SlideShare a Scribd company logo
ResearchArticle 
Generalizedeigenvalueminimizationforuncertain 
first-orderplustime-delayprocesses 
Gongsheng Huang a,n, KeckVoonLing b, XiaoningXu c, YundanLiao a 
a Department ofCivilandArchitecturalEngineering,CityUniversityofHongKong,TatCheeRoad,Kowloon,HongKong 
b School ofElectricalandElectronicEngineering,NanyangTechnologicalUniversity,50NanyangAvenue,Singapore 
c Institute ofCivilEngineering,GuangzhouUniversity,No.230OuterRingRoad,Guanzhou,GuangdongProvince,China 
a rticleinfo 
Article history: 
Received15February2013 
Receivedinrevisedform 
8 August2013 
Accepted6September2013 
Availableonline27September2013 
Keywords: 
Generalized eigenvalueminimization 
First-order plustime-delaymodel 
Robustcontrol 
Linear-matrixinequality 
Uncertainty 
a b s t r a c t 
This papershowshowtoapplygeneralizedeigenvalueminimizationtoprocessesthatcanbedescribed 
by a first-orderplustime-delaymodelwithuncertaingain,timeconstantanddelay.Analgorithm 
to transformtheuncertain first-order plustimedelaymodelintoastate-spacemodelwithuncertainty 
polyhedronis firstly described.Theaccuracyofthetransformationisstudiedusingnumericalexamples. 
Then, theuncertaintypolyhedronisrewrittenasalinear-matrix-inequalityconstraintandgeneralized 
eigenvalueminimizationisadoptedtocalculateafeedbackcontrollaw.Casestudiesshowthateven 
if uncertaintiesassociatedwiththe first-orderplustimedelaymodelaresignificant, astablefeedback 
control lawcanbefound.Theproposedcontrolistestedbycomparingwitharobustinternalmodel 
control. Itisalsotestedbyapplyingittothetemperaturecontrolofair-handingunits. 
& 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
1. Introduction 
Modeluncertaintyisawidelyrecognizedprobleminthecontrol 
literature.Itreferstothedifferencesorerrorsbetweenmodelsand 
reality [1]. Whenidentifyingamodelofaprocess,modeluncer- 
taintyoccurswhen(i)theprocessisill-definedorhasasignificant 
amountofvagueness;(ii)alowordermodelisusedbuttheprocess 
is ofhighorder;and(iii)amodelwith fixedparametersisusedbut 
thedynamicsoftheprocessistimevaryingorchangeswithitsope- 
ratingenvironment,forexample,thetimedelayinanetworked 
controlsystemisnotalwaysaconstant [2,3]. Althoughmost(non- 
robust)controlstrategieshaveinherentrobustnessformodelunce- 
rtainties,thecontrolobjectivesthatarepredefinedmightbe 
difficulttoachievewhenmodeluncertaintiesaresignificant [4]. 
Uncertaintiesmayaffectthestabilityofacontrolsystemseriously 
[1,5], andtheyshouldbetakenintoaccountdirectlyinthecontrol 
designinordertoguaranteecontrolperformance. 
Manyindustrialprocessescanbedescribedusinga first-order 
plus timedelay(FOPDT)model [6,7] 
T 
dy 
dt þyðtÞ ¼ KuðtτÞ ð1aÞ 
where u, y aretheprocessinputandoutput; K, T, τ denotetheprocess 
gain, timeconstantanddelay,respectively.Whenuncertainties 
associatedwiththismodelareconsidered,theuncertaintiescanbe 
specified by 
KA½K1; K2; TA½T1; T2; τA½τ1; τ2 ð1bÞ 
wherethesubscript ‘1’ denotesthelowerboundand ‘2’ denotesthe 
upper bound.TheuncertaintysetsinEq. (1b) can beusedtodescribe 
the variationsoftheseparametersaswellastheassociatedvagueness 
associatedwiththeidentification ofthemodel (1a). 
ThemodelrepresentedbyEqs. (1a) and (1b) canbeusedto 
describethedynamicsofmanythermalprocesses,forexample, 
in heating,ventilationandairconditioning(HVAC)systems [8–11], 
andafewreports,suchas [10,12,13], addresseditsrobustcontrol 
issue.However,noneofthestudiesdealtwithalloftheuncertain- 
tiesspecified inEq. (1b). Forexample,Underwood [10] andHuang 
andWang [12] dealtwithuncertaintiesonlyassociatedwiththe 
processgainanddelay;andHuangandWang [13] dealtwith 
uncertaintiesonlyassociatedwiththeprocessgainandtime 
constant.Notably,Laughlinetal. [14] describedtheuncertainty 
setsinEq. (1b) as regionsinthecomplexplaneandemployed 
theinternalmodelcontrol(IMC)todesignacontroller,ofwhichthe 
robuststabilityandtheperformancewerebalancedbytuningthe 
parametersofa filter [14]. 
Thispapershowshowtousethegeneralizedeigenvaluemini- 
mization(GEVM)techniquetodesignarobustcontrollawfor 
processesthatcanbedescribedbyEq. (1a) withalltheuncertain- 
tiesspecified inEq. (1b). AGEVMproblemistominimizethe 
maximumgeneralizedeigenvalueofapairofmatricesthatdepend 
affinelyonavariablesubjecttoalinear-matrix-inequality(LMI) 
Contents listsavailableat ScienceDirect 
journalhomepage: www.elsevier.com/locate/isatrans 
ISATransactions 
0019-0578/$-seefrontmatter  2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 
http://dx.doi.org/10.1016/j.isatra.2013.09.009 
n Corresponding author.Tel.: þ852 34427633;fax: þ852 27669716. 
E-mail address: gongsheng.huang@cityu.edu.hk (G.Huang). 
ISA Transactions53(2014)141–149
constraint [15]. Sinceefficientinteriorpointalgorithmsarenow 
availableincomputersoftware(suchasMATLAB)tosolveGEVM 
problems [16], therobustcontrollawcanbeeasilycalculated.In 
ordertousetheGEVMtechnique,thecontinuousmodel(1)is 
sampledtoadiscretemodelandtheuncertaintysetsspecified in 
Eq. (1b) aretransformedintoanuncertaintypolyhedron [17,18], 
whichcanbeeasilyreformulatedintheformofaLMIconstraint, 
suchasin [19,20]. Afterthistransformation,itwillbeshownthat 
thecalculationofastandardrobustfeedbackcontrollawcanbe 
formulatedasastandardGEVMproblem. 
The restofthispaperisorganizedasfollows.Thetransforma- 
tion oftheuncertaintysetsspecified inEq. (1b) to anuncertainty 
polyhedroniselaboratedin Section 2. Section 3 details the 
synthesis ofthecontrollawusingtheGEVMtechnique.The 
accuracyofthetransformationisillustratedin Section 4 using 
severalnumericalexamples. Section 5 showsthecomparisonof 
the proposedrobustcontrolwiththeIMCmethodin [14], andan 
application toanair-handlingunit.Concludingremarksaregiven 
in Section 6. 
2. Uncertaintypolyhedron 
In ordertousetheGEVMtechnique,itisnecessarytosample 
and transformthedescriptionofEqs. (1a) and (1b) to thatofEqs. 
(2a) and (2b), whereEq. (2a) is adiscretestate-spacemodel;while 
Eq. (2b) specifies anuncertaintypolyhedron ΩA,B for themodel 
coefficient matrices(A,B). Theactualcoefficient matricesarea 
linear convexcombinationofthematrices(Az, Bz) attheverticesof 
the polyhedron,where N is thenumberofvertices. 
xkþ1 ¼ AxkþBΔuk ð2aÞ 
ðA; BÞAΩAB; ΩAB : ¼ ðA; BÞ ¼ Σ N 
z ¼ 1 
γzðAz; BzÞ; 0rγz 
r1; Σ N 
z ¼ 1 
γz ¼ 1 
  
ð2bÞ 
The transformationiselaboratedasfollows. 
2.1.Discretemodel 
The continuousmodel(1a)is firstly sampledasadiscrete 
model (3a)usingasamplinginterval h and thezero-order-hold 
(ZOH) samplingmethod [21] 
ykþ1 ¼ aykþKbdukdþKbdþ1ukd1 ð3aÞ 
where k denotesthecurrenttimeinstant; d is thediscretetime- 
delay;and 
a ¼ eh=T ; bd ¼ 1eðh ~ τÞ=T ; bdþ1 ¼ eðh ~ τÞ=T eh=T ; d ¼ f lðτ=hÞ 
ð3bÞ 
where fl(x) isafunctiontoround x to thenearestintegertowards 
negative,and ~ τ satisfies 
τ ¼ d  hþ ~ τ and 0r~ τoh ð3cÞ 
RewritingEq. (3a) in theincrementalform,itbecomes 
ykþ1 ¼ ð1þaÞykayk1þKbdΔukdþKbdþ1Δukd1 ð4Þ 
when theoutput y is controlledtotrackaset-point yr , Eq. (4) is 
further rewrittenas 
M1 : ekþ1 ¼ ð1þaÞekaek1þKbdΔukdþKbdþ1Δukd1 
where M1 denotesthesystemdiscretemodel;and ek ¼ ykyr is 
the trackingerror.Samplingacontinuous-timesystemwithtime 
delay makesthediscrete-timesystem finite-dimensional [21]. The 
model parameters a, bd, bdþ1, and d depend onthechoiceofthe 
sampling time h. Followingthesuggestionfrom [6,22], h is chosen 
tosatisfy hrT1=10, where T1 is theminimumtimeconstant 
specified inEq. (1b). 
2.2. Uncertaindiscretemodel 
Because theparameters K, T and τ in themodel(1a)are 
uncertain, theparameters a, bd, bdþ1, and d of themodel M1 are 
also uncertain.Sincetheprocessgain K variesintheuncertainty 
set [K1, K2], itcanbewrittenasalinearconvexcombinationofthe 
lowerandupperbounds K1 and K2: 
K ¼ λK;1K1þλK;2K2 ð5aÞ 
where λK;1; λK;2 are coefficients, satisfying 
0rλK;1; λK;2r1; λK;1þλK;2 ¼ 1 ð5bÞ 
when thetimeconstant T variesintheuncertaintyset ½T1; T2, the 
parameter a lies alsoinasetdefined as aA½a1; a2 where 
a1 ¼ eh=T1 ; a2 ¼ eh=T2 ð6Þ 
similarly,theparameter a can bewrittenasalinearconvex 
combination ofthelowerandupperbound a1 and a2 
a ¼ λa;1a1þλa;2a2 ð7aÞ 
where λa; 1; λa;2 arecoefficients, satisfying 
0rλa;1; λa;2r1; λa;1þλa;2 ¼ 1 ð7bÞ 
when thetimedelay τ variesintheuncertaintyset ½τ1; τ2, the 
correspondingdiscretetime-delay d is anintegerandhasitsvalue 
in theset ½d; dþ1;…; d1, where 
d ¼ f lðτ1=hÞ; d ¼ clðτ2=hÞ ð8Þ 
where fl(x) isafunctiondefined asthesameinEq. (3b); and cl(x) is 
a functiontoround x to thenearestintegertowardspositive. 
When thetimedelay τ varies,theparameters bd and bdþ1 will also 
varycorrespondingly(seeEq. (3b)). 
Based ontheobservationsthat(i)inthecaseofthetime 
constant T being certain,onlytwoneighboring bds arenonzerofor 
a given τ, andother bds arezero,asshownin Fig. 1[12]; and(ii)in 
the caseofthetimeconstant T being uncertain,therearealsoonly 
twoneighboring bds beingnonzeroforeach τ in itsuncertainty 
set. Then,asshownin Section 2.3, whenthetimeconstant T has its 
valueintheuncertaintyset ½T1; T2 and thetimedelay τ has its 
valueintheuncertaintyset ½τ1; τ2, thenonzeroparameter bd and 
bdþ1 in M1 canbeapproximatedby 
bd ¼ λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2Þ 
bdþ1 ¼ λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2Þ ð9aÞ 
where a1 and a2 are defined inEq. (7a); and λτ,d and λτ,dþ1 are 
defined by 
λτ;d¼ ςd;1ðT1; T2; ~ τÞ; λτ; dþ1 ¼ 1þςd;1ðT1; T2; ~τÞ ð9bÞ 
where ςd;1, whichisancoefficient usedinlinearizing bd and bdþ1 
w.r.t.a, isdefined in Section 2.3; and ~τ satisfies Eq. (3c). Numerical 
study showsthat λτd and λτ,dþ1 satisfy 
0rλτ; d; λτ; dþ1r1; λτ; dþλτ; dþ1 ¼ 1 ð9cÞ 
Fig. 1. Variations inthevaluesof bd when timedelaychanges. 
G. Huangetal./ISATransactions53(2014)141–149 142
2.3. Twoapproximations 
In ordertodeveloptheuncertaintydescriptionfor bds, thetime 
delay uncertaintyset ½τ1; τ2 is separatedinto ðddÞ sections as 
shown in Fig. 1. Withoutlossofgenerality,considerthesection 
τA½d  h; ðdþ1Þ  hÞ. Accordingto Fig. 1, onlythecoefficients bd 
and bdþ1 are nonzeroandtheyaredefined by 
bd ¼ 1eðh ~ τÞ=T ; bdþ1 ¼ eðh ~ τÞ=T eh=T ð10Þ 
with ~ τ satisfying 
τ ¼ d  hþ ~ τ and 0r~ τoh ð11Þ 
First, considera fixedvalueof ~ τ (i.e. τ is fixedintheset[dh, 
(dþ1)h]). AsshownbyHuangandWang [13], if T variesinthe 
set ½T1; T2 and h is chosentobemuchsmallerthan T1, then bd and 
bdþ1 can beapproximatedby 
bd ¼ ςd;1ðT1; T2Þaþςd;2ðT1; T2Þ; 
bdþ1 ¼ ςdþ1;1ðT1; T2Þaþςdþ1;2ðT1; T2Þ ð12Þ 
where ςðT1; T2Þ denotesthevalueof ς is relatedtotheupperand 
lowerboundofthetimeconstant,i.e. T1 and T2, butnottothe 
actual valueof T; and 
ςdþ1;1ςd;1ðT1; T2Þ ¼ 1ςd;1ςd;1ðT1; T2Þ; ςdþ1;2ςd;1ðT1; T2Þ 
¼ 1ςd;2ςd;1ðT1; T2Þ ð13Þ 
The approximationdescribedbyEq. (12) is titledas Approx- 
imation I. 
Second, considerthevariationof ~ τ (i.e. τ variesintheset 
½d  h; ðdþ1Þ  hÞ). Whenthetimedelay τ variesfrom τ¼dh to 
τ¼(dþ1)h, theparameter ~ τ will varyfrom ~ τ ¼0 to ~ τ ¼ h. Itis 
notedthatthevaluesof ςd;1; ςd;2and ςdþ1;1; ςdþ1;2 will change 
when ~ τ changes.Write ςd;1; ςd;2 and ςdþ1;1; ςdþ1;2 as functionsof ~τ 
and substituting a by Eq. (6b), andthen bd has theformof 
bd ¼ ςd;1ðT1; T2; ~ τÞλa;1a1þςd;1ðT1; T2; ~ τÞλa;2a2þςd;2ðT1; T2; ~τÞ ð14Þ 
Because λa;1þλa;2 ¼ 1, theexpressionof bd is furtherwrittenas 
bd ¼ ½ςd;1ðT1; T2; ~ τÞλa;1ð1a1Þþ½ςd; 1ðT1; T2; ~ τÞλa;2ð1a2Þ 
þςd;1ðT1; T2; ~τÞþςd;2ðT1; T2; ~ τÞ ð15Þ 
When thesamplinginterval h is smallenough(suchas 
hrT1=10), foreach ~ τA½0; hÞ thereexists 
ςd; 1ðT1; T2; ~ τÞþςd; 2ðT1; T2; ~τÞ  0 ð16Þ 
This approximationistitledas ApproximationII. Withthis 
approximationanddefinition of λτ,d in Eq. (9b), bd can be 
formulated astheformdefined inEq. (9a). Numericalstudyshows 
that ςd;1ðT1; T2; ~τÞ has avalueinside[1,0].Then λτ,d has avalue 
inside [0,1]. 
Similarly,rewrite bdþ1 as 
bdþ1¼ ςdþ1;1ðT1; T2; ~ τÞλa;1ð1a1Þςdþ1;1ðT1; T2; ~τÞλa;2ð1a2Þ 
þςdþ1;1ðT1; T2; τ~ Þþςdþ1;2ðT1; T2; τ~ Þ ð17Þ 
AccordingtoEq. (13) and the ApproximationII, ςdþ1;1 
ðT1; T2; ~τÞþςdþ1;2ðT1; T2; ~τÞ ¼ 0 foreach ~τA½0; hÞ. Then,withthis 
approximationanddefinition of λτ,dþ1 in Eq. (9b), bdþ1 becomes 
the formdefined inEq. (9a). Since ςd;1ðT1; T2; ~τÞ has avalueinside 
[1,0], λτ,dþ1 has avalueinside[0,1]accordingtoitsdefinition. 
2.4. Linearcombinationofsub-models 
Considering theprocessgainuncertaintyandaccordingtoEqs. 
(5a), (7a) and (9a), thediscrete-timemodel M1 canbewrittenasa 
linear combinationofthesub-models Mi,j,l 
M2 ¼ Σ 2 
i ¼ 1 
Σ 2 
j ¼ 1 
Σ 
dþ1 
l ¼ d 
λK;iλa;jλτ;lMi;j;l ð18aÞ 
where λK,i, λK,j, and λτ,l aredefined inEqs. (5b), (6b) and (9b), and 
Mi;j;l is defined as 
Mi; j; l : ekþ1 ¼ ð1þajÞekajek1þKið1ajÞΔukl ð18bÞ 
The developmentof M2 isillustratedin Appendix A. Notethat 
the discretetimedelay d can beanyvalueintheset ½d; dþ 1;…; d1. Ateachtimedelay,onlytwo bds arenonzerowhile 
othersarezero.Hence,onlytwocorresponding λτs arenonzero 
and other λτs arezeroforeachtimedelay.Therefore,Eq. (18a) is 
written as 
M2 ¼ Σ 2 
i ¼ 1 
Σ 2 
j ¼ 1 
Σ d 
l ¼ d 
λK;iλa;jλτ;lMi;j;l ð18cÞ 
where thedefinition of Mi;j;l in Eq. (18b) is extendedfor l ¼ d; …; d. AccordingtoEqs. (5b), (7b) and (9c) as wellasthefact 
that other λτ s arezero,thecoefficients inEq. (18c) satisfy 
Σ 2 
i ¼ 1 
Σ 2 
j ¼ 1 
Σ d 
l ¼ d 
λK;iλa;jλτ;l ¼ 1 ð19Þ 
The expressionof M2 inEq. (18c) indicatesthat M1 canbe 
written asalinearconvexcombinationofthesub-models Mi,j,l 
when theparameters(K, T, τ) areinsidetheuncertaintysets. 
It alsoindicatesthattheuncertaintiesassociatedwiththepara- 
meters(K, T, τ) aretransformedtotheuncertaintiesassociated 
with theparameters(λK,i, λK,j, λτ,l), i.e. K, T, τ varyingintheir 
uncertainties setsaretransferredto λK,i, λK,j, λτ,l varyingbetween 
0 and1. 
2.5. State-spacemodel 
Defining astatevectoras 
x′k ¼ ðek; ek1;Δukd;…;Δuk1Þ ð20Þ 
Then, x′kþ1 has theformof 
x′kþ1 ¼ ðekþ1; ek;Δukdþ1;…;ΔukÞ 
Since ekþ1 ¼ ð1þaÞekaek1þKbdΔukdþKbdþ1Δukd1 and 
d may beanyvalueinsidetheset ½d;⋯d1, ekþ1 can be 
rewrittenas 
ekþ1 ¼ ½1þa; a; 01;dðdþ1Þ 
; Kbdþ1; Kbd; 01;d1xk 
where 0 is azeromatrix(orvector)anditssubscriptsindicatethe 
dimension. Similarly,theotheritemsof x′ 
kþ1 has theformof 
ek ¼ ½1; 01;dþ1xk 
½Δukdþ1;⋯;Δukþ1′ ¼ 
0d1;3 Id1;d1 
01;dþ2 
 # 
xk 
It shouldbenotedthat Δuk is thecontrolinputatthetime 
instant k. Therefore,themodel M1 isformulatedasastate-space 
model intheformofEq. (2a) as follows.When d40, themodel 
M1 canbeformulatedasadiscretestate-spacemodelintheform 
of Eq. (2a) with 
A¼ 
1þa; a; 01;dðdþ1Þ 
; Kbdþ1; Kbd; 01;d1 
1 01;dþ1 
0d1;3 Id1;d1 
01;dþ2 
0 
BBBBB@ 
1 
CCCCCA 
; B ¼ 0dþ1;11 
  
when d¼0, thecorresponding A and B becomes 
A ¼ 
1þa; a; 01;d1; Kbdþ1 
1 01;dþ1 
0d1;3 Id1;d1 
01;dþ2 
0 
BBBBB@ 
1 
CCCCCA 
; B ¼ 
Kbd 
0d;1 
1 
0 
B@ 
1 
CA 
G. Huangetal./ISATransactions53(2014)141–149 143
where I is theidentitymatrix.Thecoefficient matrices A and B are 
uncertain becauseoftheuncertaintiesassociatedwiththepara- 
meters K, a, bd, bdþ1, and d. 
The sub-models Mi,j,l is alsoformulatedasastate-spacemodelin 
theformofEq. (2a), andthecoefficientmatrices Az(i,j,l) and B z(i,j,l) are 
givenasbelow.If l40, 
Azði;j;lÞ ¼ 
1þaj aj 01;dl Kið1ajÞ 01;l1 
1 01;dþ1 
0d1;3 Id1;d1 
01;dþ2 
0 
BBBBB@ 
1 
CCCCCA 
; Bzði;j;lÞ ¼ 
0dþ1;1 
1 
 # 
ð21aÞ 
If l¼0 (whichoccursinthecaseof d ¼ 0), 
Azði;j;0Þ ¼ 
1þaj aj 01;d 
1 01;dþ1 
0d1;3 Id1;d1 
01;dþ2 
0 
BBBBB@ 
1 
CCCCCA 
; Bzði;j;0Þ ¼ 
Kið1ajÞ 
0d;1 
1 
2 
64 
3 
75 
ð21bÞ 
where I is theidentitymatrix; 0 is azeromatrix(orvector);and z 
is 
z ¼ zði; j; lÞ 
¼ ði1Þ  2ðddþ1Þþðj1Þðddþ1Þþldþ1 ð22Þ 
Notethat M1 isapproximatedby M2 (seeEq. (18a)) and M2 isa 
linear convexcombinationofthesub-models Mi,j,l. Therefore,the 
continuous model(1a)associatedwiththesetuncertainties(1b)is 
sampled intoandrewrittenasthediscretestate-spacemodel(2a) 
associatedwiththeuncertaintypolyhedron(2b). 
2.6. Transformationalgorithm 
The algorithmforcomputingtherequiredpolyhedronisgiven 
below. 
Algorithm 1. 
Step1:Chooseasamplingratio h that satisfies hrT1=10; 
Step2:Calculate a1; a2 by Eq. (6); 
Step3:Calculate d and d by Eq. (8); 
Step4:For i¼1, 2; j¼1, 2; l ¼ d; …; d, calculate z by Eq. (22), 
and thenspecify Azði;j;lÞ 
and Bzði;j;lÞ 
as Eq. (21a) if l40 orEq. (21b) 
if l¼0. 
It shouldbenotedthatthenumberoftheverticesofthe 
uncertainty polyhedronis2  2  ðddþ1Þ. Thedimensionsof 
the coefficients Az and Bz depend onthemaximumdelay(τ) and 
the samplinginterval h. Itshouldalsobenotedthattheideaof 
transforminganuncertaintysetintoanuncertaintypolyhedron 
wasoriginatedfromHuangandWang [12], inwhichonlythe 
processgainandtimedelayuncertaintieswereconsidered. 
When thetimeconstantuncertaintyistakenintoaccount,the 
transformationbecomesmuchmorecomplex.Twoapproxima- 
tions areusedinderivingEq. (9a), i.e.theapproximations 
representedbyEq. (12) and Eq. (16). Thetwoapproximations 
arethekeydevelopmentof Algorithm1. Theaccuracyofthetwo 
approximationswillbeinvestigatedusingnumericalexamplesin 
Section 4. Sincethemodel M2 willbeusedforcontroldesign 
insteadofthemodel M1,theywillbecomparedinboththetime 
domain andthefrequencydomain,whichwillalsobeshownin 
Section 4. 
3. Robustcontrollaw 
A robustcontrollawcanbecalculatedusingtheGEVM 
techniqueforthemodel(2a)associatedwiththeuncertainty 
polyhedron(2b).Toseethis,assumethefeedbackcontrolhas 
the formof 
Δuk ¼ Fxk ð23Þ 
In ordertoachieverobuststabilityforthemodel(2a),allthe 
eigenvaluesof(AþBF) shouldbeinsidetheunitcircle.Thefeed- 
back law F is thenoptimizedbyminimizingthespectralradiusof 
(AþBF), i.e. ρðAþBFÞ, subjecttotheuncertaintiesspecified by 
Eq. (2b). Therefore,theoptimizationofthefeedbacklawis 
formulatedas 
F ¼ argmin 
F;P 
γ ð24Þ 
Subject to(i). P1γ 
ðAþBFÞ′P1γ 
ðAþBFÞ40; P ¼ Pt40; and(ii). 
ðA; BÞAΩAB 
Set Q ¼ P 1, andthentheconstraint(i)becomes 
Q Q1γ 
ðAþBFÞ′Q 11γ 
ðAþBFÞQ40;Q ¼ Q′40 ð25Þ 
AccordingtoSchurComplements,Eq. (25) is rewrittenas 
0 QA′Y′B′ 
AQ BY 0 
! 
oγ 
Q 0 
0 Q 
! 
ð26aÞ 
where 
Y ¼ FQ ð26bÞ 
Eq. (26a) is alinear-fractionalconstraintinaGEVMproblem 
[15]. Because(A,B) isalinearconvexcombinationof ðAz; BzÞ, the 
verticesofthepolytope ΩAB, theconstraint(26a)isholdfor 
8ðA; BÞAΩAB if andonlyiftheverticesofthepolytope ΩAB satisfy 
the constraint(26a),i.e. 
0 QA′zY′B′z 
AzQ BzY 0 
! 
oγ 
Q 0 
0 Q 
! 
; z ¼ 1;…;N ð27Þ 
Therefore,theoptimizationofthefeedbacklawbecomes 
min 
Q;Y 
γ subject totheconstraint(27)with 
Q ¼ Q′40 ð28Þ 
The optimizationformulatedbyEq. (28) is astandardGEVM 
problemunderLMIconstraints [15]. Itcanbesolvedusingthe 
GEVP functionintherobustcontroltoolboxinMATLAB [16].When 
the optimizationisfeasible,theoptimalfeedbacklawis 
F ¼ Q 1Y ð29Þ 
Hence, thecontrolsignalatcurrenttimeinstantis uk ¼ uk1þFxk. 
If theoptimizedspectralradius γ issmallerthan1,thenthefeedback 
controllaw F can stabilizethediscretestatemodel(2a)withthe 
uncertainty polyhedron(2b).Whenthesamplingintervalisproperly 
selected,therobuststabilityoftheclosed-loopsystemcanbewell 
maintained bythecontrollaw F. 
4. Numericalstudies 
Numericalstudiesareusedtoshowthatwiththeappropriate 
selection ofthesamplinginterval h, i.e. hrT1=10, theerrors 
introducedbytheapproximationsinEqs. (12) and (16) as well 
as thedifferencesbetweenthediscrete-timemodels M1 and M2 
areinsignificant. 
G. Huangetal./ISATransactions53(2014)141–149 144
4.1.Approximationerrors 
ApproximationerrorsintroducedbytheapproximationinEq. (12) 
were firstlystudied.Aseriesnumericalstudiesshowedthatfora 
fixedtimedelay τ andavariabletimeconstant,ifthesampling 
intervalischosenas hrT1=10,theapproximationerrorsintroduced 
by Eq. (12) areinsignificant.Toshowthis,consideranexample: 
TA½20; 500 s, τ¼5 s,whereaverylargeuncertaintysetforthetime 
constantischosen.Thesamplingintervalwasselectedas h¼2 s,and 
then d¼2 and ~τ ¼ 1 s.Inthisexample,thevariationsof b2 and b3 
calculatedbyEq. (3b) areshownin Fig. 2(a)and(b)separately.Using 
theapproximationinEq. (12), ς2;1; ς2;2 for b2 and ς3;1; ς3;2 for b3 are 
ς2;1¼ 0:5096; ς2;2 ¼ 0:5095; ς3;1¼ 0:4904; ς3;2 ¼ 0:4905 ð30Þ 
As shownin Fig. 2c andd,theapproximationerrorsforboth b2 
and b3 are smallerthan3.55104 (the maximumerror). 
Similar conclusionwasobtainedfortheapproximationerrors 
introduced byEq. (16), inwhichthedelayislimitedas τA½d h; ðdþ1Þ  hÞ. Toseethis,considerthetime-constantuncertainty 
TA½20; 500 s andthesamplinginterval h¼2 s.Assume d¼2, and 
thenthetimedelayvariesintheset τA½4; 6Þ s. Thevaluesof ς2;1, ς2;2 
and ðς2;1þς2;2Þ areplottedin Fig.3. Itcanbeseenthatthevaluesof 
ðς2;1þς2;2Þ areveryclosedtozero.Therefore,theapproximation 
errorsintroducedbyEq. (16) arealsoinsignificant. 
4.2. ErrorsbetweenthemodelM1andM2 
It hasbeenshownin Section 2 that thediscrete-timemodel M1 
can beapproximatedby M2 where M2 isalinearconvex 
combination ofthesub-models Mi,j,l. Here,thedifferencebetween 
M1 and M2 andtheinfluence ofthedifferencewhen M2 isusedto 
replace M1 forcontroldesignwerestudied.Considerthefollowing 
uncertainties 
K1 ¼ 0:4; K2 ¼ 1:0; T1 ¼ 20 s; T2 ¼ 500 s; τ1 ¼ 0:1 s; τ2 ¼ 8 s ð31Þ 
0.90.920.940.960.98100.010.020.030.040.05The value of a0.90.920.940.960.98100.010.020.030.040.05The value of a0.90.920.940.960.98101234x 10-4The value of a0.90.920.940.960.98101234x 10-4The value of a 
Fig. 2. Errors introducedby ApproximationI when TA[20,500]s, h¼2 sand τ¼5 s. 44.24.44.64.855.25.45.65.86-1.5-1-0.500.511.5time delay (s) 44.24.44.64.855.25.45.65.86-8-6-4-20x 10-5time delay (s) 
Fig. 3. The valuesof ς2;1, ς2;2 and ðς2;1þς2;2Þ when τA½2h; 3hÞ. 
G. Huangetal./ISATransactions53(2014)141–149 145
When thenominalmodelisrandomlychosenas 
K ¼ 0:7; T ¼ 100 s; τ ¼ 4:5 s ð32Þ 
Using asamplinginterval h¼2 s,theminimumandmaximum 
discretetime-delayare d ¼ 0 and d ¼ 4. Bythediscretization(3a) 
and (3b),thecorrespondingdiscretemodelor M1 is 
ekþ1 ¼ 1:98ek0:98ek1þ1:042  102Δuk2þ0:344  102Δuk3 
ð33Þ 
Thecoefficients λk;1; λa;1; λτ;d givenbyEqs. (5b), (7b) and (9b) are 
λk;1 ¼ 0:5; λa;1 ¼ 0:1734; λτ;2 ¼ 0:757; λτ;3 ¼ 0:2434; λτ;0 ¼ λτ;1 ¼ λτ;4 ¼ 0 
the modelcomputedbythelinearconvexcombination,or M2, 
is 
ekþ1 ¼ 1:98ek0:98ek1þ1:049  102Δuk2þ0:337  102Δuk3 
ð34Þ 
Comparedwiththemodel(33), b2 of themodel(34)is0.67% 
largerwhile b3 is 2.0%smaller.Therefore,thedifferencesbetween 
M1 and M2 areinsignificant. 
Tostudytheinfluence ofthedifferencesbetween M1 and M2 
on controlperformance,Bodediagramandstepresponseareused 
as thetoolforanalysis. Fig. 4 illustratestheBodediagramofthe 
model (33),denotedas M1,andthemodel(34),denotedas M2. 
The frequencyin Fig. 4 starts from1104 rad/sandstopsat 
1.57rad/s,wherethestopfrequencyischosentosatisfythe 
Nyquist–Shannon samplingtheorem [21]. Theresultsshowthat 
the maximumerrorinmagnitudeislessthan1.9%andthe 
maximum errorinphaseislessthan0.13%. Fig. 5 compares the 
step responsesofthemodel(33)and(34).Themaximumabsolute 
error 6.6105 (or relatively0.63%)wasobtainedat t¼508 s. 
Once again,theresultsshowthatthemodel(33)candescribethe 
dynamics representedbythemodel(34)withacceptableaccuracy 
when stepchangesoccur. 
4.3. Robuststability 
RobuststabilityofthecontrollawdesignedusingtheGEVM 
techniquewasalsostudiedusingannumericalexample.Still 
considering theexampledetailedinEq. (31), thecontrollawby 
GEMV was 
F ¼ ½4:3600 4:1008 0:1179 0:1936 0:2356 0:2506 ð35Þ with whichthemaximumofthespectralradiusof(AþBF) is 
0.9965. Therefore,thefeedbacklaw Δuk ¼ Fxk can robustlystabi- 
lize thesystemwhentheuncertaintiesarespecified byEq. (31). 
Fig. 6 illustratesthecontrolinputandthetrackingerrorwhenthe 
threemodelparametersvarywiththecontrolinput(butlimited 
intotheuncertaintysetsspecified Eq. (31). 
KðukÞ ¼ K1þ0:2uk; TðukÞ ¼ T215uk; τðukÞ ¼ τ1þ2uk ð36Þ 
Fig. 6 showsthatrobuststabilitywasachievedinspiteofthe 
model parametervariationsshownin Fig. 7. 
5. Casestudies 
5.1.Comparisonwithinternalmodelcontrol(IMC) 
The proposedcontroldesignwascomparedwiththerobust 
IMC developedbyLaughlinetal. [14]. Theuncertaintiesspecified 
by Eq. (31) wereusedastheexample.Theclosed-loopresponses 
wereplottedin Fig. 8, where ‘S1’ to ‘S8’ wereprocessmodelsgiven 
in Table1 generatedbytakingcombinationsoflower/upper 
bounds ofthethreeparameters.TherobustIMCwastuneduntil 
oscillations inthetransientof ‘S6’ wereacceptable.Itcanbeseen 
that bothmethodscanrobustlystabilizetheseplants.Asshownin 
-50-40-30-20-100 Magnitude (dB) 10-410-310-210-1100-540-360-1800 Phase (deg) Bode DiagramFrequency (rad/sec) 
Fig. 4. Comparison oftheBodediagramsofthemodelof(33),denotedas M1,and 
the modelbyEq. (34), denotedas M2. 
020040060080010001200140016001800200000.20.40.60.8System outputTime(second) y 0200400600800100012001400160018002000-1-0.500.51x 10-4Approximation errorTime(second) e 
Fig. 5. Comparison ofthestepresponseofthemodel(33),denotedas M1,andthe 
model (34),denotedas M2. 
05001000150020002500300035004000-20246 control input time (second) 05001000150020002500300035004000-1-0.500.5 tracking error time (second) 
Fig. 6. The controlinputandthetrackingerrorachievedbythecontrollawinEq. 
(35). 
G. Huangetal./ISATransactions53(2014)141–149 146
Fig. 8, thetransientsoftheproposedmethodweregenerallyfaster 
than thoseoftherobustIMC.ThiswasbecausetherobustIMC 
suppressedthetransientresponses,forexample,intheplantsS1 
and S2.Theaverageoftheintegraloftheabsolutetrackingerror 
(IAE) andthesettlingtime(ST)werelistedandcomparedin 
Table2. Inmostcases,theproposedmethodachievedasmaller 
trackingerror.Oneexceptionwastheprocess ‘S8’, wherethe 
trackingerroroftheproposedmethodwasslightlylarger.Forthe 
settling time, Table2 showsthattheproposedmethodachieved 
a shortersettlingtimethantherobustIMCinmostcasesandone 
exceptionwastheprocess ‘S7’. Therefore,theproposedmethod 
had abetterabilityoferrortrackinginthisexample. 
5.2. Temperaturecontrolofair-handlingunit 
An applicationoftheproposeddesignapproachtoathermal 
processofheating,ventilationandairconditioning(HVAC)sys- 
temswasstudied.ItisknownthatthermalprocessesinHVAC 
systemscanbeadequatelydescribedusinganuncertainFOPTD 
model [8–11]. Hereanair-handlingunit(AHU)wasselected 
because AHUisanimportantcomponentinair-conditioning 
systems [23,24]. ThestructureofAHUsisillustratedin Fig. 9, 
where theinletairisconditionedafterpassingthroughtheAHU 
and becomesthesupplyair,whichwillbesenttooccupiedspace 
for thermalcomfort.Thetemperatureofthesupplyairisadjusted 
by thechilledwater flow rateinsidethecoolingcoil,whichis 
controlledbyathree-portvalve.Thechilledwaterisprovidedby 
a chiller,andthechilledwatersupplytemperatureisusuallyunder 
feedbackcontrolandmaintainedaround6 1C. 
The manipulatedvariable(MV)oftheprocessistheopenofthe 
three-portvalve,denotedby u (which alsoreflects thechilled 
water flowrate).Thecontrolledvariable(CV)isthesupplyair 
temperature Ta,sup. Thesetpointofthesupplyairtemperatureis 
determinedbythethermalconditionoftheoccupiedspace.The 
dynamics ofthisprocessaresignificantly affectedbytheair flow 
rate m_ a;in and thecooledwater flow rate.Itwillalsobeaffectedby 
the inletairtemperature Ta,in, aswellasthechilledwatersupply 
temperature.Theuncertaintysetsspecified byEq. (1b) wereused 
todescribethedynamicsuncertainties. 
A simulatedAHUprocesswasconstructedinSIMULINKusing 
SIMBAD toolbox [25], developedbyCSTB,theFrenchcentrefor 
building sciences,totestbuildingenergymanagementsystems. 
The dynamicsvariationsofthisprocesswereidentified usingstep 
responsesoftheprocessatseveralworkingconditionsasshownin 
Table3, wheretheinletairtemperatureandcooledwater 
temperaturewere fixedat25.5 1C and6.0 1C respectively.Based 
on theidentification results,slightlylargeruncertaintysetsforthe 
threeparametersweresetas 
K1¼ 1 1C; K2¼ 40 1C; T1 ¼ 60 s; T2 ¼ 70 s; τ1 ¼ 15 s; τ2 ¼ 40 s 
ð37Þ 
Set thesamplingintervalas h¼6.0 s,thecontrollawbythe 
optimizationdefined inEq. (28) yielded 
F ¼ ½0:174; 0:145; 0:161; 0:221; 
0:246; 0:261; 0:269; 0:277; 0:238 ð38Þ 
With thiscontrollaw, Fig. 10 demonstratesthecontrolsignals u 
and thesupplyairtemperature,whichwascontrolledtotrackthe 
set points20 1C (from t¼500sto t¼2400s),12 1C (from t¼2400s 
to t¼4800s)and16 1C (from t¼4800sto t¼7200s).Thedis- 
turbances shownin Fig. 11 includes thesupplyair flow rate 
(a) whichchangesbetween1.2kg/s(thedesignvalue)and 
0.48 kg/s(the40%ofthedesignvalue),theinletairtemperature 
(b) whichvariesbetween26.5 1C and24.5 1C, andthesupply 
watertemperature(c)whichvariesbetween5 1C and7 1C. 
It canbeseenthattherobustcontrolapproachsuccessfully 
manipulated thesupplyairtemperaturetoitssetpointswhether 
the setpointwashigh(lowcoolingloadcondition)orlow(high 
cooling loadcondition).Thetransientresponseateachchangeof 
0500100015002000250030003500400000.51 variation of K time (second) 05001000150020002500300035004000400450500 variation of T time (second) 050010001500200025003000350040000510 variation of τ time (second) 
Fig. 7. The variationsoftheprocessgain(K), timeconstant(T) andtimedelay τ 
specified byEq. (36). 
05001000150020002500300000.10.20.30.4 Output time(second) 05001000150020002500300000.10.20.30.4 Output time(second) 05001000150020002500300000.10.20.30.4 Output time(second) 05001000150020002500300000.10.20.30.4 Output time(second) 
Fig. 8. Comparison oftheclosed-loopresponsesoftheproposeddesign(a)with 
those oftherobustIMC(b)whenthereferenceisstepfrom0to0.3. 
Table1 
Definition oftheprocessmodelsS1toS8. 
S1 S2S3S4S5S6S7S8 
K 0.4 1.00.41.00.41.00.41.0 
T 20 s20s260s260s20s20s260s260s 
τ 0.1s0.1s0.1s0.1s8.0s8.0s8.0s8.0s 
G. Huangetal./ISATransactions53(2014)141–149 147
set pointwassimilarandtheovershoots(undershoots)were 
small. Theaveragetrackingerrorwas0.34 1C underthedistur- 
bances, andthedisturbancesareshownin Fig. 11. Theproposed 
method wascomparedwithawidelyusedanti-windupPIcontrol. 
As shownby Fig. 12, ananti-windupPIcontrollermayachievea 
good performanceatoneconditionbutabadperformanceatthe 
Table2 
The averageoftheintegraloftheabsolutetrackingerror(IAE)andthesettlingtimes(ST)(5%). 
S1 S2S3S4S5S6S7S8 
IAE Theproposedmethod0.00670.00470.03500.02060.00670.00470.03920.0241 
RobustIMC0.03240.01300.04230.02190.03240.01300.04280.0223 
Comparison (%)21%36%83%94%21%36%92% 108% 
ST Theproposedmethod179.0126.51413.8874.6169.6121.91728.7896.1 
RobustIMC1383.7718.41590.51020.41373.7710.51631.91023.2 
Comparison (%)13%18%89%86%12%17% 106% 88% 
Fig. 9. The structureofatypicalair-handlingunit. 
Table3 
The valuesof(K, T, τ) identified bystepresponsesatseveraloperatingconditions. 
StepinputFlowrate 
(percentage ofdesignvalue)(%) 
(K, T, τ) (1C, s,s) 
u : 0:05-0:15 100(17.8,61.4,25.5) 
40 (35.7,66.2,39.1) 
u : 0:4-0:5 100(13.8,60.8,21.9) 
40 (11.1,64.7,30.8) 
u : 0:9-1:0 100(2.1,60.8,20.6) 
40 (1.2,64.6,29.3) 10002000300040005000600070001015202530time (second) supply air temperature (oC) 100020003000400050006000700000.20.40.60.81time (second) control input 
Fig. 10. The variationsofthesupplyairtemperature(top)andthecorresponding 
control signals(bottom). 10002000300040005000600070000.40.60.811.21.4time (second) Supply air flow rate (kg/s) 100020003000400050006000700024.52525.52626.5time (second) inlet air temperature (oC) 100020003000400050006000700055.566.57time (second) Chilled water supply temperature (oC) 
Fig. 11. Disturbances oftheAHUprocess:supplyair flow rate(a),inletair 
temperature(b)andsupplywatertemperature(c). 10002000300040005000600070001015202530outputset point100020003000400050006000700000.20.40.60.81time(second) Supply air temperature Control input (oC) 
Fig. 12. The supplyairtemperature(top)andthecorrespondingcontrolsignals 
(bottom)underananti-windupPIcontrol. 
G. Huangetal./ISATransactions53(2014)141–149 148
other conditions.Therefore,theresultsin Fig. 12 illustratedthat 
the controllawinEq. (38) achieved agoodrobustnessforthe 
closed-loop process. 
6. Conclusions 
This paperdevelopedamethodofapplyinggeneralizedeigenvalue 
minimizationtoprocessesthatcanbedescribedbya first-orderplus 
time delaymodelwithuncertaingain,timeconstantanddelay.An 
algorithmhasbeendevelopedtotransformtheuncertaintysetsfor 
the gain,timeconstantanddelaytouncertaintypolyhedron,whichis 
a typeofuncertaintydescription forstate-spacemodel.Withthe 
uncertaintytransformation,afeedbackcontrollawcanbedesigned 
using thegeneralizedeigenvalueminimizationtechnique.Numerical 
exampleshaveshownthatthetransformationcanbeachieved 
accurately.Casestudieshaveshownthatthefeedbackcontrollaw 
optimizedbythegeneralizedeigenvalueminimizationtechniqueis 
abletoachieveabetterperformance comparedwiththatoftherobust 
internalmodelcontroldesignandabetterrobustnesscomparedwith 
a conventionalPIcontrol.Since first-orderplustimedelaymodelscan 
be easilyidentified andarewidelyusedinpractice,theproposed 
controldesignapproachoffersadvantagesforpracticalapplications. 
Acknowledgements 
The workdescribedinthispaperwasfullysupportedbyagrant 
from theResearchGrantsCouncil(RGC)oftheHongKongSpecial 
AdministrativeRegion,China(ProjectNo.CityU124012)andalso 
by aKeyScienceandTechnologyProjectofGuangdongProvince, 
China (ProjectNumber:2012A010800004). 
Appendix 
Appendix A:ThedevelopmentofM2 
Substituting K, a, bd and bdþ1 in M1 by 
K ¼ λK;1K1þλK;2K2 
a ¼ λa;1a1þλa;2a2 
bd ¼ λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2Þ 
bdþ1 ¼ λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2Þ 
M1 becomes 
ekþ1 ¼ ð1þλa;1a1þλa;2a2Þekðλa;1a1þλa;2a2Þek1 
þðλK;1K1þλK;2K2Þ½λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2ÞΔukd 
þðλK;1K1þλK;2K2Þ½λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2ÞΔukd1 
ðA1Þ 
Because λK;1þλK;2 ¼ 1 and λa;1þλa;2 ¼ 1, Eq. (A1) is rewrittenas 
ekþ1¼ ðλK;1þλK;2Þ½ðλa;1þλa;2þλa;1a1þλa;2a2Þekðλa;1a1þλa;2a2Þek1 
þðλK;1K1þλK;2K2Þ½λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2ÞΔukd 
þðλK;1K1þλK;2K2Þ½λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2ÞΔukd1 
ðA2Þ 
Eq. (A2) is reformulatedas 
ekþ1 ¼ Σ 2 
i ¼ 1 
Σ 2 
j ¼ 1 
λK;iλa;j½ð1þajÞekajek1 
þλτ;dKið1ajÞΔukdþλτ;dþ1Kið1ajÞΔukd1 ðA3Þ 
Because λτ;d þλτ;d þ1 ¼ 1, Eq. (A3) has thefollowingform 
ekþ1 ¼ Σ 2 
i ¼ 1 
Σ 2 
j ¼ 1 
λK;iλa;jfλτ;d½ð1þajÞekajek1þKið1ajÞΔukd 
þλτ;dþ1½ð1þajÞekajek1þKið1ajÞΔukd1g ðA4Þ 
With thedefinition of Mi,j,d and Mi,j,dþ1 in Eqs. ((18b) and A4) 
can thenberewrittenas M2 inEq. (18a). 
References 
[1] Zhou K,DoyleJC,GloverK.Robustandoptimalcontrol.UpperSaddleRiver, 
NewJersey:PrenticeHall;1996. 
[2] Pan I,DasS,GuptaA.TuningofanoptimalfuzzyPIDcontrollerwithstochastic 
algorithmsfornetworkedcontrolsystemwithrandomtimedelay.ISA 
Transactions2011;50:28–36. 
[3] HD Tran,ZHGuan,XKDang,XMCheng,FSYuan.AnormalizedPIDcontroller 
in networkedcontrolsystemswithvaryingtimedelays.ISATransactions(52) 
592–599. 
[4] Qiu ZH.Robustcontrolofnonlinearuncertainsystems.NY,USA:JohnWiley 
Sons, Inc.;1998. 
[5] Perng JW.Simplestabilitytestfortime-delaysystemsusingscalingparameter 
approach.InternationalJournalofInnovativeComputing,Informationand 
Control2012;8:4535–46. 
[6] Aström KJ,HägglundT.PIDcontrollers:theory,designandtuning.2nded..NC, 
USA: InstrumentSocietyofAmerica;1995. 
[7] Fedele G.Anewmethodtoestimatea first-order plustimedelaymodelfrom 
step response.JournaloftheFranklinInstitute2009;346:1–9. 
[8] Ling KV,DexterAL.expertcontrolofair-conditioningplant.Automatica 
1994;30:761–73. 
[9] Seem J.Anewpatternrecognitionadaptivecontrollerwithapplicationto 
HVACsystems.Automatica1998;34:969–82. 
[10] UnderwoodCP.RobustcontrolofHVACplantI:modeling;andII:controller 
design.BuildingServicesEngineeringResearchandTechnology2000;21:53–71. 
[11] Huang GS,WangSW.Two-looprobustMPCforthetemperaturecontrolofair- 
handling units.HVACRResearch2008;14:565–80. 
[12] Huang GS,WangSW.Useofuncertaintypolytopetodescribeconstraint 
processes withuncertaintimedelayforrobustmodelpredictivecontrol 
applications. ISATransactions2009;48:503–11. 
[13] Huang GS,WangSW.Useofpredictedinformationtoimprovethecontrol 
performance ofsystemswithuncertainties.JournalofProcessControl 
2009;19:457–63. 
[14] Laughlin DL,JordanKG,MorariM.Internalmodelcontrolandprocess 
uncertainty: mappinguncertaintyregionsforSISOcontrollerdesign.Interna- 
tional JournalofControl1986;44:1675–98. 
[15] Boyd S,GhaouiLE.Methodofcentersforminimizinggeneralizedeigenvalues. 
Linear AlgebraAppl1993;188/189:63–111. 
[16] P Gahinet,ANemirovski,AJLaub,MChilali.LMIcontroltoolboxforusewith 
MATLAB(1995),availableatwebsite: 〈http://www.mathworks.com/help/tool 
box/robust/〉. 
[17] KothareMV,BalakrishnanV,MorariM.Robustconstrainedmodelpredictive 
control usinglinearmatrixinequalities.Automatica1996;32:1361–79. 
[18] Amato F,MatteiM,PirontiA.Arobuststabilityproblemfordiscrete-time 
systemssubjecttouncertainparameters.Automatica1998;34:521–3. 
[19] LinC,WangQG,LeeTH.Stabilityandstabilizationofaclassoffuzzytime-delay 
descriptorsystems.IEEETransactionsonFuzzySystems2006;14:542–51. 
[20] Liu PL.Robuststabilityanalysisofgeneticregulatorynetworkwithtimedelay. 
ISA Transactions2013;52:326–34. 
[21] Aström KJ,WittenmarkB.Computercontrolledsystems:theoryandDesign. 
EnglewoodCliffs:PrenticeHall,Inc.;1997. 
[22] Dougherty D,CooperJD.Tuningguidelinesofadynamicmatrixcontrollerfor 
integrating(non-self-regulating)processes.IndustrialEngineeringChem- 
istry Research2003;42:1739–52. 
[23] TI Salsbury.Asurveyofcontroltechnologiesinthebuildingautomation 
industry.In:Proceedingsofthe16thIFACworldcongress,Prague,Czech 
Republic;2005. 
[24] Thompson R,DexterAL.Afuzzydecision-makingapproachtotemperature 
control inair-conditioningsystems.ControlEngineeringPractice2005;13: 
689–98. 
[25] SIMBAD, SIMBADBuildingandHVACtoolbox(Manualbook;2004),available 
at website: 〈http://www.cstb.fr〉. 
G. Huangetal./ISATransactions53(2014)141–149 149

More Related Content

PDF
Modified sub-gradient based combined objective technique and evolutionary pro...
DOCX
AMSimulation-Submitted
PDF
Computation of Simple Robust PI/PID Controller Design for Time-Delay Systems ...
DOCX
Dither Signal Design Problem (DSDP) for Closed-Loop Estimation Industrial Mod...
PDF
A Counterexample to the Forward Recursion in Fuzzy Critical Path Analysis Und...
PDF
Particle Swarm Optimization in the fine-tuning of Fuzzy Software Cost Estimat...
PDF
HEATED WIND PARTICLE’S BEHAVIOURAL STUDY BY THE CONTINUOUS WAVELET TRANSFORM ...
PDF
A NOVEL METHOD FOR PETRI NET MODELING
Modified sub-gradient based combined objective technique and evolutionary pro...
AMSimulation-Submitted
Computation of Simple Robust PI/PID Controller Design for Time-Delay Systems ...
Dither Signal Design Problem (DSDP) for Closed-Loop Estimation Industrial Mod...
A Counterexample to the Forward Recursion in Fuzzy Critical Path Analysis Und...
Particle Swarm Optimization in the fine-tuning of Fuzzy Software Cost Estimat...
HEATED WIND PARTICLE’S BEHAVIOURAL STUDY BY THE CONTINUOUS WAVELET TRANSFORM ...
A NOVEL METHOD FOR PETRI NET MODELING

What's hot (17)

PDF
bachelors_thesis_stephensen1987
PDF
Paper id 71201933
PDF
B045060813
PDF
A modeling approach for integrating durability engineering and robustness in ...
PDF
Lossless Data Compression Using Rice Algorithm Based On Curve Fitting Technique
PDF
Accelerating Compression Time of the Standard JPEG by Employing the Quantized...
PDF
Analysis of single server queueing system with batch service
PDF
Intra Frame Coding in H.264 to Obtain Consistent PSNR and Reduce Bit Rate for...
PDF
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...
PDF
C070409013
PDF
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
PDF
Statistical Analysis and Model Validation of Gompertz Model on different Real...
PDF
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...
PDF
InternshipReport
PDF
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
PDF
Time series analysis, modeling and applications
PDF
Paper id 71201925
bachelors_thesis_stephensen1987
Paper id 71201933
B045060813
A modeling approach for integrating durability engineering and robustness in ...
Lossless Data Compression Using Rice Algorithm Based On Curve Fitting Technique
Accelerating Compression Time of the Standard JPEG by Employing the Quantized...
Analysis of single server queueing system with batch service
Intra Frame Coding in H.264 to Obtain Consistent PSNR and Reduce Bit Rate for...
APPLYING TRANSFORMATION CHARACTERISTICS TO SOLVE THE MULTI OBJECTIVE LINEAR F...
C070409013
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
Statistical Analysis and Model Validation of Gompertz Model on different Real...
Ml srhwt-machine-learning-based-superlative-rapid-haar-wavelet-transformation...
InternshipReport
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
Time series analysis, modeling and applications
Paper id 71201925
Ad

Viewers also liked (8)

PDF
Adaptive terminal sliding mode control strategy for DC–DC buck converters
PDF
Fault detection and diagnosis for non-Gaussian stochastic distribution system...
PDF
Analytical design and analysis of mismatched smith predictor
PDF
Static feedback stabilization of nonlinear systems with single sensor and sin...
PDF
PD plus error dependent integral nonlinear controllers for robot manipulators
PDF
Aw 10 wireless
PDF
Flexible structure control a strategy for releasing input constraints
PDF
A simple method to find a robust output feedback controller by random search ...
Adaptive terminal sliding mode control strategy for DC–DC buck converters
Fault detection and diagnosis for non-Gaussian stochastic distribution system...
Analytical design and analysis of mismatched smith predictor
Static feedback stabilization of nonlinear systems with single sensor and sin...
PD plus error dependent integral nonlinear controllers for robot manipulators
Aw 10 wireless
Flexible structure control a strategy for releasing input constraints
A simple method to find a robust output feedback controller by random search ...
Ad

Similar to Generalized eigenvalue minimization for uncertain first order plus time-delay processes (20)

PDF
A delay decomposition approach to robust stability analysis of uncertain syst...
PDF
On the discretized algorithm for optimal proportional control problems constr...
PDF
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
PDF
Optimal control problem for processes
PDF
Adaptive pi based on direct synthesis nishant
PDF
Journal of Electronic & Information Systems | Vol.4, Iss.2 October 2022
PDF
Robust fuzzy-observer-design-for-nonlinear-systems
PDF
A class of boundary value methods for the complex delay differential equation
PDF
alt klausur
PDF
Reachability Analysis Control of Non-Linear Dynamical Systems
PDF
Reachability Analysis "Control Of Dynamical Non-Linear Systems"
PDF
Brief note on match and miss-match uncertainties
PDF
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...
PDF
Controlling a DC Motor through Lypaunov-like Functions and SAB Technique
PDF
On problem-of-parameters-identification-of-dynamic-object
PDF
Julio Bravo's Master Graduation Project
PDF
An Approach For Solving Nonlinear Programming Problems
PDF
Defense_final
PDF
Stability and stabilization of discrete-time systems with time-delay via Lyap...
PDF
Digital control book
A delay decomposition approach to robust stability analysis of uncertain syst...
On the discretized algorithm for optimal proportional control problems constr...
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Optimal control problem for processes
Adaptive pi based on direct synthesis nishant
Journal of Electronic & Information Systems | Vol.4, Iss.2 October 2022
Robust fuzzy-observer-design-for-nonlinear-systems
A class of boundary value methods for the complex delay differential equation
alt klausur
Reachability Analysis Control of Non-Linear Dynamical Systems
Reachability Analysis "Control Of Dynamical Non-Linear Systems"
Brief note on match and miss-match uncertainties
Robust Exponential Stabilization for a Class of Uncertain Systems via a Singl...
Controlling a DC Motor through Lypaunov-like Functions and SAB Technique
On problem-of-parameters-identification-of-dynamic-object
Julio Bravo's Master Graduation Project
An Approach For Solving Nonlinear Programming Problems
Defense_final
Stability and stabilization of discrete-time systems with time-delay via Lyap...
Digital control book

More from ISA Interchange (20)

PDF
An optimal general type-2 fuzzy controller for Urban Traffic Network
PDF
Embedded intelligent adaptive PI controller for an electromechanical system
PDF
State of charge estimation of lithium-ion batteries using fractional order sl...
PDF
Fractional order PID for tracking control of a parallel robotic manipulator t...
DOCX
Fuzzy logic for plant-wide control of biological wastewater treatment process...
PDF
Design and implementation of a control structure for quality products in a cr...
PDF
Model based PI power system stabilizer design for damping low frequency oscil...
PDF
A comparison of a novel robust decentralized control strategy and MPC for ind...
PDF
Fault detection of feed water treatment process using PCA-WD with parameter o...
PDF
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
PDF
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
PDF
An artificial intelligence based improved classification of two-phase flow patte...
PDF
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
PDF
Load estimator-based hybrid controller design for two-interleaved boost conve...
PDF
Effects of Wireless Packet Loss in Industrial Process Control Systems
PDF
Fault Detection in the Distillation Column Process
PDF
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
PDF
A KPI-based process monitoring and fault detection framework for large-scale ...
PDF
An adaptive PID like controller using mix locally recurrent neural network fo...
PDF
A method to remove chattering alarms using median filters
An optimal general type-2 fuzzy controller for Urban Traffic Network
Embedded intelligent adaptive PI controller for an electromechanical system
State of charge estimation of lithium-ion batteries using fractional order sl...
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Design and implementation of a control structure for quality products in a cr...
Model based PI power system stabilizer design for damping low frequency oscil...
A comparison of a novel robust decentralized control strategy and MPC for ind...
Fault detection of feed water treatment process using PCA-WD with parameter o...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
An artificial intelligence based improved classification of two-phase flow patte...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
Load estimator-based hybrid controller design for two-interleaved boost conve...
Effects of Wireless Packet Loss in Industrial Process Control Systems
Fault Detection in the Distillation Column Process
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
A KPI-based process monitoring and fault detection framework for large-scale ...
An adaptive PID like controller using mix locally recurrent neural network fo...
A method to remove chattering alarms using median filters

Recently uploaded (20)

PDF
Business model innovation report 2022.pdf
PDF
BsN 7th Sem Course GridNNNNNNNN CCN.pdf
PPTX
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
DOCX
unit 1 COST ACCOUNTING AND COST SHEET
PDF
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
PPTX
New Microsoft PowerPoint Presentation - Copy.pptx
PDF
Training And Development of Employee .pdf
PPTX
Belch_12e_PPT_Ch18_Accessible_university.pptx
PPT
Data mining for business intelligence ch04 sharda
PDF
Power and position in leadershipDOC-20250808-WA0011..pdf
PPTX
ICG2025_ICG 6th steering committee 30-8-24.pptx
PPTX
Dragon_Fruit_Cultivation_in Nepal ppt.pptx
DOCX
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
PDF
Ôn tập tiếng anh trong kinh doanh nâng cao
PDF
Types of control:Qualitative vs Quantitative
PDF
IFRS Notes in your pocket for study all the time
PDF
COST SHEET- Tender and Quotation unit 2.pdf
PDF
Roadmap Map-digital Banking feature MB,IB,AB
PPT
Chapter four Project-Preparation material
PPTX
5 Stages of group development guide.pptx
Business model innovation report 2022.pdf
BsN 7th Sem Course GridNNNNNNNN CCN.pdf
job Avenue by vinith.pptxvnbvnvnvbnvbnbmnbmbh
unit 1 COST ACCOUNTING AND COST SHEET
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
New Microsoft PowerPoint Presentation - Copy.pptx
Training And Development of Employee .pdf
Belch_12e_PPT_Ch18_Accessible_university.pptx
Data mining for business intelligence ch04 sharda
Power and position in leadershipDOC-20250808-WA0011..pdf
ICG2025_ICG 6th steering committee 30-8-24.pptx
Dragon_Fruit_Cultivation_in Nepal ppt.pptx
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
Ôn tập tiếng anh trong kinh doanh nâng cao
Types of control:Qualitative vs Quantitative
IFRS Notes in your pocket for study all the time
COST SHEET- Tender and Quotation unit 2.pdf
Roadmap Map-digital Banking feature MB,IB,AB
Chapter four Project-Preparation material
5 Stages of group development guide.pptx

Generalized eigenvalue minimization for uncertain first order plus time-delay processes

  • 1. ResearchArticle Generalizedeigenvalueminimizationforuncertain first-orderplustime-delayprocesses Gongsheng Huang a,n, KeckVoonLing b, XiaoningXu c, YundanLiao a a Department ofCivilandArchitecturalEngineering,CityUniversityofHongKong,TatCheeRoad,Kowloon,HongKong b School ofElectricalandElectronicEngineering,NanyangTechnologicalUniversity,50NanyangAvenue,Singapore c Institute ofCivilEngineering,GuangzhouUniversity,No.230OuterRingRoad,Guanzhou,GuangdongProvince,China a rticleinfo Article history: Received15February2013 Receivedinrevisedform 8 August2013 Accepted6September2013 Availableonline27September2013 Keywords: Generalized eigenvalueminimization First-order plustime-delaymodel Robustcontrol Linear-matrixinequality Uncertainty a b s t r a c t This papershowshowtoapplygeneralizedeigenvalueminimizationtoprocessesthatcanbedescribed by a first-orderplustime-delaymodelwithuncertaingain,timeconstantanddelay.Analgorithm to transformtheuncertain first-order plustimedelaymodelintoastate-spacemodelwithuncertainty polyhedronis firstly described.Theaccuracyofthetransformationisstudiedusingnumericalexamples. Then, theuncertaintypolyhedronisrewrittenasalinear-matrix-inequalityconstraintandgeneralized eigenvalueminimizationisadoptedtocalculateafeedbackcontrollaw.Casestudiesshowthateven if uncertaintiesassociatedwiththe first-orderplustimedelaymodelaresignificant, astablefeedback control lawcanbefound.Theproposedcontrolistestedbycomparingwitharobustinternalmodel control. Itisalsotestedbyapplyingittothetemperaturecontrolofair-handingunits. & 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. 1. Introduction Modeluncertaintyisawidelyrecognizedprobleminthecontrol literature.Itreferstothedifferencesorerrorsbetweenmodelsand reality [1]. Whenidentifyingamodelofaprocess,modeluncer- taintyoccurswhen(i)theprocessisill-definedorhasasignificant amountofvagueness;(ii)alowordermodelisusedbuttheprocess is ofhighorder;and(iii)amodelwith fixedparametersisusedbut thedynamicsoftheprocessistimevaryingorchangeswithitsope- ratingenvironment,forexample,thetimedelayinanetworked controlsystemisnotalwaysaconstant [2,3]. Althoughmost(non- robust)controlstrategieshaveinherentrobustnessformodelunce- rtainties,thecontrolobjectivesthatarepredefinedmightbe difficulttoachievewhenmodeluncertaintiesaresignificant [4]. Uncertaintiesmayaffectthestabilityofacontrolsystemseriously [1,5], andtheyshouldbetakenintoaccountdirectlyinthecontrol designinordertoguaranteecontrolperformance. Manyindustrialprocessescanbedescribedusinga first-order plus timedelay(FOPDT)model [6,7] T dy dt þyðtÞ ¼ KuðtτÞ ð1aÞ where u, y aretheprocessinputandoutput; K, T, τ denotetheprocess gain, timeconstantanddelay,respectively.Whenuncertainties associatedwiththismodelareconsidered,theuncertaintiescanbe specified by KA½K1; K2; TA½T1; T2; τA½τ1; τ2 ð1bÞ wherethesubscript ‘1’ denotesthelowerboundand ‘2’ denotesthe upper bound.TheuncertaintysetsinEq. (1b) can beusedtodescribe the variationsoftheseparametersaswellastheassociatedvagueness associatedwiththeidentification ofthemodel (1a). ThemodelrepresentedbyEqs. (1a) and (1b) canbeusedto describethedynamicsofmanythermalprocesses,forexample, in heating,ventilationandairconditioning(HVAC)systems [8–11], andafewreports,suchas [10,12,13], addresseditsrobustcontrol issue.However,noneofthestudiesdealtwithalloftheuncertain- tiesspecified inEq. (1b). Forexample,Underwood [10] andHuang andWang [12] dealtwithuncertaintiesonlyassociatedwiththe processgainanddelay;andHuangandWang [13] dealtwith uncertaintiesonlyassociatedwiththeprocessgainandtime constant.Notably,Laughlinetal. [14] describedtheuncertainty setsinEq. (1b) as regionsinthecomplexplaneandemployed theinternalmodelcontrol(IMC)todesignacontroller,ofwhichthe robuststabilityandtheperformancewerebalancedbytuningthe parametersofa filter [14]. Thispapershowshowtousethegeneralizedeigenvaluemini- mization(GEVM)techniquetodesignarobustcontrollawfor processesthatcanbedescribedbyEq. (1a) withalltheuncertain- tiesspecified inEq. (1b). AGEVMproblemistominimizethe maximumgeneralizedeigenvalueofapairofmatricesthatdepend affinelyonavariablesubjecttoalinear-matrix-inequality(LMI) Contents listsavailableat ScienceDirect journalhomepage: www.elsevier.com/locate/isatrans ISATransactions 0019-0578/$-seefrontmatter 2013ISA.PublishedbyElsevierLtd.Allrightsreserved. http://dx.doi.org/10.1016/j.isatra.2013.09.009 n Corresponding author.Tel.: þ852 34427633;fax: þ852 27669716. E-mail address: gongsheng.huang@cityu.edu.hk (G.Huang). ISA Transactions53(2014)141–149
  • 2. constraint [15]. Sinceefficientinteriorpointalgorithmsarenow availableincomputersoftware(suchasMATLAB)tosolveGEVM problems [16], therobustcontrollawcanbeeasilycalculated.In ordertousetheGEVMtechnique,thecontinuousmodel(1)is sampledtoadiscretemodelandtheuncertaintysetsspecified in Eq. (1b) aretransformedintoanuncertaintypolyhedron [17,18], whichcanbeeasilyreformulatedintheformofaLMIconstraint, suchasin [19,20]. Afterthistransformation,itwillbeshownthat thecalculationofastandardrobustfeedbackcontrollawcanbe formulatedasastandardGEVMproblem. The restofthispaperisorganizedasfollows.Thetransforma- tion oftheuncertaintysetsspecified inEq. (1b) to anuncertainty polyhedroniselaboratedin Section 2. Section 3 details the synthesis ofthecontrollawusingtheGEVMtechnique.The accuracyofthetransformationisillustratedin Section 4 using severalnumericalexamples. Section 5 showsthecomparisonof the proposedrobustcontrolwiththeIMCmethodin [14], andan application toanair-handlingunit.Concludingremarksaregiven in Section 6. 2. Uncertaintypolyhedron In ordertousetheGEVMtechnique,itisnecessarytosample and transformthedescriptionofEqs. (1a) and (1b) to thatofEqs. (2a) and (2b), whereEq. (2a) is adiscretestate-spacemodel;while Eq. (2b) specifies anuncertaintypolyhedron ΩA,B for themodel coefficient matrices(A,B). Theactualcoefficient matricesarea linear convexcombinationofthematrices(Az, Bz) attheverticesof the polyhedron,where N is thenumberofvertices. xkþ1 ¼ AxkþBΔuk ð2aÞ ðA; BÞAΩAB; ΩAB : ¼ ðA; BÞ ¼ Σ N z ¼ 1 γzðAz; BzÞ; 0rγz r1; Σ N z ¼ 1 γz ¼ 1 ð2bÞ The transformationiselaboratedasfollows. 2.1.Discretemodel The continuousmodel(1a)is firstly sampledasadiscrete model (3a)usingasamplinginterval h and thezero-order-hold (ZOH) samplingmethod [21] ykþ1 ¼ aykþKbdukdþKbdþ1ukd1 ð3aÞ where k denotesthecurrenttimeinstant; d is thediscretetime- delay;and a ¼ eh=T ; bd ¼ 1eðh ~ τÞ=T ; bdþ1 ¼ eðh ~ τÞ=T eh=T ; d ¼ f lðτ=hÞ ð3bÞ where fl(x) isafunctiontoround x to thenearestintegertowards negative,and ~ τ satisfies τ ¼ d hþ ~ τ and 0r~ τoh ð3cÞ RewritingEq. (3a) in theincrementalform,itbecomes ykþ1 ¼ ð1þaÞykayk1þKbdΔukdþKbdþ1Δukd1 ð4Þ when theoutput y is controlledtotrackaset-point yr , Eq. (4) is further rewrittenas M1 : ekþ1 ¼ ð1þaÞekaek1þKbdΔukdþKbdþ1Δukd1 where M1 denotesthesystemdiscretemodel;and ek ¼ ykyr is the trackingerror.Samplingacontinuous-timesystemwithtime delay makesthediscrete-timesystem finite-dimensional [21]. The model parameters a, bd, bdþ1, and d depend onthechoiceofthe sampling time h. Followingthesuggestionfrom [6,22], h is chosen tosatisfy hrT1=10, where T1 is theminimumtimeconstant specified inEq. (1b). 2.2. Uncertaindiscretemodel Because theparameters K, T and τ in themodel(1a)are uncertain, theparameters a, bd, bdþ1, and d of themodel M1 are also uncertain.Sincetheprocessgain K variesintheuncertainty set [K1, K2], itcanbewrittenasalinearconvexcombinationofthe lowerandupperbounds K1 and K2: K ¼ λK;1K1þλK;2K2 ð5aÞ where λK;1; λK;2 are coefficients, satisfying 0rλK;1; λK;2r1; λK;1þλK;2 ¼ 1 ð5bÞ when thetimeconstant T variesintheuncertaintyset ½T1; T2, the parameter a lies alsoinasetdefined as aA½a1; a2 where a1 ¼ eh=T1 ; a2 ¼ eh=T2 ð6Þ similarly,theparameter a can bewrittenasalinearconvex combination ofthelowerandupperbound a1 and a2 a ¼ λa;1a1þλa;2a2 ð7aÞ where λa; 1; λa;2 arecoefficients, satisfying 0rλa;1; λa;2r1; λa;1þλa;2 ¼ 1 ð7bÞ when thetimedelay τ variesintheuncertaintyset ½τ1; τ2, the correspondingdiscretetime-delay d is anintegerandhasitsvalue in theset ½d; dþ1;…; d1, where d ¼ f lðτ1=hÞ; d ¼ clðτ2=hÞ ð8Þ where fl(x) isafunctiondefined asthesameinEq. (3b); and cl(x) is a functiontoround x to thenearestintegertowardspositive. When thetimedelay τ varies,theparameters bd and bdþ1 will also varycorrespondingly(seeEq. (3b)). Based ontheobservationsthat(i)inthecaseofthetime constant T being certain,onlytwoneighboring bds arenonzerofor a given τ, andother bds arezero,asshownin Fig. 1[12]; and(ii)in the caseofthetimeconstant T being uncertain,therearealsoonly twoneighboring bds beingnonzeroforeach τ in itsuncertainty set. Then,asshownin Section 2.3, whenthetimeconstant T has its valueintheuncertaintyset ½T1; T2 and thetimedelay τ has its valueintheuncertaintyset ½τ1; τ2, thenonzeroparameter bd and bdþ1 in M1 canbeapproximatedby bd ¼ λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2Þ bdþ1 ¼ λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2Þ ð9aÞ where a1 and a2 are defined inEq. (7a); and λτ,d and λτ,dþ1 are defined by λτ;d¼ ςd;1ðT1; T2; ~ τÞ; λτ; dþ1 ¼ 1þςd;1ðT1; T2; ~τÞ ð9bÞ where ςd;1, whichisancoefficient usedinlinearizing bd and bdþ1 w.r.t.a, isdefined in Section 2.3; and ~τ satisfies Eq. (3c). Numerical study showsthat λτd and λτ,dþ1 satisfy 0rλτ; d; λτ; dþ1r1; λτ; dþλτ; dþ1 ¼ 1 ð9cÞ Fig. 1. Variations inthevaluesof bd when timedelaychanges. G. Huangetal./ISATransactions53(2014)141–149 142
  • 3. 2.3. Twoapproximations In ordertodeveloptheuncertaintydescriptionfor bds, thetime delay uncertaintyset ½τ1; τ2 is separatedinto ðddÞ sections as shown in Fig. 1. Withoutlossofgenerality,considerthesection τA½d h; ðdþ1Þ hÞ. Accordingto Fig. 1, onlythecoefficients bd and bdþ1 are nonzeroandtheyaredefined by bd ¼ 1eðh ~ τÞ=T ; bdþ1 ¼ eðh ~ τÞ=T eh=T ð10Þ with ~ τ satisfying τ ¼ d hþ ~ τ and 0r~ τoh ð11Þ First, considera fixedvalueof ~ τ (i.e. τ is fixedintheset[dh, (dþ1)h]). AsshownbyHuangandWang [13], if T variesinthe set ½T1; T2 and h is chosentobemuchsmallerthan T1, then bd and bdþ1 can beapproximatedby bd ¼ ςd;1ðT1; T2Þaþςd;2ðT1; T2Þ; bdþ1 ¼ ςdþ1;1ðT1; T2Þaþςdþ1;2ðT1; T2Þ ð12Þ where ςðT1; T2Þ denotesthevalueof ς is relatedtotheupperand lowerboundofthetimeconstant,i.e. T1 and T2, butnottothe actual valueof T; and ςdþ1;1ςd;1ðT1; T2Þ ¼ 1ςd;1ςd;1ðT1; T2Þ; ςdþ1;2ςd;1ðT1; T2Þ ¼ 1ςd;2ςd;1ðT1; T2Þ ð13Þ The approximationdescribedbyEq. (12) is titledas Approx- imation I. Second, considerthevariationof ~ τ (i.e. τ variesintheset ½d h; ðdþ1Þ hÞ). Whenthetimedelay τ variesfrom τ¼dh to τ¼(dþ1)h, theparameter ~ τ will varyfrom ~ τ ¼0 to ~ τ ¼ h. Itis notedthatthevaluesof ςd;1; ςd;2and ςdþ1;1; ςdþ1;2 will change when ~ τ changes.Write ςd;1; ςd;2 and ςdþ1;1; ςdþ1;2 as functionsof ~τ and substituting a by Eq. (6b), andthen bd has theformof bd ¼ ςd;1ðT1; T2; ~ τÞλa;1a1þςd;1ðT1; T2; ~ τÞλa;2a2þςd;2ðT1; T2; ~τÞ ð14Þ Because λa;1þλa;2 ¼ 1, theexpressionof bd is furtherwrittenas bd ¼ ½ςd;1ðT1; T2; ~ τÞλa;1ð1a1Þþ½ςd; 1ðT1; T2; ~ τÞλa;2ð1a2Þ þςd;1ðT1; T2; ~τÞþςd;2ðT1; T2; ~ τÞ ð15Þ When thesamplinginterval h is smallenough(suchas hrT1=10), foreach ~ τA½0; hÞ thereexists ςd; 1ðT1; T2; ~ τÞþςd; 2ðT1; T2; ~τÞ 0 ð16Þ This approximationistitledas ApproximationII. Withthis approximationanddefinition of λτ,d in Eq. (9b), bd can be formulated astheformdefined inEq. (9a). Numericalstudyshows that ςd;1ðT1; T2; ~τÞ has avalueinside[1,0].Then λτ,d has avalue inside [0,1]. Similarly,rewrite bdþ1 as bdþ1¼ ςdþ1;1ðT1; T2; ~ τÞλa;1ð1a1Þςdþ1;1ðT1; T2; ~τÞλa;2ð1a2Þ þςdþ1;1ðT1; T2; τ~ Þþςdþ1;2ðT1; T2; τ~ Þ ð17Þ AccordingtoEq. (13) and the ApproximationII, ςdþ1;1 ðT1; T2; ~τÞþςdþ1;2ðT1; T2; ~τÞ ¼ 0 foreach ~τA½0; hÞ. Then,withthis approximationanddefinition of λτ,dþ1 in Eq. (9b), bdþ1 becomes the formdefined inEq. (9a). Since ςd;1ðT1; T2; ~τÞ has avalueinside [1,0], λτ,dþ1 has avalueinside[0,1]accordingtoitsdefinition. 2.4. Linearcombinationofsub-models Considering theprocessgainuncertaintyandaccordingtoEqs. (5a), (7a) and (9a), thediscrete-timemodel M1 canbewrittenasa linear combinationofthesub-models Mi,j,l M2 ¼ Σ 2 i ¼ 1 Σ 2 j ¼ 1 Σ dþ1 l ¼ d λK;iλa;jλτ;lMi;j;l ð18aÞ where λK,i, λK,j, and λτ,l aredefined inEqs. (5b), (6b) and (9b), and Mi;j;l is defined as Mi; j; l : ekþ1 ¼ ð1þajÞekajek1þKið1ajÞΔukl ð18bÞ The developmentof M2 isillustratedin Appendix A. Notethat the discretetimedelay d can beanyvalueintheset ½d; dþ 1;…; d1. Ateachtimedelay,onlytwo bds arenonzerowhile othersarezero.Hence,onlytwocorresponding λτs arenonzero and other λτs arezeroforeachtimedelay.Therefore,Eq. (18a) is written as M2 ¼ Σ 2 i ¼ 1 Σ 2 j ¼ 1 Σ d l ¼ d λK;iλa;jλτ;lMi;j;l ð18cÞ where thedefinition of Mi;j;l in Eq. (18b) is extendedfor l ¼ d; …; d. AccordingtoEqs. (5b), (7b) and (9c) as wellasthefact that other λτ s arezero,thecoefficients inEq. (18c) satisfy Σ 2 i ¼ 1 Σ 2 j ¼ 1 Σ d l ¼ d λK;iλa;jλτ;l ¼ 1 ð19Þ The expressionof M2 inEq. (18c) indicatesthat M1 canbe written asalinearconvexcombinationofthesub-models Mi,j,l when theparameters(K, T, τ) areinsidetheuncertaintysets. It alsoindicatesthattheuncertaintiesassociatedwiththepara- meters(K, T, τ) aretransformedtotheuncertaintiesassociated with theparameters(λK,i, λK,j, λτ,l), i.e. K, T, τ varyingintheir uncertainties setsaretransferredto λK,i, λK,j, λτ,l varyingbetween 0 and1. 2.5. State-spacemodel Defining astatevectoras x′k ¼ ðek; ek1;Δukd;…;Δuk1Þ ð20Þ Then, x′kþ1 has theformof x′kþ1 ¼ ðekþ1; ek;Δukdþ1;…;ΔukÞ Since ekþ1 ¼ ð1þaÞekaek1þKbdΔukdþKbdþ1Δukd1 and d may beanyvalueinsidetheset ½d;⋯d1, ekþ1 can be rewrittenas ekþ1 ¼ ½1þa; a; 01;dðdþ1Þ ; Kbdþ1; Kbd; 01;d1xk where 0 is azeromatrix(orvector)anditssubscriptsindicatethe dimension. Similarly,theotheritemsof x′ kþ1 has theformof ek ¼ ½1; 01;dþ1xk ½Δukdþ1;⋯;Δukþ1′ ¼ 0d1;3 Id1;d1 01;dþ2 # xk It shouldbenotedthat Δuk is thecontrolinputatthetime instant k. Therefore,themodel M1 isformulatedasastate-space model intheformofEq. (2a) as follows.When d40, themodel M1 canbeformulatedasadiscretestate-spacemodelintheform of Eq. (2a) with A¼ 1þa; a; 01;dðdþ1Þ ; Kbdþ1; Kbd; 01;d1 1 01;dþ1 0d1;3 Id1;d1 01;dþ2 0 BBBBB@ 1 CCCCCA ; B ¼ 0dþ1;11 when d¼0, thecorresponding A and B becomes A ¼ 1þa; a; 01;d1; Kbdþ1 1 01;dþ1 0d1;3 Id1;d1 01;dþ2 0 BBBBB@ 1 CCCCCA ; B ¼ Kbd 0d;1 1 0 B@ 1 CA G. Huangetal./ISATransactions53(2014)141–149 143
  • 4. where I is theidentitymatrix.Thecoefficient matrices A and B are uncertain becauseoftheuncertaintiesassociatedwiththepara- meters K, a, bd, bdþ1, and d. The sub-models Mi,j,l is alsoformulatedasastate-spacemodelin theformofEq. (2a), andthecoefficientmatrices Az(i,j,l) and B z(i,j,l) are givenasbelow.If l40, Azði;j;lÞ ¼ 1þaj aj 01;dl Kið1ajÞ 01;l1 1 01;dþ1 0d1;3 Id1;d1 01;dþ2 0 BBBBB@ 1 CCCCCA ; Bzði;j;lÞ ¼ 0dþ1;1 1 # ð21aÞ If l¼0 (whichoccursinthecaseof d ¼ 0), Azði;j;0Þ ¼ 1þaj aj 01;d 1 01;dþ1 0d1;3 Id1;d1 01;dþ2 0 BBBBB@ 1 CCCCCA ; Bzði;j;0Þ ¼ Kið1ajÞ 0d;1 1 2 64 3 75 ð21bÞ where I is theidentitymatrix; 0 is azeromatrix(orvector);and z is z ¼ zði; j; lÞ ¼ ði1Þ 2ðddþ1Þþðj1Þðddþ1Þþldþ1 ð22Þ Notethat M1 isapproximatedby M2 (seeEq. (18a)) and M2 isa linear convexcombinationofthesub-models Mi,j,l. Therefore,the continuous model(1a)associatedwiththesetuncertainties(1b)is sampled intoandrewrittenasthediscretestate-spacemodel(2a) associatedwiththeuncertaintypolyhedron(2b). 2.6. Transformationalgorithm The algorithmforcomputingtherequiredpolyhedronisgiven below. Algorithm 1. Step1:Chooseasamplingratio h that satisfies hrT1=10; Step2:Calculate a1; a2 by Eq. (6); Step3:Calculate d and d by Eq. (8); Step4:For i¼1, 2; j¼1, 2; l ¼ d; …; d, calculate z by Eq. (22), and thenspecify Azði;j;lÞ and Bzði;j;lÞ as Eq. (21a) if l40 orEq. (21b) if l¼0. It shouldbenotedthatthenumberoftheverticesofthe uncertainty polyhedronis2 2 ðddþ1Þ. Thedimensionsof the coefficients Az and Bz depend onthemaximumdelay(τ) and the samplinginterval h. Itshouldalsobenotedthattheideaof transforminganuncertaintysetintoanuncertaintypolyhedron wasoriginatedfromHuangandWang [12], inwhichonlythe processgainandtimedelayuncertaintieswereconsidered. When thetimeconstantuncertaintyistakenintoaccount,the transformationbecomesmuchmorecomplex.Twoapproxima- tions areusedinderivingEq. (9a), i.e.theapproximations representedbyEq. (12) and Eq. (16). Thetwoapproximations arethekeydevelopmentof Algorithm1. Theaccuracyofthetwo approximationswillbeinvestigatedusingnumericalexamplesin Section 4. Sincethemodel M2 willbeusedforcontroldesign insteadofthemodel M1,theywillbecomparedinboththetime domain andthefrequencydomain,whichwillalsobeshownin Section 4. 3. Robustcontrollaw A robustcontrollawcanbecalculatedusingtheGEVM techniqueforthemodel(2a)associatedwiththeuncertainty polyhedron(2b).Toseethis,assumethefeedbackcontrolhas the formof Δuk ¼ Fxk ð23Þ In ordertoachieverobuststabilityforthemodel(2a),allthe eigenvaluesof(AþBF) shouldbeinsidetheunitcircle.Thefeed- back law F is thenoptimizedbyminimizingthespectralradiusof (AþBF), i.e. ρðAþBFÞ, subjecttotheuncertaintiesspecified by Eq. (2b). Therefore,theoptimizationofthefeedbacklawis formulatedas F ¼ argmin F;P γ ð24Þ Subject to(i). P1γ ðAþBFÞ′P1γ ðAþBFÞ40; P ¼ Pt40; and(ii). ðA; BÞAΩAB Set Q ¼ P 1, andthentheconstraint(i)becomes Q Q1γ ðAþBFÞ′Q 11γ ðAþBFÞQ40;Q ¼ Q′40 ð25Þ AccordingtoSchurComplements,Eq. (25) is rewrittenas 0 QA′Y′B′ AQ BY 0 ! oγ Q 0 0 Q ! ð26aÞ where Y ¼ FQ ð26bÞ Eq. (26a) is alinear-fractionalconstraintinaGEVMproblem [15]. Because(A,B) isalinearconvexcombinationof ðAz; BzÞ, the verticesofthepolytope ΩAB, theconstraint(26a)isholdfor 8ðA; BÞAΩAB if andonlyiftheverticesofthepolytope ΩAB satisfy the constraint(26a),i.e. 0 QA′zY′B′z AzQ BzY 0 ! oγ Q 0 0 Q ! ; z ¼ 1;…;N ð27Þ Therefore,theoptimizationofthefeedbacklawbecomes min Q;Y γ subject totheconstraint(27)with Q ¼ Q′40 ð28Þ The optimizationformulatedbyEq. (28) is astandardGEVM problemunderLMIconstraints [15]. Itcanbesolvedusingthe GEVP functionintherobustcontroltoolboxinMATLAB [16].When the optimizationisfeasible,theoptimalfeedbacklawis F ¼ Q 1Y ð29Þ Hence, thecontrolsignalatcurrenttimeinstantis uk ¼ uk1þFxk. If theoptimizedspectralradius γ issmallerthan1,thenthefeedback controllaw F can stabilizethediscretestatemodel(2a)withthe uncertainty polyhedron(2b).Whenthesamplingintervalisproperly selected,therobuststabilityoftheclosed-loopsystemcanbewell maintained bythecontrollaw F. 4. Numericalstudies Numericalstudiesareusedtoshowthatwiththeappropriate selection ofthesamplinginterval h, i.e. hrT1=10, theerrors introducedbytheapproximationsinEqs. (12) and (16) as well as thedifferencesbetweenthediscrete-timemodels M1 and M2 areinsignificant. G. Huangetal./ISATransactions53(2014)141–149 144
  • 5. 4.1.Approximationerrors ApproximationerrorsintroducedbytheapproximationinEq. (12) were firstlystudied.Aseriesnumericalstudiesshowedthatfora fixedtimedelay τ andavariabletimeconstant,ifthesampling intervalischosenas hrT1=10,theapproximationerrorsintroduced by Eq. (12) areinsignificant.Toshowthis,consideranexample: TA½20; 500 s, τ¼5 s,whereaverylargeuncertaintysetforthetime constantischosen.Thesamplingintervalwasselectedas h¼2 s,and then d¼2 and ~τ ¼ 1 s.Inthisexample,thevariationsof b2 and b3 calculatedbyEq. (3b) areshownin Fig. 2(a)and(b)separately.Using theapproximationinEq. (12), ς2;1; ς2;2 for b2 and ς3;1; ς3;2 for b3 are ς2;1¼ 0:5096; ς2;2 ¼ 0:5095; ς3;1¼ 0:4904; ς3;2 ¼ 0:4905 ð30Þ As shownin Fig. 2c andd,theapproximationerrorsforboth b2 and b3 are smallerthan3.55104 (the maximumerror). Similar conclusionwasobtainedfortheapproximationerrors introduced byEq. (16), inwhichthedelayislimitedas τA½d h; ðdþ1Þ hÞ. Toseethis,considerthetime-constantuncertainty TA½20; 500 s andthesamplinginterval h¼2 s.Assume d¼2, and thenthetimedelayvariesintheset τA½4; 6Þ s. Thevaluesof ς2;1, ς2;2 and ðς2;1þς2;2Þ areplottedin Fig.3. Itcanbeseenthatthevaluesof ðς2;1þς2;2Þ areveryclosedtozero.Therefore,theapproximation errorsintroducedbyEq. (16) arealsoinsignificant. 4.2. ErrorsbetweenthemodelM1andM2 It hasbeenshownin Section 2 that thediscrete-timemodel M1 can beapproximatedby M2 where M2 isalinearconvex combination ofthesub-models Mi,j,l. Here,thedifferencebetween M1 and M2 andtheinfluence ofthedifferencewhen M2 isusedto replace M1 forcontroldesignwerestudied.Considerthefollowing uncertainties K1 ¼ 0:4; K2 ¼ 1:0; T1 ¼ 20 s; T2 ¼ 500 s; τ1 ¼ 0:1 s; τ2 ¼ 8 s ð31Þ 0.90.920.940.960.98100.010.020.030.040.05The value of a0.90.920.940.960.98100.010.020.030.040.05The value of a0.90.920.940.960.98101234x 10-4The value of a0.90.920.940.960.98101234x 10-4The value of a Fig. 2. Errors introducedby ApproximationI when TA[20,500]s, h¼2 sand τ¼5 s. 44.24.44.64.855.25.45.65.86-1.5-1-0.500.511.5time delay (s) 44.24.44.64.855.25.45.65.86-8-6-4-20x 10-5time delay (s) Fig. 3. The valuesof ς2;1, ς2;2 and ðς2;1þς2;2Þ when τA½2h; 3hÞ. G. Huangetal./ISATransactions53(2014)141–149 145
  • 6. When thenominalmodelisrandomlychosenas K ¼ 0:7; T ¼ 100 s; τ ¼ 4:5 s ð32Þ Using asamplinginterval h¼2 s,theminimumandmaximum discretetime-delayare d ¼ 0 and d ¼ 4. Bythediscretization(3a) and (3b),thecorrespondingdiscretemodelor M1 is ekþ1 ¼ 1:98ek0:98ek1þ1:042 102Δuk2þ0:344 102Δuk3 ð33Þ Thecoefficients λk;1; λa;1; λτ;d givenbyEqs. (5b), (7b) and (9b) are λk;1 ¼ 0:5; λa;1 ¼ 0:1734; λτ;2 ¼ 0:757; λτ;3 ¼ 0:2434; λτ;0 ¼ λτ;1 ¼ λτ;4 ¼ 0 the modelcomputedbythelinearconvexcombination,or M2, is ekþ1 ¼ 1:98ek0:98ek1þ1:049 102Δuk2þ0:337 102Δuk3 ð34Þ Comparedwiththemodel(33), b2 of themodel(34)is0.67% largerwhile b3 is 2.0%smaller.Therefore,thedifferencesbetween M1 and M2 areinsignificant. Tostudytheinfluence ofthedifferencesbetween M1 and M2 on controlperformance,Bodediagramandstepresponseareused as thetoolforanalysis. Fig. 4 illustratestheBodediagramofthe model (33),denotedas M1,andthemodel(34),denotedas M2. The frequencyin Fig. 4 starts from1104 rad/sandstopsat 1.57rad/s,wherethestopfrequencyischosentosatisfythe Nyquist–Shannon samplingtheorem [21]. Theresultsshowthat the maximumerrorinmagnitudeislessthan1.9%andthe maximum errorinphaseislessthan0.13%. Fig. 5 compares the step responsesofthemodel(33)and(34).Themaximumabsolute error 6.6105 (or relatively0.63%)wasobtainedat t¼508 s. Once again,theresultsshowthatthemodel(33)candescribethe dynamics representedbythemodel(34)withacceptableaccuracy when stepchangesoccur. 4.3. Robuststability RobuststabilityofthecontrollawdesignedusingtheGEVM techniquewasalsostudiedusingannumericalexample.Still considering theexampledetailedinEq. (31), thecontrollawby GEMV was F ¼ ½4:3600 4:1008 0:1179 0:1936 0:2356 0:2506 ð35Þ with whichthemaximumofthespectralradiusof(AþBF) is 0.9965. Therefore,thefeedbacklaw Δuk ¼ Fxk can robustlystabi- lize thesystemwhentheuncertaintiesarespecified byEq. (31). Fig. 6 illustratesthecontrolinputandthetrackingerrorwhenthe threemodelparametersvarywiththecontrolinput(butlimited intotheuncertaintysetsspecified Eq. (31). KðukÞ ¼ K1þ0:2uk; TðukÞ ¼ T215uk; τðukÞ ¼ τ1þ2uk ð36Þ Fig. 6 showsthatrobuststabilitywasachievedinspiteofthe model parametervariationsshownin Fig. 7. 5. Casestudies 5.1.Comparisonwithinternalmodelcontrol(IMC) The proposedcontroldesignwascomparedwiththerobust IMC developedbyLaughlinetal. [14]. Theuncertaintiesspecified by Eq. (31) wereusedastheexample.Theclosed-loopresponses wereplottedin Fig. 8, where ‘S1’ to ‘S8’ wereprocessmodelsgiven in Table1 generatedbytakingcombinationsoflower/upper bounds ofthethreeparameters.TherobustIMCwastuneduntil oscillations inthetransientof ‘S6’ wereacceptable.Itcanbeseen that bothmethodscanrobustlystabilizetheseplants.Asshownin -50-40-30-20-100 Magnitude (dB) 10-410-310-210-1100-540-360-1800 Phase (deg) Bode DiagramFrequency (rad/sec) Fig. 4. Comparison oftheBodediagramsofthemodelof(33),denotedas M1,and the modelbyEq. (34), denotedas M2. 020040060080010001200140016001800200000.20.40.60.8System outputTime(second) y 0200400600800100012001400160018002000-1-0.500.51x 10-4Approximation errorTime(second) e Fig. 5. Comparison ofthestepresponseofthemodel(33),denotedas M1,andthe model (34),denotedas M2. 05001000150020002500300035004000-20246 control input time (second) 05001000150020002500300035004000-1-0.500.5 tracking error time (second) Fig. 6. The controlinputandthetrackingerrorachievedbythecontrollawinEq. (35). G. Huangetal./ISATransactions53(2014)141–149 146
  • 7. Fig. 8, thetransientsoftheproposedmethodweregenerallyfaster than thoseoftherobustIMC.ThiswasbecausetherobustIMC suppressedthetransientresponses,forexample,intheplantsS1 and S2.Theaverageoftheintegraloftheabsolutetrackingerror (IAE) andthesettlingtime(ST)werelistedandcomparedin Table2. Inmostcases,theproposedmethodachievedasmaller trackingerror.Oneexceptionwastheprocess ‘S8’, wherethe trackingerroroftheproposedmethodwasslightlylarger.Forthe settling time, Table2 showsthattheproposedmethodachieved a shortersettlingtimethantherobustIMCinmostcasesandone exceptionwastheprocess ‘S7’. Therefore,theproposedmethod had abetterabilityoferrortrackinginthisexample. 5.2. Temperaturecontrolofair-handlingunit An applicationoftheproposeddesignapproachtoathermal processofheating,ventilationandairconditioning(HVAC)sys- temswasstudied.ItisknownthatthermalprocessesinHVAC systemscanbeadequatelydescribedusinganuncertainFOPTD model [8–11]. Hereanair-handlingunit(AHU)wasselected because AHUisanimportantcomponentinair-conditioning systems [23,24]. ThestructureofAHUsisillustratedin Fig. 9, where theinletairisconditionedafterpassingthroughtheAHU and becomesthesupplyair,whichwillbesenttooccupiedspace for thermalcomfort.Thetemperatureofthesupplyairisadjusted by thechilledwater flow rateinsidethecoolingcoil,whichis controlledbyathree-portvalve.Thechilledwaterisprovidedby a chiller,andthechilledwatersupplytemperatureisusuallyunder feedbackcontrolandmaintainedaround6 1C. The manipulatedvariable(MV)oftheprocessistheopenofthe three-portvalve,denotedby u (which alsoreflects thechilled water flowrate).Thecontrolledvariable(CV)isthesupplyair temperature Ta,sup. Thesetpointofthesupplyairtemperatureis determinedbythethermalconditionoftheoccupiedspace.The dynamics ofthisprocessaresignificantly affectedbytheair flow rate m_ a;in and thecooledwater flow rate.Itwillalsobeaffectedby the inletairtemperature Ta,in, aswellasthechilledwatersupply temperature.Theuncertaintysetsspecified byEq. (1b) wereused todescribethedynamicsuncertainties. A simulatedAHUprocesswasconstructedinSIMULINKusing SIMBAD toolbox [25], developedbyCSTB,theFrenchcentrefor building sciences,totestbuildingenergymanagementsystems. The dynamicsvariationsofthisprocesswereidentified usingstep responsesoftheprocessatseveralworkingconditionsasshownin Table3, wheretheinletairtemperatureandcooledwater temperaturewere fixedat25.5 1C and6.0 1C respectively.Based on theidentification results,slightlylargeruncertaintysetsforthe threeparametersweresetas K1¼ 1 1C; K2¼ 40 1C; T1 ¼ 60 s; T2 ¼ 70 s; τ1 ¼ 15 s; τ2 ¼ 40 s ð37Þ Set thesamplingintervalas h¼6.0 s,thecontrollawbythe optimizationdefined inEq. (28) yielded F ¼ ½0:174; 0:145; 0:161; 0:221; 0:246; 0:261; 0:269; 0:277; 0:238 ð38Þ With thiscontrollaw, Fig. 10 demonstratesthecontrolsignals u and thesupplyairtemperature,whichwascontrolledtotrackthe set points20 1C (from t¼500sto t¼2400s),12 1C (from t¼2400s to t¼4800s)and16 1C (from t¼4800sto t¼7200s).Thedis- turbances shownin Fig. 11 includes thesupplyair flow rate (a) whichchangesbetween1.2kg/s(thedesignvalue)and 0.48 kg/s(the40%ofthedesignvalue),theinletairtemperature (b) whichvariesbetween26.5 1C and24.5 1C, andthesupply watertemperature(c)whichvariesbetween5 1C and7 1C. It canbeseenthattherobustcontrolapproachsuccessfully manipulated thesupplyairtemperaturetoitssetpointswhether the setpointwashigh(lowcoolingloadcondition)orlow(high cooling loadcondition).Thetransientresponseateachchangeof 0500100015002000250030003500400000.51 variation of K time (second) 05001000150020002500300035004000400450500 variation of T time (second) 050010001500200025003000350040000510 variation of τ time (second) Fig. 7. The variationsoftheprocessgain(K), timeconstant(T) andtimedelay τ specified byEq. (36). 05001000150020002500300000.10.20.30.4 Output time(second) 05001000150020002500300000.10.20.30.4 Output time(second) 05001000150020002500300000.10.20.30.4 Output time(second) 05001000150020002500300000.10.20.30.4 Output time(second) Fig. 8. Comparison oftheclosed-loopresponsesoftheproposeddesign(a)with those oftherobustIMC(b)whenthereferenceisstepfrom0to0.3. Table1 Definition oftheprocessmodelsS1toS8. S1 S2S3S4S5S6S7S8 K 0.4 1.00.41.00.41.00.41.0 T 20 s20s260s260s20s20s260s260s τ 0.1s0.1s0.1s0.1s8.0s8.0s8.0s8.0s G. Huangetal./ISATransactions53(2014)141–149 147
  • 8. set pointwassimilarandtheovershoots(undershoots)were small. Theaveragetrackingerrorwas0.34 1C underthedistur- bances, andthedisturbancesareshownin Fig. 11. Theproposed method wascomparedwithawidelyusedanti-windupPIcontrol. As shownby Fig. 12, ananti-windupPIcontrollermayachievea good performanceatoneconditionbutabadperformanceatthe Table2 The averageoftheintegraloftheabsolutetrackingerror(IAE)andthesettlingtimes(ST)(5%). S1 S2S3S4S5S6S7S8 IAE Theproposedmethod0.00670.00470.03500.02060.00670.00470.03920.0241 RobustIMC0.03240.01300.04230.02190.03240.01300.04280.0223 Comparison (%)21%36%83%94%21%36%92% 108% ST Theproposedmethod179.0126.51413.8874.6169.6121.91728.7896.1 RobustIMC1383.7718.41590.51020.41373.7710.51631.91023.2 Comparison (%)13%18%89%86%12%17% 106% 88% Fig. 9. The structureofatypicalair-handlingunit. Table3 The valuesof(K, T, τ) identified bystepresponsesatseveraloperatingconditions. StepinputFlowrate (percentage ofdesignvalue)(%) (K, T, τ) (1C, s,s) u : 0:05-0:15 100(17.8,61.4,25.5) 40 (35.7,66.2,39.1) u : 0:4-0:5 100(13.8,60.8,21.9) 40 (11.1,64.7,30.8) u : 0:9-1:0 100(2.1,60.8,20.6) 40 (1.2,64.6,29.3) 10002000300040005000600070001015202530time (second) supply air temperature (oC) 100020003000400050006000700000.20.40.60.81time (second) control input Fig. 10. The variationsofthesupplyairtemperature(top)andthecorresponding control signals(bottom). 10002000300040005000600070000.40.60.811.21.4time (second) Supply air flow rate (kg/s) 100020003000400050006000700024.52525.52626.5time (second) inlet air temperature (oC) 100020003000400050006000700055.566.57time (second) Chilled water supply temperature (oC) Fig. 11. Disturbances oftheAHUprocess:supplyair flow rate(a),inletair temperature(b)andsupplywatertemperature(c). 10002000300040005000600070001015202530outputset point100020003000400050006000700000.20.40.60.81time(second) Supply air temperature Control input (oC) Fig. 12. The supplyairtemperature(top)andthecorrespondingcontrolsignals (bottom)underananti-windupPIcontrol. G. Huangetal./ISATransactions53(2014)141–149 148
  • 9. other conditions.Therefore,theresultsin Fig. 12 illustratedthat the controllawinEq. (38) achieved agoodrobustnessforthe closed-loop process. 6. Conclusions This paperdevelopedamethodofapplyinggeneralizedeigenvalue minimizationtoprocessesthatcanbedescribedbya first-orderplus time delaymodelwithuncertaingain,timeconstantanddelay.An algorithmhasbeendevelopedtotransformtheuncertaintysetsfor the gain,timeconstantanddelaytouncertaintypolyhedron,whichis a typeofuncertaintydescription forstate-spacemodel.Withthe uncertaintytransformation,afeedbackcontrollawcanbedesigned using thegeneralizedeigenvalueminimizationtechnique.Numerical exampleshaveshownthatthetransformationcanbeachieved accurately.Casestudieshaveshownthatthefeedbackcontrollaw optimizedbythegeneralizedeigenvalueminimizationtechniqueis abletoachieveabetterperformance comparedwiththatoftherobust internalmodelcontroldesignandabetterrobustnesscomparedwith a conventionalPIcontrol.Since first-orderplustimedelaymodelscan be easilyidentified andarewidelyusedinpractice,theproposed controldesignapproachoffersadvantagesforpracticalapplications. Acknowledgements The workdescribedinthispaperwasfullysupportedbyagrant from theResearchGrantsCouncil(RGC)oftheHongKongSpecial AdministrativeRegion,China(ProjectNo.CityU124012)andalso by aKeyScienceandTechnologyProjectofGuangdongProvince, China (ProjectNumber:2012A010800004). Appendix Appendix A:ThedevelopmentofM2 Substituting K, a, bd and bdþ1 in M1 by K ¼ λK;1K1þλK;2K2 a ¼ λa;1a1þλa;2a2 bd ¼ λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2Þ bdþ1 ¼ λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2Þ M1 becomes ekþ1 ¼ ð1þλa;1a1þλa;2a2Þekðλa;1a1þλa;2a2Þek1 þðλK;1K1þλK;2K2Þ½λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2ÞΔukd þðλK;1K1þλK;2K2Þ½λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2ÞΔukd1 ðA1Þ Because λK;1þλK;2 ¼ 1 and λa;1þλa;2 ¼ 1, Eq. (A1) is rewrittenas ekþ1¼ ðλK;1þλK;2Þ½ðλa;1þλa;2þλa;1a1þλa;2a2Þekðλa;1a1þλa;2a2Þek1 þðλK;1K1þλK;2K2Þ½λτ;dλa;1ð1a1Þþλτ;dλa;2ð1a2ÞΔukd þðλK;1K1þλK;2K2Þ½λτ;dþ1λa;1ð1a1Þþλτ;dþ1λa;2ð1a2ÞΔukd1 ðA2Þ Eq. (A2) is reformulatedas ekþ1 ¼ Σ 2 i ¼ 1 Σ 2 j ¼ 1 λK;iλa;j½ð1þajÞekajek1 þλτ;dKið1ajÞΔukdþλτ;dþ1Kið1ajÞΔukd1 ðA3Þ Because λτ;d þλτ;d þ1 ¼ 1, Eq. (A3) has thefollowingform ekþ1 ¼ Σ 2 i ¼ 1 Σ 2 j ¼ 1 λK;iλa;jfλτ;d½ð1þajÞekajek1þKið1ajÞΔukd þλτ;dþ1½ð1þajÞekajek1þKið1ajÞΔukd1g ðA4Þ With thedefinition of Mi,j,d and Mi,j,dþ1 in Eqs. ((18b) and A4) can thenberewrittenas M2 inEq. (18a). References [1] Zhou K,DoyleJC,GloverK.Robustandoptimalcontrol.UpperSaddleRiver, NewJersey:PrenticeHall;1996. [2] Pan I,DasS,GuptaA.TuningofanoptimalfuzzyPIDcontrollerwithstochastic algorithmsfornetworkedcontrolsystemwithrandomtimedelay.ISA Transactions2011;50:28–36. [3] HD Tran,ZHGuan,XKDang,XMCheng,FSYuan.AnormalizedPIDcontroller in networkedcontrolsystemswithvaryingtimedelays.ISATransactions(52) 592–599. [4] Qiu ZH.Robustcontrolofnonlinearuncertainsystems.NY,USA:JohnWiley Sons, Inc.;1998. [5] Perng JW.Simplestabilitytestfortime-delaysystemsusingscalingparameter approach.InternationalJournalofInnovativeComputing,Informationand Control2012;8:4535–46. [6] Aström KJ,HägglundT.PIDcontrollers:theory,designandtuning.2nded..NC, USA: InstrumentSocietyofAmerica;1995. [7] Fedele G.Anewmethodtoestimatea first-order plustimedelaymodelfrom step response.JournaloftheFranklinInstitute2009;346:1–9. [8] Ling KV,DexterAL.expertcontrolofair-conditioningplant.Automatica 1994;30:761–73. [9] Seem J.Anewpatternrecognitionadaptivecontrollerwithapplicationto HVACsystems.Automatica1998;34:969–82. [10] UnderwoodCP.RobustcontrolofHVACplantI:modeling;andII:controller design.BuildingServicesEngineeringResearchandTechnology2000;21:53–71. [11] Huang GS,WangSW.Two-looprobustMPCforthetemperaturecontrolofair- handling units.HVACRResearch2008;14:565–80. [12] Huang GS,WangSW.Useofuncertaintypolytopetodescribeconstraint processes withuncertaintimedelayforrobustmodelpredictivecontrol applications. ISATransactions2009;48:503–11. [13] Huang GS,WangSW.Useofpredictedinformationtoimprovethecontrol performance ofsystemswithuncertainties.JournalofProcessControl 2009;19:457–63. [14] Laughlin DL,JordanKG,MorariM.Internalmodelcontrolandprocess uncertainty: mappinguncertaintyregionsforSISOcontrollerdesign.Interna- tional JournalofControl1986;44:1675–98. [15] Boyd S,GhaouiLE.Methodofcentersforminimizinggeneralizedeigenvalues. Linear AlgebraAppl1993;188/189:63–111. [16] P Gahinet,ANemirovski,AJLaub,MChilali.LMIcontroltoolboxforusewith MATLAB(1995),availableatwebsite: 〈http://www.mathworks.com/help/tool box/robust/〉. [17] KothareMV,BalakrishnanV,MorariM.Robustconstrainedmodelpredictive control usinglinearmatrixinequalities.Automatica1996;32:1361–79. [18] Amato F,MatteiM,PirontiA.Arobuststabilityproblemfordiscrete-time systemssubjecttouncertainparameters.Automatica1998;34:521–3. [19] LinC,WangQG,LeeTH.Stabilityandstabilizationofaclassoffuzzytime-delay descriptorsystems.IEEETransactionsonFuzzySystems2006;14:542–51. [20] Liu PL.Robuststabilityanalysisofgeneticregulatorynetworkwithtimedelay. ISA Transactions2013;52:326–34. [21] Aström KJ,WittenmarkB.Computercontrolledsystems:theoryandDesign. EnglewoodCliffs:PrenticeHall,Inc.;1997. [22] Dougherty D,CooperJD.Tuningguidelinesofadynamicmatrixcontrollerfor integrating(non-self-regulating)processes.IndustrialEngineeringChem- istry Research2003;42:1739–52. [23] TI Salsbury.Asurveyofcontroltechnologiesinthebuildingautomation industry.In:Proceedingsofthe16thIFACworldcongress,Prague,Czech Republic;2005. [24] Thompson R,DexterAL.Afuzzydecision-makingapproachtotemperature control inair-conditioningsystems.ControlEngineeringPractice2005;13: 689–98. [25] SIMBAD, SIMBADBuildingandHVACtoolbox(Manualbook;2004),available at website: 〈http://www.cstb.fr〉. G. Huangetal./ISATransactions53(2014)141–149 149