SlideShare a Scribd company logo
Game Bot Identification 
       based on Manifold Learning

               Kuan‐Ta Chen       Academia Sinica
               Hsing‐Kuo Pao      NTUST
               Hong‐Chung Chang   NTUST




ACM NetGames 2008
Game Bots
       Game bots: automated AI programs that can perform 
       certain tasks in place of gamers
       Popular in MMORPG and FPS games
             MMORPGs (Role Playing Games)
             accumulate rewards in 24 hours a day 
                break the balance of power and economies in game
             FPS games (First‐Person Shooting Games)
             a) improve aiming accuracy only
             b) fully automated
                 achieve high ranking without proficient skills and efforts

Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning             2
Bot Detection

       Detecting whether a character is controlled by a bot is 
       difficult since a bot obeys the game rules perfectly
       No general detection methods are available today


       State of practice is identifying via human intelligence
             Detect by “bots may show regular patterns or peculiar 
             behavior”
             Confirm by “bots cannot talk like humans”
             Labor‐intensive and may annoy innocent players

Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning     3
Related Work
       Prevention
             CAPTCHA
             (reverse Turing 
             tests) [Golle et al; 2005]
       Detection
             Process monitoring at client side [GameGuard]
                  Bot program’s signatures are keeping changing
             Traffic analysis at the network [Chen et al; 2006]
                  Remove bot traffic’s regularity by heavy‐tailed random delays
             Aiming bot detection using DBN [Yeung et al; 2006]
                  Specific to aiming bots that help aim the target accurately 

Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning                 4
CAPTCHA in a Japanese Online Game




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   5
Our Goal of Bot Detection Solutions

        Passive detection 
           No intrusion in players’ gaming experience


        No client software support is required


        Generalizable schemes (for other games and other 
        game genres)



Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   6
Our Solution: Trajectory + Manifold Learning

       Based on the avatar’s movement trajectory in game
       Applicable for all genres of games where players control 
       the avatar’s movement directly
       Avatar’s trajectory is high‐dimensional (both in time 
       and spatial domain) 
          Use manifold learning to distinguish the trajectories 
       of human players and game bots




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   7
The Rationale behind Our Scheme

       The trajectory of the avatar controlled by a human 
       player is hard to simulate for two reasons:
             Complex context information: 
             Players control the movement of avatars based on their 
             knowledge, experience, intuition, and a great deal of 
             environmental information in game. 
             Human behavior is not always logical and optimal
       How to model and simulate realistic movements (for 
       game agents) is still an open question in the AI field. 


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning      8
Bot Detection: A Decision Problem
                 Q: Whether a bot is controlling a game client given
                    the movement trajectory of the avatar?
                 A: Yes / No?




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning      9
Talk Progress

                Overview
                Data Description
                Proposed Scheme
                     Pace vector construction
                     Dimension Reduction using Isomap
                     Classification
                Performance Evaluation
                Conclusion


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   10
Case Study: Quake 2

       Choose Quake 2 as our case study
             A classic FPS game
             Many real‐life human traces are available on the Internet
               more realistic than traces collected in experiments




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning        11
A Screen Shot of Quake 2




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   12
Data Collection
       Human traces downloaded from fan sites including GotFrag Quake, 
       Planet Quake, Demo Squad, and Revilla Quake Site
       Bot traces collected on our own Quake server
             CR BOT 1.14
             Eraser Bot 1.01
             ICE Bot 1.0
       Totally 143.8 hours of traces were 
       collected




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning    13
Aggregate View of Trails (Human & 3 Bots)




              Human    CR Bot

              Eraser   ICE Bot
Trails of Human Players




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   15
Trails of Eraser Bot
Trails of ICE Bot
Talk Progress

                Overview
                Data Description
                Proposed Scheme
                     Pace vector construction
                     Dimension Reduction using Isomap
                     Classification
                Performance Evaluation
                Conclusion


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   18
The Complete Process: Overview

                                                                Step 1. Pace Vector Construction




                                                                    Step 2. Dimension Reduction with Isomap




                                                                    Step 3. Supervised classification




                                                   Decision


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning                                        19
Step 1. Pace Vector Construction

       For each trace sn , we compute the pace (distance) in 
       successive two seconds by
                                             p
           ksn,i+1 − sn,i k =                     (sn,i+1 − sn,i )T (sn,i+1 − sn,i )

       We then compute the distribution (histogram) of paces 
       with a fixed bin size by

                        Fn = (fn,1 , fn,2 , . . . , fn,B )

       where B is the number of bins in the distribution.

Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning                      20
Pace Vector: An Example




                       B is set to 200 (dimensions) in this work

Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   21
Step 2. Dimension Reduction with Isomap
       We adopt Isomap for nonlinear dimension reduction for
             Better classifiaction accuracy
             Lower computation overhead in classification


       Isomap
             Assume data points lie on a manifold
                 A mathematical space in which every point has a neighborhood which 
                 resembles Euclidean space, but in which the global structure may be 
                 more complicated. (Wikipedia)

             1. Construct the neighborhood graph by kNN (k‐nearest neighbor)
             2. Compute the shortest geodesic path for each pair of points
             3. Reconstruct data by MDS (multidimensional scaling)


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning                       22
A Graphic Representation of Isomap




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   23
PCA (Linear) vs. Isomap (Nonlinear)




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   24
Step 3. Classification

       Apply a supervised classifier on the Isomap‐reduced 
       pace vectors
             SVM (Support Vector Machine) in our study
       To decide whether a trajectory belongs to a game bot or 
       a human player




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   25
Talk Progress

                Overview
                Data Description
                Proposed Scheme
                     Pace vector construction
                     Dimension Reduction using Isomap
                     Classification
                Performance Evaluation
                Conclusion


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   26
Five Methods for Comparison


         Method                                                 Data Input
         kNN
                                                                Original 200‐dimension
         Linear SVM
                                                                Pace Vectors
         Nonlinear SVM
         Isomap + kNN                                           Isomap‐reduced Pace 
         Isomap + Nonlinear SVM                                 Vectors




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning                        27
Evaluation Results


                                      Error Rate



False Postive Rate                    False Negative Rate
Addition of Gaussian Noise

       Bot programmers can try to evade from detection by 
       adding random noise into bots’ movement behavior


       Evaluate the robustness of our schemem by adding 
       Gaussian noise into bots’ trajectories




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   29
Evaluation Results


                                                                    Error Rate



        False Postive Rate                                           False Negative Rate




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning                          30
Cross‐Map Validation
       Human movement may be restricted by the environment around 
       him/her
       Whether a classifier trained for a map can be used for detecting
       bots on another map?


              The Edge                            The Frag Pipe     Warehouse




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning               31
Evaluation Results


                                       Error Rate




False Postive Rate                    False Negative Rate
Talk Progress

                Overview
                Data Description
                Proposed Scheme
                     Pace vector construction
                     Dimension Reduction using Isomap
                     Classification
                Performance Evaluation
                Conclusion


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   33
Conclusion

       We propose a trajectory‐based approach for detecting 
       game bots.
       The results show that the Isomap + nonlinear SVM 
       approach performs good and stable results.


       Human’s logic in controlling avatars is hard to simulate
          we believe this approach has the potential to be a 
       general yet robust bot detection methodology


Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   34
Future Work

       Include more spatial‐domain information in the pace 
       vector
       Validate our methodology on other games (game genres)




Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning   35
Thank You!



                          Kuan‐Ta Chen

               http://www.iis.sinica.edu.tw/~ktchen


ACM NetGames 2008

More Related Content

PPT
Identifying MMORPG Bots: A Traffic Analysis Approach
PDF
Identifying MMORPG Bots: A Traffic Analysis Approach
PDF
Point Count Systems in Imperfect Information Game
PPTX
Online learning & adaptive game playing
PPTX
Manifold learning
PDF
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
PDF
Manifold Learning
PDF
Manifold learning with application to object recognition
Identifying MMORPG Bots: A Traffic Analysis Approach
Identifying MMORPG Bots: A Traffic Analysis Approach
Point Count Systems in Imperfect Information Game
Online learning & adaptive game playing
Manifold learning
Deep Learning for Computer Vision: Unsupervised Learning (UPC 2016)
Manifold Learning
Manifold learning with application to object recognition

Viewers also liked (11)

PDF
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
PDF
Game Bot Detection Based on Avatar Trajectory
PPT
NNFL 5 - Guru Nanak Dev Engineering College
PPTX
Deep convolutional neural fields for depth estimation from a single image
PPTX
Basics of Machine Learning
PPTX
Supervised and unsupervised learning
PDF
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
PPT
Supervised Learning
PDF
Visualizing Data Using t-SNE
PPTX
Presentation on supervised learning
DOCX
Best topics for seminar
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Game Bot Detection Based on Avatar Trajectory
NNFL 5 - Guru Nanak Dev Engineering College
Deep convolutional neural fields for depth estimation from a single image
Basics of Machine Learning
Supervised and unsupervised learning
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Supervised Learning
Visualizing Data Using t-SNE
Presentation on supervised learning
Best topics for seminar
Ad

Similar to Game Bot Identification Based on Manifold Learning (16)

PDF
Presentation of Visual Tracking
PDF
Psdot 2 design and implementation of persuasive cued click-points and evalua...
PPTX
FAKE CURRENCY DETECTION PDF NEW PPT.pptx
PPTX
Xna for wp7
PDF
Vision Based Autonomous Mobile Robot Navigation
DOC
INTRODUCTION
DOC
INTRODUCTION
PDF
Game Analytics & Machine Learning
PPTX
Gdc gameplay replication in acu with videos
PPTX
A Semantic content detection for soccer video based on finite state machine -...
PDF
Machine Learning Based Botnet Detection
PPTX
ThesisDefense_rev
PPT
Goal Line Technology
PPTX
Weapon Detection-1.pptx in a single ppt is displayed
DOCX
Anonymous Counting Problem in Trust Level Warning System for VANET
PPTX
deCaptcha
Presentation of Visual Tracking
Psdot 2 design and implementation of persuasive cued click-points and evalua...
FAKE CURRENCY DETECTION PDF NEW PPT.pptx
Xna for wp7
Vision Based Autonomous Mobile Robot Navigation
INTRODUCTION
INTRODUCTION
Game Analytics & Machine Learning
Gdc gameplay replication in acu with videos
A Semantic content detection for soccer video based on finite state machine -...
Machine Learning Based Botnet Detection
ThesisDefense_rev
Goal Line Technology
Weapon Detection-1.pptx in a single ppt is displayed
Anonymous Counting Problem in Trust Level Warning System for VANET
deCaptcha
Ad

More from Academia Sinica (20)

PDF
Computational Social Science:The Collaborative Futures of Big Data, Computer ...
PDF
Games on Demand: Are We There Yet?
PDF
Detecting In-Situ Identity Fraud on Social Network Services: A Case Study on ...
PDF
Cloud Gaming Onward: Research Opportunities and Outlook
PPTX
Quantifying User Satisfaction in Mobile Cloud Games
PDF
量化「樂趣」-以心理生理量測探究數位娛樂商品之市場價值
PPTX
On The Battle between Online Gamers and Lags
PPTX
Understanding The Performance of Thin-Client Gaming
PPT
Quantifying QoS Requirements of Network Services: A Cheat-Proof Framework
PPT
Online Game QoE Evaluation using Paired Comparisons
PPTX
GamingAnywhere: An Open Cloud Gaming System
PPT
Are All Games Equally Cloud-Gaming-Friendly? An Electromyographic Approach
PPT
Forecasting Online Game Addictiveness
PDF
Toward an Understanding of the Processing Delay of Peer-to-Peer Relay Nodes
PDF
Inferring Speech Activity from Encrypted Skype Traffic
PDF
Improving Reliability of Web 2.0-based Rating Systems Using Per-user Trustiness
PDF
A Collusion-Resistant Automation Scheme for Social Moderation Systems
PDF
Tuning Skype’s Redundancy Control Algorithm for User Satisfaction
PDF
Network Game Design: Hints and Implications of Player Interaction
PDF
Mitigating Active Attacks Towards Client Networks Using the Bitmap Filter
Computational Social Science:The Collaborative Futures of Big Data, Computer ...
Games on Demand: Are We There Yet?
Detecting In-Situ Identity Fraud on Social Network Services: A Case Study on ...
Cloud Gaming Onward: Research Opportunities and Outlook
Quantifying User Satisfaction in Mobile Cloud Games
量化「樂趣」-以心理生理量測探究數位娛樂商品之市場價值
On The Battle between Online Gamers and Lags
Understanding The Performance of Thin-Client Gaming
Quantifying QoS Requirements of Network Services: A Cheat-Proof Framework
Online Game QoE Evaluation using Paired Comparisons
GamingAnywhere: An Open Cloud Gaming System
Are All Games Equally Cloud-Gaming-Friendly? An Electromyographic Approach
Forecasting Online Game Addictiveness
Toward an Understanding of the Processing Delay of Peer-to-Peer Relay Nodes
Inferring Speech Activity from Encrypted Skype Traffic
Improving Reliability of Web 2.0-based Rating Systems Using Per-user Trustiness
A Collusion-Resistant Automation Scheme for Social Moderation Systems
Tuning Skype’s Redundancy Control Algorithm for User Satisfaction
Network Game Design: Hints and Implications of Player Interaction
Mitigating Active Attacks Towards Client Networks Using the Bitmap Filter

Recently uploaded (20)

PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPT
Teaching material agriculture food technology
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Encapsulation_ Review paper, used for researhc scholars
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
A Presentation on Artificial Intelligence
PDF
Electronic commerce courselecture one. Pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
Cloud computing and distributed systems.
PDF
Approach and Philosophy of On baking technology
PPTX
Programs and apps: productivity, graphics, security and other tools
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
NewMind AI Weekly Chronicles - August'25-Week II
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Review of recent advances in non-invasive hemoglobin estimation
Teaching material agriculture food technology
MIND Revenue Release Quarter 2 2025 Press Release
Diabetes mellitus diagnosis method based random forest with bat algorithm
Encapsulation_ Review paper, used for researhc scholars
“AI and Expert System Decision Support & Business Intelligence Systems”
A Presentation on Artificial Intelligence
Electronic commerce courselecture one. Pdf
Network Security Unit 5.pdf for BCA BBA.
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Dropbox Q2 2025 Financial Results & Investor Presentation
Cloud computing and distributed systems.
Approach and Philosophy of On baking technology
Programs and apps: productivity, graphics, security and other tools
The AUB Centre for AI in Media Proposal.docx
A comparative analysis of optical character recognition models for extracting...
Building Integrated photovoltaic BIPV_UPV.pdf

Game Bot Identification Based on Manifold Learning

  • 1. Game Bot Identification  based on Manifold Learning Kuan‐Ta Chen  Academia Sinica Hsing‐Kuo Pao NTUST Hong‐Chung Chang NTUST ACM NetGames 2008
  • 2. Game Bots Game bots: automated AI programs that can perform  certain tasks in place of gamers Popular in MMORPG and FPS games MMORPGs (Role Playing Games) accumulate rewards in 24 hours a day  break the balance of power and economies in game FPS games (First‐Person Shooting Games) a) improve aiming accuracy only b) fully automated achieve high ranking without proficient skills and efforts Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 2
  • 3. Bot Detection Detecting whether a character is controlled by a bot is  difficult since a bot obeys the game rules perfectly No general detection methods are available today State of practice is identifying via human intelligence Detect by “bots may show regular patterns or peculiar  behavior” Confirm by “bots cannot talk like humans” Labor‐intensive and may annoy innocent players Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 3
  • 4. Related Work Prevention CAPTCHA (reverse Turing  tests) [Golle et al; 2005] Detection Process monitoring at client side [GameGuard] Bot program’s signatures are keeping changing Traffic analysis at the network [Chen et al; 2006] Remove bot traffic’s regularity by heavy‐tailed random delays Aiming bot detection using DBN [Yeung et al; 2006] Specific to aiming bots that help aim the target accurately  Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 4
  • 6. Our Goal of Bot Detection Solutions Passive detection  No intrusion in players’ gaming experience No client software support is required Generalizable schemes (for other games and other  game genres) Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 6
  • 7. Our Solution: Trajectory + Manifold Learning Based on the avatar’s movement trajectory in game Applicable for all genres of games where players control  the avatar’s movement directly Avatar’s trajectory is high‐dimensional (both in time  and spatial domain)  Use manifold learning to distinguish the trajectories  of human players and game bots Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 7
  • 8. The Rationale behind Our Scheme The trajectory of the avatar controlled by a human  player is hard to simulate for two reasons: Complex context information:  Players control the movement of avatars based on their  knowledge, experience, intuition, and a great deal of  environmental information in game.  Human behavior is not always logical and optimal How to model and simulate realistic movements (for  game agents) is still an open question in the AI field.  Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 8
  • 9. Bot Detection: A Decision Problem Q: Whether a bot is controlling a game client given the movement trajectory of the avatar? A: Yes / No? Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 9
  • 10. Talk Progress Overview Data Description Proposed Scheme Pace vector construction Dimension Reduction using Isomap Classification Performance Evaluation Conclusion Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 10
  • 11. Case Study: Quake 2 Choose Quake 2 as our case study A classic FPS game Many real‐life human traces are available on the Internet more realistic than traces collected in experiments Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 11
  • 13. Data Collection Human traces downloaded from fan sites including GotFrag Quake,  Planet Quake, Demo Squad, and Revilla Quake Site Bot traces collected on our own Quake server CR BOT 1.14 Eraser Bot 1.01 ICE Bot 1.0 Totally 143.8 hours of traces were  collected Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 13
  • 14. Aggregate View of Trails (Human & 3 Bots) Human CR Bot Eraser ICE Bot
  • 18. Talk Progress Overview Data Description Proposed Scheme Pace vector construction Dimension Reduction using Isomap Classification Performance Evaluation Conclusion Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 18
  • 19. The Complete Process: Overview Step 1. Pace Vector Construction Step 2. Dimension Reduction with Isomap Step 3. Supervised classification Decision Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 19
  • 20. Step 1. Pace Vector Construction For each trace sn , we compute the pace (distance) in  successive two seconds by p ksn,i+1 − sn,i k = (sn,i+1 − sn,i )T (sn,i+1 − sn,i ) We then compute the distribution (histogram) of paces  with a fixed bin size by Fn = (fn,1 , fn,2 , . . . , fn,B ) where B is the number of bins in the distribution. Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 20
  • 21. Pace Vector: An Example B is set to 200 (dimensions) in this work Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 21
  • 22. Step 2. Dimension Reduction with Isomap We adopt Isomap for nonlinear dimension reduction for Better classifiaction accuracy Lower computation overhead in classification Isomap Assume data points lie on a manifold A mathematical space in which every point has a neighborhood which  resembles Euclidean space, but in which the global structure may be  more complicated. (Wikipedia) 1. Construct the neighborhood graph by kNN (k‐nearest neighbor) 2. Compute the shortest geodesic path for each pair of points 3. Reconstruct data by MDS (multidimensional scaling) Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 22
  • 25. Step 3. Classification Apply a supervised classifier on the Isomap‐reduced  pace vectors SVM (Support Vector Machine) in our study To decide whether a trajectory belongs to a game bot or  a human player Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 25
  • 26. Talk Progress Overview Data Description Proposed Scheme Pace vector construction Dimension Reduction using Isomap Classification Performance Evaluation Conclusion Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 26
  • 27. Five Methods for Comparison Method Data Input kNN Original 200‐dimension Linear SVM Pace Vectors Nonlinear SVM Isomap + kNN Isomap‐reduced Pace  Isomap + Nonlinear SVM Vectors Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 27
  • 28. Evaluation Results Error Rate False Postive Rate False Negative Rate
  • 29. Addition of Gaussian Noise Bot programmers can try to evade from detection by  adding random noise into bots’ movement behavior Evaluate the robustness of our schemem by adding  Gaussian noise into bots’ trajectories Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 29
  • 30. Evaluation Results Error Rate False Postive Rate False Negative Rate Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 30
  • 31. Cross‐Map Validation Human movement may be restricted by the environment around  him/her Whether a classifier trained for a map can be used for detecting bots on another map? The Edge The Frag Pipe Warehouse Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 31
  • 32. Evaluation Results Error Rate False Postive Rate False Negative Rate
  • 33. Talk Progress Overview Data Description Proposed Scheme Pace vector construction Dimension Reduction using Isomap Classification Performance Evaluation Conclusion Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 33
  • 34. Conclusion We propose a trajectory‐based approach for detecting  game bots. The results show that the Isomap + nonlinear SVM  approach performs good and stable results. Human’s logic in controlling avatars is hard to simulate we believe this approach has the potential to be a  general yet robust bot detection methodology Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 34
  • 35. Future Work Include more spatial‐domain information in the pace  vector Validate our methodology on other games (game genres) Kuan‐Ta Chen / Game Bot Identification based on Manifold Learning 35
  • 36. Thank You! Kuan‐Ta Chen http://www.iis.sinica.edu.tw/~ktchen ACM NetGames 2008