Generative adversarial networks (GANs) are a class of machine learning frameworks where two neural networks, a generator and discriminator, compete against each other. The generator learns to generate new data with the same statistics as the training set to fool the discriminator, while the discriminator learns to better distinguish real samples from generated samples. GANs have applications in image generation, image translation between domains, and image completion. Training GANs can be challenging due to issues like mode collapse.
Related topics: