  and  Camera   Data  Acquisi)on   Crosstalk  Correc)on   Long-­‐term  storage  (copy  1)   Chilean  Data  Access  Center   Dedicated  Long  Haul   Networks     Two  redundant  40  Gbit  links  from  La   Serena  to  Champaign,  IL  (exis)ng  fiber)  
  • 14. 14GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014   LSST  Data  Products:   Images  and  Catalogs  
  • 15. 15GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Why  We  Create  Catalogs?   Model          ß  inference  –          Data   And   metadata!   Model        ß  inference  –      Catalog        ß  Data  Processing  –      Data   Project  Scien<sts   Scien<sts   Scien)sts   Project   Project   Project  Scien)sts   Computa)onally  (and  cogni)vely)   expensive,  science-­‐case  speciific   Computa)onally  cheaper,   Easier  to  understand,   Science-­‐case  speciific   •  Computa)onally  expensive,  general   •  Reprojec)on;  may  or  may  not  involve   compression   •  Almost  always  introduces  some   informa)on  loss   •  Data  Processing  ==  Instrumental   Calibra)on  +  Measurement  
  • 16. 16GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Guiding  Principles  for  LSST  Products   −  There  are  virtually  infinite  op)ons  on  what  quan))es  one  can  measure  on   images   −  But  if  catalog  genera)on  is  understood  as  a  (generalized)  cost  reduc<on   tool,  the  guiding  principles  become  easier  to  define   −  Defining  principles  for  the  LSST  data  products:     1.  Maximize  science  enabled  by  the  catalogs   -  Working  with  images  takes  )me  and  resources;  a  large  frac)on  of   LSST  science  cases  should  be  enabled  by  just  the  catalog.   2.  Minimize  informa%on  loss   -  Provide  (as  much  as  possible)  es)mates  of  likelihood  surfaces,  not   just  single  point  es)mators   3.  Provide  and  document  the  transforma%on  (the  soKware)  
  • 17. 17GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 LSST  From  the  User’s  Perspec%ve   −  A  stream  of  ~10  million  )me-­‐domain  events  per  night,  detected  and   transmiped  to  event  distribu)on  networks  within  60  seconds  of   observa)on.   −  A  catalog  of  orbits  for  ~6  million  bodies  in  the  Solar  System.   −  A  catalog  of  ~37  billion  objects  (20B  galaxies,  17B  stars),  ~7  trillion   single-­‐epoch  detec)ons  (“sources”),  and  ~30  trillion  forced  sources,   produced  annually,  accessible  through  online  databases.   −  Deep  co-­‐added  images.   −  Services  and  compu)ng  resources  at  the  Data  Access  Centers  to   enable  user-­‐specified  custom  processing  and  analysis.   −  Soqware  and  APIs  enabling  development  of  analysis  codes.   Level  3  Level  1  Level  2  
  • 18. 18GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 LSST  Catalog  Contents  (Level  2)   −  Object  characteriza%on  (models):   •  Moving  Point  Source  model   •  Double  Sérsic  model  (bulge+disk)   -  Maximum  likelihood  peak   -  Samples  of  the  posterior  (hundreds)   −  Object  characteriza%on  (non-­‐parametric):   •  Centroid:  (α,  δ),  per  band   •  Adap)ve  moments  and  ellip)city   measures  (per  band)   •  Aperture  fluxes  and  Petrosian  and  Kron   fluxes  and  radii  (per  band)   −  Colors:   •  Seeing-­‐independent  measure  of  object   color   −  Variability  sta%s%cs:   •  Period,  low-­‐order  light-­‐curve  moments,   etc.   LSST  Science  Book,     Fig.  9.3  
  • 19. 19GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Never  measure  off  the  coadds!   −  Impossible  to  combine  mul)-­‐epoch  data  taken  in  different  seeings/ exposure  )mes  without  informa)on  loss   •  Subop)mal  S/N   −  Warping  and  resampling  correlates  pixel  values  and  noise;  correla)on   matrices  are  (prac)cally)  impossible  to  carry  forward.   •  Source  of  systema)c  error   −  Detector  effects  have  to  be  taken  out  at  the  pixel  level   •  Further  correlates  the  noise   −  The  effec)ve  bandpass  changes  from  exposure  to  exposure.   •  Coadding  different  sorts  of  apples…   −  Stars  move!  
  • 20. 20GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Op%mal  Mul%-­‐Epoch  Measurement   Exposure  1   Exposure  2   Exposure  3   Coadd   Galaxy  /  Star  Models   Fiyng   Warp,   Convolve   Coadd  Measurement   Exposure  1   Exposure  2   Exposure  3   Galaxy  /   Star   Models   Transformed  Model  1   Transformed  Model  2   Transformed  Model  2   Warp,   Convolve   Fiyng   Mul)Fit  (Simultaneous  Mul)-­‐Epoch  Fiyng)   Hard,  but  we  only   have  to  do  it  once.   Easy;  rela)vely  few   data  points.   Easier  (depends  on   model),  but  we  have  to   do  it  every  itera5on!   Same  number  of  parameters,   but  with  orders  of  magnitude   more  data  points.  
  • 21. 21GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Sampling  and  retaining  the  posterior  (likelihood)   Perform  importance  sampling  from  a  proposal  distribu<on  determined  on  the  coadd.  Plan  to   characterize  (and  keep!)  the  full  posterior  for  each  object.  (Unexplored)  possibili5es  for  compression.  
  • 22. 22GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Op%mal  Mul%epoch  Source  Measurements   Op)mal  measurement  of   proper)es  of  objects  imaged   in  mul)ple  epoch.  Leq:   extrac)on  of  a  moving  point   source  (Lang  2009).                                     Individual  exposures:  objects  are   undetected  or  marginally  detected   Moving  point-­‐source  and  galaxy  models   are  indis)nguishable  on  the  coadd  
  • 23. 23GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Where  Does  Calibra%on  Come  In?   −  With  mul)-­‐epoch  data,  (rela)ve)  instrument  calibra)on  becomes   inextricably  connected  with  the  measurement  process.     −  Instrumental:   •  Photometric   -  Provide  above-­‐the-­‐atmosphere  flux  es)mate  through  a  standard  passband  (rela)ve   and  absolute).   •  Astrometric   -  Provide  the  posi)on  of  each  object  with  respect  to  an  external  (Gaia)  reference   frame.   •  Shapes   -  Provide  an  unbiased  es)mate  of  some  measure  of  the  PSF-­‐deconvolved  shape  of   each  object.     −  Astrophysical:   •  No  unique  answer,  as  it  depends  on  (subjec)ve)  externally  imposed  priors.  It  is   not  a  data  product  of  the  LSST  project.   •  Short  answer  (in  the  Galac)c  context):  Gaia!  
  • 24. 24GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 LSST  Photometric  Calibra%on  (In  Brief)   −  Goal:  es)mate  (PSF)  flux  above  the  atmosphere  through  a   standard  bandpass  that  does  not  change.     −  Approach:   •  Directly  measure  the  system  bandpass  (monochroma)c  flats)   •  Measure  and  model  the  atmospheric  bandpass   -  A  calibra)on  telescope  will  take  spectra  of  standard  stars  as  the  observing   unfolds.  These  will  be  used  to  fit  a  nightly,  slowly  changing,  atmosphere   model  (MODTRAN).   -  Addi)onal  measurements  of  precipitable  water  vapor  will  be  collected   with  a  GPS  system  and  a  co-­‐boresighted  microwave  radiometer.  Needed   to  accurately  calibrate  the  y  band.   -  Idea  being  explored:  It  is  possible  that  the  atmospheric  bandpasses  could   be  derived  from  the  imaging  data  alone.   •  Run  self-­‐calibra)on  (Ubercal)  to  determine  the  rela)ve  zero-­‐points.   •  Tie  to  an  external  system  (DA  WD  standards  or  Gaia).  
  • 25. 25GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Astrometry:  Tree  Rings   Above:  PRNU  (Photo-­‐response  non-­‐ uniformity)  of  an  LSST  sensor  segment.  One   sees  tree  rings,  sensi)vity  varia)ons  at  at  a   ~percent  level.     Due  to  varying  dopant  density  in  silicon   boules,  which  creates  parasi)c  lateral  E   fields.     The  gotcha:  these  DO  NOT  behave  as  QE   varia)ons.  If  you  try  to  flat  field  this,  you   make  the  problem  WORSE  by  ~2x.  
  • 26. 26GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014
  • 27. 27GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Astrometry/Photometry:  The  “Brighter-­‐Fafer  PSF”   Effect   Most  of  today’s  devices  (DES,  HSC,   LSST,  GPC1)  are  thick.  The  photon   conver)ng  at  the  top  has  a  long  way   to  go  to  reach  the  bopom   −  Tree  rings  (and  related  effects)   −  “Brighter-­‐fafer”  effect   As  the  poten)al  wells  fill  up  with  electrons,   the  bias  voltage  drops  making  it  easier  for   electrons  to  be  diverted  to  neighboring   pixels.   Correlates  the  values  of  neighboring  pixels;   results  in  an  intensity-­‐dependent  PSF.   HSC   LSST  
  • 28. 28GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Astrophysical  Calibra%on:  Gaia,  the  “Great  Calibrator”   −  Will  provide  a  network  of  astrometric  standards  covering  the  en)re  sky   −  Similarly,  will  provide  an  internally  consistent  photometric  catalog  to  aid   calibra)on   −  Scien)fically,  it  will  determine  to  unprecedented  precision  a  number  of   astrophysical  rela)ons  that  will  directly  enable  LSST  science:   •  Directly  calibrate  color-­‐luminosity  (photometric  parallax)  rela)ons  for  MS  and   other  stars   •  Calibrate  period-­‐luminosity  rela)ons  for  a  wide  range  of  variables   −  Enable  the  LSST  to  extend  Galac)c  census/maps  4-­‐7  magnitudes  deeper   Eyer,  Ivezic  &  Monet    Sec<on  6.12,    LSST  Science  Book  hVp://ls.st/sb  
  • 29. 29GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Chapter 6: Stellar Populations Chapter 6: Stellar Populations 6: A comparison of photometric, proper motion and parallax errors for SDSS, Gaia and LSST, as a function Table 6.6: Adopted Gaia and LSST Performance Quantity Gaia LSST Sky Coverage whole sky half sky Mean number of epochs 70 over 5 yrs 1000 over 10 yrs Mean number of observations 320a over 5 yrs 1000b over 10 yrs Wavelength Coverage 320–1050 nm ugrizy Depth per visit (5 , r band) 20 24.5; 27.5c Bright limit (r band) 6 16-17 Point Spread Function (arcsec) 0.14⇥0.4 0.70 FWHM Pixel count (Gigapix) 1.0 3.2 Syst. Photometric Err. (mag) 0.001, 0.0005d 0.005, 0.003e Syst. Parallax Err. (mas) 0.007f 0.40f Syst. Prop. Mot. Err. (mas/yr) 0.004 0.14 nsit includes the G-band photometry (data collected over 9 CCDs), BP and RP spec- metry, and measurements by the SkyMapper and RVS instruments. over all six bands (taken at di↵erent times). dded data, assuming 230 visits. ransit and the end-of-mission values for the G band (from SkyMapper; integrated BP hotometry will be more than about 3 times less precise). e visit and co-added observations, respectively. tric errors depend on source color. The listed values correspond to a G2V star. Gaia  and  LSST:  The  Science   LSST  Science  Book:  hVp://ls.st/sb   Gaia:  hVp://sci.esa.int/gaia  
  • 30. 30GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Figure  3.13,    LSST  Science  Book   hVp://ls.st/sb   The  volume  number  density   (stars/kpc3/mag,  log  scale   according  to  legend)  of  ∼2.8   million  SDSS  stars  with     14  <  r  <  21.5  and  b  >  70◦,  as  a   func)on  of  their  distance   modulus  (distances  range  from   100  pc  to  25  kpc)  and  their  g  −  i   color.     The  sample  is  dominated  by   color-­‐selected  main  sequence   stars.  
  • 31. 31  GaiaCal  2014  |  Ringberg,  Germany  |  July  9,  2014   LSST:  Mapping  the  Milky  Way  Halo   RR  Lyrae  limit   MS  stars   limit   Dwarf  Galaxies  
  • 32. 32GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 LSST:  Extended  Mapping  of  the  Milky  Way   −  LSST  will  enable  extended  mapping  of  the  Milky  Way  because  of   a  unique  combina)on  of  capabili)es:   •  The  existence  of  the  u  band,  allowing  the  measurement  of  stellar  metallici<es  of   near  turn-­‐off  stars  and  its  mapping  throughout  the  observed  disk  and  halo   volume.     •  The  near-­‐IR  y  band,  allowing  the  mapping  of  stellar  number  densi<es  and  proper   mo<ons  even  in  regions  of  high  ex<nc<on.     •  Well  sampled  <me  domain  informa<on,  allowing  for  the  unambiguous   iden<fica<on  and  characteriza<on  of  variable  stars  (e.g.,  RR  Lyrae),  facilita<ng   their  use  as  density  and  kinema<c  tracers  to  large  distances.     •  Proper  mo<on  measurements  for  stars  4  magnitudes  fainter  than  will  be  obtained   by  Gaia  (see  LSST  Science  Book;  §  3.6).     •  The  depth  and  wide-­‐area  nature  of  the  survey,  which  combined  with  the   characteris<cs  listed  above,  permits  a  uniquely  uniform,  comprehensive,  and   global  view  of  all  luminous  Galac<c  components.       Juric  &  Bullock    Sec<on  7.2    LSST  Science  Book  hVp://ls.st/sb  
  • 33. 33GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Discussion  Point:  Can  We  Skip  the  Catalogs?   −  As  our  measurements  become  more  and  more  systema)cs  limited,  what   occurs  in  the  “Data  Processing”  box  above  becomes  incredibly  important.   −  Some)mes,  an  assump)on  or  an  algorithmic  choice  that’s  been  made  there   may  introduce  a  systema)c  that  drowns  out  the  signal  (or  eliminates  it).   •  Different  deblending  algorithm  (or  no  deblending)   •  Extremely  crowded  field  photometry  (e.g.,  globular  clusters)   •  Searching  for  SNe  light  echos   •  Characteriza)on  of  diffuse  structures  (e.g.,  ISM)   −  For  op)mal  inference,  one  would  always  construct  a  measurement  that   directly  forward-­‐models  the  aspect  of  the  imaging  data  they’re  interested  in,   and  not  the  catalog.  Or  derive  a  more  appropriate  catalog.  Can  we  do  this?   Model          ß  inference  –          Data   Model        ß  inference  –      Catalog        ß  Data  Processing  –      Data  
  • 34. 34GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Discussion  Point:  Can  We  Skip  the  Catalogs?   −  Some  reasons  we  don’t  do  this:   1.  Computa)onally  (and  I/O  !!)  intensive   2.  Conceptually  difficult   -  Exper)ze  in  sta)s)cs,  applied  math,  and  soqware  engineering  is  oqen  not  there   -  Catalogs  are  too  oqen  taken  as  “$DEITY  given”,  fundamental,  result  of  a  survey   −  Things  are  changing   •  Big  data  problems  are  becoming  increasingly  computa)onally  tractable   -  Most  of  the  cost  of  LSST  DM  is  not  in  the  hardware,  it’s  in  the  people  wri)ng  the   soqware.  LSST  compu)ng  hardware  in  ~2020  ==  ~$3-­‐5M/yr  (just  ~200  TFLOPS!).   •  The  basic,  modular,  soqware  components  are  being  made  available  by  big  surveys,   lowering  the  barrier  to  entry.  Average  astronomer  in  the  2020s  will  grow  up  with   an  expecta)on  of  being  well  versed  in  Stats,  SE,  Appl.  Math.   Model          ß  inference  –          Data   Model        ß  inference  –      Catalog        ß  Data  Processing  –      Data  
  • 35. 35GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Discussion  Point:  Can  We  Skip  the  Catalogs?   −  LSST  “Level  3”  concept  is  the  first  step  in  that  direc)on:  Enabling  the   community  to  create  new  products  using  LSST’s  soqware,  services,  or   compu)ng  resources.  This  means:   •  Providing  the  soKware  primi%ves  to  construct  custom   measurement/inference  codes   •  Enabling  the  users  to  run  those  codes  at  the  LSST  data  center,   leveraging  the  investment  in  I/O  (piggyback  onto  LSST’s  data  trains).     −  Looking  ahead:  Right  now,  we  see  the  data  releases  as  the  key  product  of   a  survey.  By  the  end  of  LSST,  I  wouldn’t  be  surprised  if  we  saw  the   soKware  as  the  key  product,  with  hundreds  specialized  (and  likely   ephemeral)  catalogs  being  generated  by  it.   −  The  “data  releases”  will  just  be  some  of  those  catalogs,  designed  to  be   more  broadly  useful  than  others,  and  retained  for  a  longer  period  of  )me.     −  LSST  soKware  soKware  and  hardware  is  being  engineered  to  make  this   possible.  
  • 36. 36GAIACAL 2014 | RINGBERG, GERMANY | JULY 9, 2014 Summary   −  LSST  will  provide  photometric  (ugrizy)  and  shape  characteriza)on  for  ~40B   objects  (to  r=27.5)  over  ~half  the  sky  (southern  hemisphere),  with   ~800-­‐1000  epochs  per  object  (to  r=24.5).     −  LSST  products  will  consist  of  images,  catalogs,  and  the  soqware  used  to   produce  them.  We  try  to  minimize  informa)on  loss  by  retaining  the   informa)on  about  the  likelihoods  (extended  sources  only  (for  now)).  We   will  report  above-­‐the-­‐atmosphere  fluxes  calibrated  to  a  standard  band.     −  Astrophysical  calibra)on  of  LSST  is  not  a  formal  part  of  the  project;  the   community  (Science  Collabora)ons)  is  beginning  to  think  about  it.  In  the   Galac)c  context,  Gaia  will  provide  crucial  calibra)ons  for  LSST.   −  Going  forward,  we  expect  that  enabling  user-­‐generated  soqware  (“Level   3”)  will  be  increasingly  important.