SlideShare a Scribd company logo
lv-DCC            1/??




   Geometrical DCC-Algorithm for
   Merging Polygonal Geospatial Data

   ICCSA 2010 Fukuoka / Japan


   23-26 March, 2010


   Silvija Stankute and Hartmut Asche | University of Potsdam | Geoinformation Research | Germany
data-fusion        2/12




    Problem


  information needed



   information available




        input dataset 1                     input dataset 2   input dataset 3

    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        3/12




    Problem and Objective

     manual-acquisition of missing information - time-consuming
      and costly
     a combination of two or more different datasets allows for
          an output dataset which fulfills the demands of the
          particular task
          an incorporation of suitable features required for specific task




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        4/12




    Workflow


         dataset 1                          pre-processing
                                                             object assignment
         dataset 2                          pre-processing

      data sources
                                                               new dataset



   the DCC-algorithm is based on Direct Coordinate Comparison
     between two datasets




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        5/12




    Workflow


         dataset 1                          pre-processing
                                                                 object assignment
         dataset 2                          pre-processing

      data sources                   1. uniform data format
                                     2. transfer to the same       new dataset
                                        coordinate system
                                     3. verification and
                                     4. geometrical correction




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        6/12




    Workflow


         dataset 1                          pre-processing
                                                                   object assignment
         dataset 2                          pre-processing

      data sources                   1. uniform data format
                                     2. transfer to the same          new dataset
                                        coordinate system
                                     3. verification and         1. new geometrical
                                     4. geometrical correction      information only
                                                                 2. new semantical
                                                                    information only
                                                                 3. new geometrical and
                                                                    semantical information



    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        7/12




    Relation between two corresponding objects




         source dataset                     target dataset




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        8/12




    Relation between two corresponding objects




         source dataset                     target dataset




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        9/12




    Relation between geometrical objects
     mean centre (MC),


     minimum bounding rectangle centre (MBR) and


     centroid (C)




    the choice of centre depends on the type of polygon
    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        10/12




    Relation between geometrical objects | MBR




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        11/12




    Object Assignment




        source dataset                      target dataset
             SDS                                 TDS




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        12/12




    Object Assignment



                                                             enhanced dataset



        source dataset                      target dataset
             SDS                                 TDS




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        13/12




    Object Assignment




                                            dp <= dmax , where
                                            dmax user-defined

                                            Z1 – source polygon centre
                                            Z1´- target polygon centre




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        14/12




    Object Assignment




                                            dp



              source dataset SDS                 target dataset TDS




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        15/12




    Object Assignment




                                            dp <= dmax , where
                                            dmax user-defined

                                            Z1 – source polygon centre
                                            Z1´- target polygon centre




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        16/12




    Object Assignment




                                            dp <= dmax , where
                                            dmax user-defined

                                            Z1 – source polygon centre
                                            Z1´- target polygon centre




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        17/12




    Object Assignment




                                            dp <= dmax , where
                                            dmax user-defined

                                            Z1 – source polygon centre
                                            Z1´- target polygon centre

                                                    to compare:
                                                     perimeter
                                                     area
                                                     polygon extent

    © stankute·asche·ifg·uni·potsdam 2009
data-fusion            18/12




    Transfer of Semantical and Geometrical Information

                  6
                       5
        3                      4
                   2


                           1

         source dataset
            ID   use
            1    library
            2    university
            3    apartment
            4    apartment
            5    apartment
            6    apartment




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion            19/12




    Transfer of Semantical and Geometrical Information

                  6                                  6
                                            7
                       5                                 5
        3                      4            3                    4
                   2                                 2


                           1                                 1

         source dataset                     target dataset

            ID   use                            ID       level
            1    library                        1            4
            2    university                     2            4
            3    apartment                      3            5
            4    apartment                      4            2
            5    apartment                      5            6
            6    apartment                      6            6
                                                7            6



    © stankute·asche·ifg·uni·potsdam 2009
data-fusion            20/12




    Transfer of Semantical and Geometrical Information

                  6                                  6                    7         6
                                            7
                       5                                 5                              5
        3                      4            3                    4        3                     4
                   2                                 2                                 2


                           1                                 1                              1

         source dataset                     target dataset                output dataset

            ID   use                            ID       level       ID   use                       level
            1    library                        1            4       1    library                    4
            2    university                     2            4       2    university                 4
            3    apartment                      3            5       3    apartment                  5
            4    apartment                      5            6       4    apartment                 99999
            5    apartment                      7            6       5    apartment                  6
            6    apartment                                           6    apartment                 99999
                                                                     7    99999                      6



    © stankute·asche·ifg·uni·potsdam 2009
data-fusion            21/12




    Transfer of Semantical and Geometrical Information

                  6                                  6                    7         6
                                            7
                       5                                 5                              5
        3                      4            3                    4        3                     4
                   2                                 2                                 2


                           1                                 1                              1

         source dataset                     target dataset                output dataset

            ID   use                            ID       level       ID   use                       level
            1    library                        1            4       1    library                    4
            2    university                     2            4       2    university                 4
            3    apartment                      3            5       3    apartment                  5
            4    apartment                      5            6       4    apartment                 99999
            5    apartment                      7            6       5    apartment                  6
            6    apartment                                           6    apartment                 99999
                                                                     7    99999                      6



    © stankute·asche·ifg·uni·potsdam 2009
data-fusion            22/12




    Transfer of Semantical and Geometrical Information

                  6                                  6                    7         6
                                            7
                       5                                 5                              5
        3                      4            3                    4        3                     4
                   2                                 2                                 2


                           1                                 1                              1

         source dataset                     target dataset                output dataset

            ID   use                            ID       level       ID   use                       level
            1    library                        1            4       1    library                    4
            2    university                     2            4       2    university                 4
            3    apartment                      3            5       3    apartment                  5
            4    apartment                      5            6       4    apartment                 99999
            5    apartment                      7            6       5    apartment                  6
            6    apartment                                           6    apartment                 99999
                                                                     7    99999                      6



    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        23/12




    Results




     source dataset SDS                     target dataset TDS   output dataset
     58 shapes                              306 shapes           362 shapes
     3 attributes                           12 attributes        15 attributes


     About 96% of geometrical information is transferred!


    © stankute·asche·ifg·uni·potsdam 2009
data-fusion        24/12




    Conclusion and Future Work

     datafusion - updating and adding new geospatial features
     increasing the quality and accuracy of geospatial information
     datafusion of more complex polygon types (i.e. landuse)
     comprehensive algorithm that combines results of linear
       datafusion and polygonal datafusion




    © stankute·asche·ifg·uni·potsdam 2009
data-fusion         25/12




                      Thank you for your attention!




                      Autor: Silvija Stankutė IfG 2010
                      Kontakt: silvija.stankute@uni-potsdam.de




data-fusion

     © stankute·asche·ifg·uni·potsdam 2009

More Related Content

PDF
THRESHOLD BASED VM PLACEMENT TECHNIQUE FOR LOAD BALANCED RESOURCE PROVISIONIN...
PDF
An efficient data mining framework on hadoop using java persistence api
PDF
IRJET- Review of Existing Methods in K-Means Clustering Algorithm
PDF
Implementation of p pic algorithm in map reduce to handle big data
PDF
A general weighted_fuzzy_clustering_algorithm
PDF
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
PDF
A Novel Framework and Policies for On-line Block of Cores Allotment for Multi...
PDF
HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardin...
THRESHOLD BASED VM PLACEMENT TECHNIQUE FOR LOAD BALANCED RESOURCE PROVISIONIN...
An efficient data mining framework on hadoop using java persistence api
IRJET- Review of Existing Methods in K-Means Clustering Algorithm
Implementation of p pic algorithm in map reduce to handle big data
A general weighted_fuzzy_clustering_algorithm
TASK-DECOMPOSITION BASED ANOMALY DETECTION OF MASSIVE AND HIGH-VOLATILITY SES...
A Novel Framework and Policies for On-line Block of Cores Allotment for Multi...
HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardin...

What's hot (17)

PDF
NETWORK-AWARE DATA PREFETCHING OPTIMIZATION OF COMPUTATIONS IN A HETEROGENEOU...
PDF
benchmarks-sigmod09
PDF
IRJET - Evaluating and Comparing the Two Variation with Current Scheduling Al...
PDF
A Survey on Balancing the Network Load Using Geographic Hash Tables
PDF
Improved Max-Min Scheduling Algorithm
PDF
NNPDF3.0: parton distributions for the LHC Run II
PDF
PDF
Bitmap Indexes for Relational XML Twig Query Processing
PDF
An Efficient Low Complexity Low Latency Architecture for Matching of Data Enc...
PDF
Scheduling Algorithm Based Simulator for Resource Allocation Task in Cloud Co...
PDF
DYNAMIC TASK SCHEDULING BASED ON BURST TIME REQUIREMENT FOR CLOUD ENVIRONMENT
PDF
FUZZY GENE OPTIMIZED REWEIGHT BOOSTING CLASSIFICATION FOR ENERGY EFFICIENT DA...
PDF
AN ENERGY EFFICIENT L2 CACHE ARCHITECTURE USING WAY TAG INFORMATION UNDER WR...
PDF
Time Efficient VM Allocation using KD-Tree Approach in Cloud Server Environment
PDF
A Framework for Design of Partially Replicated Distributed Database Systems w...
PDF
An experimental evaluation of performance
PPTX
Lec08 optimizations
NETWORK-AWARE DATA PREFETCHING OPTIMIZATION OF COMPUTATIONS IN A HETEROGENEOU...
benchmarks-sigmod09
IRJET - Evaluating and Comparing the Two Variation with Current Scheduling Al...
A Survey on Balancing the Network Load Using Geographic Hash Tables
Improved Max-Min Scheduling Algorithm
NNPDF3.0: parton distributions for the LHC Run II
Bitmap Indexes for Relational XML Twig Query Processing
An Efficient Low Complexity Low Latency Architecture for Matching of Data Enc...
Scheduling Algorithm Based Simulator for Resource Allocation Task in Cloud Co...
DYNAMIC TASK SCHEDULING BASED ON BURST TIME REQUIREMENT FOR CLOUD ENVIRONMENT
FUZZY GENE OPTIMIZED REWEIGHT BOOSTING CLASSIFICATION FOR ENERGY EFFICIENT DA...
AN ENERGY EFFICIENT L2 CACHE ARCHITECTURE USING WAY TAG INFORMATION UNDER WR...
Time Efficient VM Allocation using KD-Tree Approach in Cloud Server Environment
A Framework for Design of Partially Replicated Distributed Database Systems w...
An experimental evaluation of performance
Lec08 optimizations
Ad

Viewers also liked (20)

PDF
08 adesivos, corte e correção
PDF
DEFINITIVE_PROGRAM_IWBBIO_2015
PDF
Ifim b school prospectus 2014 16
PDF
Costo de Oxígeno Pico Luego de Series de Ejercicios con Sobrecarga: Fundament...
PDF
Conferencia d anido_abril2010_def
PDF
Enjoy Istra, spring 2014: EN_DE
PDF
eCommerce homepage pop-up
PPT
Mundo Plano 2
PDF
Catalogo Merchandising 2014-2015
PDF
Wild Dog Design - Websites
PDF
Privacy Audits in Law Libraries
PDF
M&d formazione la metafora del ristorante ita eng
PDF
Rapid review of current service provision following cancer treatment
PDF
Eyetouch
PPTX
Turismo Parroquia Purunuma
PDF
Paseo en velero
PPTX
Soporteusuario
PDF
Cascando design accessoires voor thuis en op kantoor, bij HAGELE kantoormeubi...
PPTX
Trabajo de español
PDF
SYS-DAT per il Fashion - SAP Business One In One Day - Estratto
08 adesivos, corte e correção
DEFINITIVE_PROGRAM_IWBBIO_2015
Ifim b school prospectus 2014 16
Costo de Oxígeno Pico Luego de Series de Ejercicios con Sobrecarga: Fundament...
Conferencia d anido_abril2010_def
Enjoy Istra, spring 2014: EN_DE
eCommerce homepage pop-up
Mundo Plano 2
Catalogo Merchandising 2014-2015
Wild Dog Design - Websites
Privacy Audits in Law Libraries
M&d formazione la metafora del ristorante ita eng
Rapid review of current service provision following cancer treatment
Eyetouch
Turismo Parroquia Purunuma
Paseo en velero
Soporteusuario
Cascando design accessoires voor thuis en op kantoor, bij HAGELE kantoormeubi...
Trabajo de español
SYS-DAT per il Fashion - SAP Business One In One Day - Estratto
Ad

Similar to Geometrical DCC-Algorithm for Merging Polygonal Geospatial Data - Silvija Stankute and Hartmut Asche (20)

PPT
A Data Fusion System for Spatial Data Mining, Analysis and Improvement Silvij...
PPT
Search Methods for Multidimensional Data
PPTX
SSN2012 Deriving Semantic Sensor Metadata from Raw Measurements
DOCX
FBSIC Functionalities Matrix
PDF
Cerba ppt gi2011-harmonization-of-spatial-planning-data_final
PDF
GI2012 cajthaml-quality
PDF
T24144148
PDF
Summary of My Research
PPTX
Oxford 05-oct-2012
PPTX
SQLPASS AD404-M Spatial Index MRys
PPTX
SQLBits X SQL Server 2012 Spatial Indexing
PPTX
Nearest Neighbor Customer Insight
PDF
Intro to threp
PPTX
ACM 2013-02-25
PPT
Clustering: Large Databases in data mining
PDF
A unified approach for spatial data query
PDF
Fortuna 2012 physical_mashup_artificial_intelligence
PPT
100615 htap network_brussels
PPTX
2010 ICML
PDF
Parallel Distributed Image Stacking and Mosaicing with Hadoop__HadoopSummit2010
A Data Fusion System for Spatial Data Mining, Analysis and Improvement Silvij...
Search Methods for Multidimensional Data
SSN2012 Deriving Semantic Sensor Metadata from Raw Measurements
FBSIC Functionalities Matrix
Cerba ppt gi2011-harmonization-of-spatial-planning-data_final
GI2012 cajthaml-quality
T24144148
Summary of My Research
Oxford 05-oct-2012
SQLPASS AD404-M Spatial Index MRys
SQLBits X SQL Server 2012 Spatial Indexing
Nearest Neighbor Customer Insight
Intro to threp
ACM 2013-02-25
Clustering: Large Databases in data mining
A unified approach for spatial data query
Fortuna 2012 physical_mashup_artificial_intelligence
100615 htap network_brussels
2010 ICML
Parallel Distributed Image Stacking and Mosaicing with Hadoop__HadoopSummit2010

More from Beniamino Murgante (20)

PDF
Analyzing and assessing ecological transition in building sustainable cities
PDF
Smart Cities: New Science for the Cities
PDF
The evolution of spatial analysis and modeling in decision processes
PDF
Smart City or Urban Science?
PDF
Involving citizens in smart energy approaches: the experience of an energy pa...
PPTX
Programmazione per la governance territoriale in tema di tutela della biodive...
PDF
Involving Citizens in a Participation Process for Increasing Walkability
PDF
Presentation of ICCSA 2019 at the University of Saint petersburg
PPTX
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...
PDF
Presentation of ICCSA 2017 at the University of trieste
PPT
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
PPTX
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...
PPTX
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector 
PPT
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
PPT
Garden in motion. An experience of citizens involvement in public space regen...
PPT
Planning and Smartness: the true challenge
PDF
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...
PPT
Murgante smart energy
PPT
Informazione Geografica, Città, Smartness
PPT
Tecnologie, Territorio, Smartness
Analyzing and assessing ecological transition in building sustainable cities
Smart Cities: New Science for the Cities
The evolution of spatial analysis and modeling in decision processes
Smart City or Urban Science?
Involving citizens in smart energy approaches: the experience of an energy pa...
Programmazione per la governance territoriale in tema di tutela della biodive...
Involving Citizens in a Participation Process for Increasing Walkability
Presentation of ICCSA 2019 at the University of Saint petersburg
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...
Presentation of ICCSA 2017 at the University of trieste
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector 
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
Garden in motion. An experience of citizens involvement in public space regen...
Planning and Smartness: the true challenge
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...
Murgante smart energy
Informazione Geografica, Città, Smartness
Tecnologie, Territorio, Smartness

Geometrical DCC-Algorithm for Merging Polygonal Geospatial Data - Silvija Stankute and Hartmut Asche

  • 1. lv-DCC 1/?? Geometrical DCC-Algorithm for Merging Polygonal Geospatial Data ICCSA 2010 Fukuoka / Japan 23-26 March, 2010 Silvija Stankute and Hartmut Asche | University of Potsdam | Geoinformation Research | Germany
  • 2. data-fusion 2/12 Problem information needed information available input dataset 1 input dataset 2 input dataset 3 © stankute·asche·ifg·uni·potsdam 2009
  • 3. data-fusion 3/12 Problem and Objective  manual-acquisition of missing information - time-consuming and costly  a combination of two or more different datasets allows for an output dataset which fulfills the demands of the particular task an incorporation of suitable features required for specific task © stankute·asche·ifg·uni·potsdam 2009
  • 4. data-fusion 4/12 Workflow dataset 1 pre-processing object assignment dataset 2 pre-processing data sources new dataset  the DCC-algorithm is based on Direct Coordinate Comparison between two datasets © stankute·asche·ifg·uni·potsdam 2009
  • 5. data-fusion 5/12 Workflow dataset 1 pre-processing object assignment dataset 2 pre-processing data sources 1. uniform data format 2. transfer to the same new dataset coordinate system 3. verification and 4. geometrical correction © stankute·asche·ifg·uni·potsdam 2009
  • 6. data-fusion 6/12 Workflow dataset 1 pre-processing object assignment dataset 2 pre-processing data sources 1. uniform data format 2. transfer to the same new dataset coordinate system 3. verification and 1. new geometrical 4. geometrical correction information only 2. new semantical information only 3. new geometrical and semantical information © stankute·asche·ifg·uni·potsdam 2009
  • 7. data-fusion 7/12 Relation between two corresponding objects source dataset target dataset © stankute·asche·ifg·uni·potsdam 2009
  • 8. data-fusion 8/12 Relation between two corresponding objects source dataset target dataset © stankute·asche·ifg·uni·potsdam 2009
  • 9. data-fusion 9/12 Relation between geometrical objects  mean centre (MC),  minimum bounding rectangle centre (MBR) and  centroid (C) the choice of centre depends on the type of polygon © stankute·asche·ifg·uni·potsdam 2009
  • 10. data-fusion 10/12 Relation between geometrical objects | MBR © stankute·asche·ifg·uni·potsdam 2009
  • 11. data-fusion 11/12 Object Assignment source dataset target dataset SDS TDS © stankute·asche·ifg·uni·potsdam 2009
  • 12. data-fusion 12/12 Object Assignment enhanced dataset source dataset target dataset SDS TDS © stankute·asche·ifg·uni·potsdam 2009
  • 13. data-fusion 13/12 Object Assignment dp <= dmax , where dmax user-defined Z1 – source polygon centre Z1´- target polygon centre © stankute·asche·ifg·uni·potsdam 2009
  • 14. data-fusion 14/12 Object Assignment dp source dataset SDS target dataset TDS © stankute·asche·ifg·uni·potsdam 2009
  • 15. data-fusion 15/12 Object Assignment dp <= dmax , where dmax user-defined Z1 – source polygon centre Z1´- target polygon centre © stankute·asche·ifg·uni·potsdam 2009
  • 16. data-fusion 16/12 Object Assignment dp <= dmax , where dmax user-defined Z1 – source polygon centre Z1´- target polygon centre © stankute·asche·ifg·uni·potsdam 2009
  • 17. data-fusion 17/12 Object Assignment dp <= dmax , where dmax user-defined Z1 – source polygon centre Z1´- target polygon centre to compare: perimeter area polygon extent © stankute·asche·ifg·uni·potsdam 2009
  • 18. data-fusion 18/12 Transfer of Semantical and Geometrical Information 6 5 3 4 2 1 source dataset ID use 1 library 2 university 3 apartment 4 apartment 5 apartment 6 apartment © stankute·asche·ifg·uni·potsdam 2009
  • 19. data-fusion 19/12 Transfer of Semantical and Geometrical Information 6 6 7 5 5 3 4 3 4 2 2 1 1 source dataset target dataset ID use ID level 1 library 1 4 2 university 2 4 3 apartment 3 5 4 apartment 4 2 5 apartment 5 6 6 apartment 6 6 7 6 © stankute·asche·ifg·uni·potsdam 2009
  • 20. data-fusion 20/12 Transfer of Semantical and Geometrical Information 6 6 7 6 7 5 5 5 3 4 3 4 3 4 2 2 2 1 1 1 source dataset target dataset output dataset ID use ID level ID use level 1 library 1 4 1 library 4 2 university 2 4 2 university 4 3 apartment 3 5 3 apartment 5 4 apartment 5 6 4 apartment 99999 5 apartment 7 6 5 apartment 6 6 apartment 6 apartment 99999 7 99999 6 © stankute·asche·ifg·uni·potsdam 2009
  • 21. data-fusion 21/12 Transfer of Semantical and Geometrical Information 6 6 7 6 7 5 5 5 3 4 3 4 3 4 2 2 2 1 1 1 source dataset target dataset output dataset ID use ID level ID use level 1 library 1 4 1 library 4 2 university 2 4 2 university 4 3 apartment 3 5 3 apartment 5 4 apartment 5 6 4 apartment 99999 5 apartment 7 6 5 apartment 6 6 apartment 6 apartment 99999 7 99999 6 © stankute·asche·ifg·uni·potsdam 2009
  • 22. data-fusion 22/12 Transfer of Semantical and Geometrical Information 6 6 7 6 7 5 5 5 3 4 3 4 3 4 2 2 2 1 1 1 source dataset target dataset output dataset ID use ID level ID use level 1 library 1 4 1 library 4 2 university 2 4 2 university 4 3 apartment 3 5 3 apartment 5 4 apartment 5 6 4 apartment 99999 5 apartment 7 6 5 apartment 6 6 apartment 6 apartment 99999 7 99999 6 © stankute·asche·ifg·uni·potsdam 2009
  • 23. data-fusion 23/12 Results source dataset SDS target dataset TDS output dataset 58 shapes 306 shapes 362 shapes 3 attributes 12 attributes 15 attributes About 96% of geometrical information is transferred! © stankute·asche·ifg·uni·potsdam 2009
  • 24. data-fusion 24/12 Conclusion and Future Work  datafusion - updating and adding new geospatial features  increasing the quality and accuracy of geospatial information  datafusion of more complex polygon types (i.e. landuse)  comprehensive algorithm that combines results of linear datafusion and polygonal datafusion © stankute·asche·ifg·uni·potsdam 2009
  • 25. data-fusion 25/12 Thank you for your attention! Autor: Silvija Stankutė IfG 2010 Kontakt: silvija.stankute@uni-potsdam.de data-fusion © stankute·asche·ifg·uni·potsdam 2009