P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2
1 IBM   Research – Zurich; 2 University of Bristol
15 September 2010



SCN 2010, Amalfi, Italy

Get Shorty via Group Signatures
without Encryption
1 IBM    Research – Zurich; 2 University of Bristol



Motivation

Group Signatures are..
            .. a cryptographic authentication mechanism, which is ..
            .. useful for implementing scenarios, for example, in vehicular
            communication networks ..
            .. in a privacy-preserving way.
            .. not used.




2 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM    Research – Zurich; 2 University of Bristol



Outline
Motivation

Current Situation
         Security Notion
         Current Constructions

This Paper
         Our Security Model
         Our Construction

Comparison



3 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM    Research – Zurich; 2 University of Bristol



Group Signature Security Notion




5 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM    Research – Zurich; 2 University of Bristol



Group Signature Security Notion




6 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM    Research – Zurich; 2 University of Bristol



Group Signature Security Notion




7 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM    Research – Zurich; 2 University of Bristol



Group Signature Security Notion




8 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Current Constructions




10 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Evolving to More Efficient Group Signatures

                                                                                                                         + auction with private bids
                                                                                                                         + vote and prove
                                                                                                                           - key loss




12 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Our Construction




14 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Pairings

Asymmetric pairings with G1 , G2 , GT cyclic groups of prime order q.
There exists a efficiently computable map

                                                                                   ˆ
                                                                                   e : G1 × G2 → GT .



                              ˜
             For all x ∈ G1 , y ∈ G2 and α, β ∈ Zq we have
             ˆ       ˜       ˆ ˜
             e(x α , y β ) = e(x, y )αβ .
             ˆ ˜
             e(g, g ) = 1.




15 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Our Construction – Simplified
Join
             interactive protocol                                                                                                             Verify
             issues a CL signature                                                                                                                            verify Σ as well as
             (a ← g ρ , b ← g ρβ , c ← g ρα(1+β ξi ) )                                                                                                        ˆ    ˜       ˆ ˜
                                                                                                                                                              e(d, g β ) ≡ e(e, g )
Sign                                                                                                                                          Open
             re-randomize the CL signature                                                                                                                    for all i check
             (d ← aζ , e ← bζ , f ← c ζ )                                                                                                                     ˆ ˜ ?
                                                                                                                                                              e(f , g β ) =
             issue                                                                                                                                            ˆ    ˜ ˆ ˜
                                                                                                                                                              e(d, g α )e(e, g ξi )
                                                                    ˆ ˜
                                                                    e(f ,g )
             Σ ← SPK{(ξi ) :                                        ˆ ˜
                                                                    e(d,x )
                                                                                         ˆ ˜
                                                                                       = e(e, x )ξi }(m)



16 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM      Research – Zurich; 2 University of Bristol



Properties of our Construction - Recap

          + dynamic groups
          + selfless anonymity
          + traceability
          + non-frameability
          - linear opening
          - combined opener and group manager




17 / 28     P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



LRSW [Lysyanskaya et al., 1999]
       ˜   ˜ ˜       ˜
Given (x ← g α , y ← g β ) ∈ G2 and an oracle Ox ,y (·) that, on input of
                                               ˜˜

µ ∈ Zq , outputs a triple (a, aβ , aα(1+µβ ) ) ∈ G3 . For all
                                                  1
PPT-adversaries it is hard to output (µ, b ∈ G1 ∧ bβ ∧ bα(1+µβ ) ).

XDDH
XDDH holds if DDH is hard in G1 , i.e., if given a tuple (g, g µ , g ν , g ω )
for µ, ν ← Zq it is hard to decide whether ω = µν mod q or random.

q-SDH [Boneh and Boyen, 2004]
                                                                           2                          q
                 ˜ ˜                 ˜
Given a q-tuple (g γ , g γ , . . . , g γ ) for some hidden value of γ, it is
hard to output a pair (g 1/(γ+α) , α) for some α ∈ Zq .


19 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Comparison

             CL [Camenisch and Lysyanskaya, 2004]
                             CL signature & Cramer-Shoup encryption
                             XDDH & LRSW assumption
             BBS∗ [Boneh et al., 2004, Shacham, 2007]
                             BBS signature & Cramer-Shoup encryption
                             XDDH & q-SDH assumption
                         ´
             DP [Delerablee and Pointcheval, 2006]
                             BBS signature & two ElGamal encryptions
                             XDDH & q-SDH assumption



20 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol




Well... how efficient?
                       1
             ∼         2      signature length
                      1
             <        2     signature computation time
             ≈ signature verification time




21 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Comparison - Signature Size & Signing Time


                 Scheme                                  Size of Sig.                                                                           Sign Cost

                                                              G1                 Zq                         G5
                                                                                                             T                  G3
                                                                                                                                 T                 G2
                                                                                                                                                    T                  GT                 G2
                                                                                                                                                                                           1   G1
                      Ours                                      3                  2                                                                                      1                    3
                          CL                                      7                4                                                                   1                                  1    11
                         DP                                       4                5                                               1                                                      1    6
                     BBS*                                         4                5                             1                                                                        3    5




22 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi        © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Comparison - Verification


                           Scheme                                                                          Verification Cost

                                                                     P2                P              G3
                                                                                                       T                  G2
                                                                                                                           2                G4
                                                                                                                                             1                G3
                                                                                                                                                               1                 G2
                                                                                                                                                                                  1       G1
                                Ours                                    2                                                                                                           1     1
                                   CL                                   2                                                   1                                    2                  2     1
                                   DP                                                   1                1                  1                                    1                  2
                               BBS*                                     1                                                                      1                 1                  4




23 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi        © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol




                                                                        Thank you!




24 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol




                                                                                                               ?




25 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Security Model Development

             1991..2003
                             unlinkability
                             unforgeability
                             anonymity
                             traceability
                             non-frameability
             2003 (static groups) [Bellare et al., 2003]
                             full-anonymity
                             full-traceability




26 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Security Model Development

             2004 (verifier-local revocation) [Boneh and Shacham, 2004]
                             selfless anonymity
             2005 (dynamic groups) [Bellare et al., 2005]
                             non-frameability
             2010 (combination) [Bichsel et al., 2010]
                             dynamic groups
                             selfless anonymity
                             traceability
                             non-frameability




27 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol



Comparison - Assumptions


                                                             Separate                                               Underlying Hard Problems
               Scheme                               GM & Opener                                               for Anonymity and Traceability
                   Ours                                                                                                           XDDH and LRSW
                       CL                                                                                                         XDDH and LRSW
                       DP                                                                                                         XDDH and q-SDH
                  BBS∗                                                                                                            XDDH and q-SDH




28 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol


           Bellare, M., Micciancio, D., and Warinschi, B. (2003).
           Foundations of group signatures: Formal definitions, simplified
           requirements, and a construction based on general
           assumptions.
           In Biham, E., editor, EUROCRYPT ’03, volume 2656 of LNCS,
           pages 614–629. Springer.
           Bellare, M., Shi, H., and Zhang, C. (2005).
           Foundations of group signatures: The case of dynamic groups.
           In Menezes, A., editor, CT-RSA ’05, volume 3376 of LNCS,
           pages 136–153, San Francisco, CA, USA. Springer.
           Bichsel, P., Camenisch, J., Neven, G., Smart, N. P., and
           Warinschi, B. (2010).

28 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol


           Get shorty via group signatures without encryption.
           In Garay, J. A. and De Prisco, R., editors, SCN ’10, volume
           6280 of LNCS, pages 381–398. Springer.
           Boneh, D. and Boyen, X. (2004).
           Short signatures without random oracles.
           In Cachin, C. and Camenisch, J., editors, EUROCRYPT ’04,
           volume 3027 of LNCS, pages 54–73. Springer.
           Boneh, D., Boyen, X., and Shacham, H. (2004).
           Short group signatures.
           In Franklin, M. K., editor, CRYPTO ’04, volume 3152 of LNCS,
           pages 41–55. Springer.
           Boneh, D. and Shacham, H. (2004).

28 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol


           Group signatures with verifier-local revocation.
           In Atluri, V., Pfitzmann, B., and McDaniel, P., editors, Proc. 11th
           ACM CCS, pages 168–177. ACM Press.
           Camenisch, J. and Lysyanskaya, A. (2004).
           Signature schemes and anonymous credentials from bilinear
           maps.
           In Franklin, M. K., editor, CRYPTO ’04, volume 3152 of LNCS,
           pages 56–72. Springer.
                   ´
           Delerablee, C. and Pointcheval, D. (2006).
           Dynamic fully anonymous short group signatures.
           In Nguyen, P. Q., editor, VIETCRYPT ’06, volume 4341 of
           LNCS, pages 193–210, Hanoi, Vietnam. Springer.

28 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation
1 IBM     Research – Zurich; 2 University of Bristol


           Lysyanskaya, A., Rivest, R., Sahai, A., and Wolf, S. (1999).
           Pseudonym systems.
           In Heys, H. and Adams, C., editors, Selected Areas in
           Cryptography, volume 1758 of LNCS. Springer.
           Shacham, H. (2007).
           A Cramer-Shoup encryption scheme from the linear
           assumption and from progressively weaker linear variants.
           Cryptology ePrint Archive, Report 2007/074.
           http://eprint.iacr.org/.




28 / 28    P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi   © 2010 IBM Coorporation

More Related Content

PDF
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...
PDF
Triggering patterns of topology changes in dynamic attributed graphs
PDF
Programming the Interaction Space Effectively with ReSpecTX
PDF
Comparing estimation algorithms for block clustering models
PDF
AlgoPerm2012 - 09 Vincent Pilaud
PPTX
Short Transitive Signatures For Directed Trees
PDF
Lecture4 xing
PDF
Lecture10 xing
CVPR2010: Advanced ITinCVPR in a Nutshell: part 5: Shape, Matching and Diverg...
Triggering patterns of topology changes in dynamic attributed graphs
Programming the Interaction Space Effectively with ReSpecTX
Comparing estimation algorithms for block clustering models
AlgoPerm2012 - 09 Vincent Pilaud
Short Transitive Signatures For Directed Trees
Lecture4 xing
Lecture10 xing

Recently uploaded (20)

PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
HVAC Specification 2024 according to central public works department
PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
Empowerment Technology for Senior High School Guide
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
Trump Administration's workforce development strategy
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
International_Financial_Reporting_Standa.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
HVAC Specification 2024 according to central public works department
Introduction to pro and eukaryotes and differences.pptx
B.Sc. DS Unit 2 Software Engineering.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
Paper A Mock Exam 9_ Attempt review.pdf.
Chinmaya Tiranga quiz Grand Finale.pdf
Virtual and Augmented Reality in Current Scenario
Empowerment Technology for Senior High School Guide
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Trump Administration's workforce development strategy
What if we spent less time fighting change, and more time building what’s rig...
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
International_Financial_Reporting_Standa.pdf
Ad
Ad

Get Shorty via Group Signatures without Encryption

  • 1. P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 1 IBM Research – Zurich; 2 University of Bristol 15 September 2010 SCN 2010, Amalfi, Italy Get Shorty via Group Signatures without Encryption
  • 2. 1 IBM Research – Zurich; 2 University of Bristol Motivation Group Signatures are.. .. a cryptographic authentication mechanism, which is .. .. useful for implementing scenarios, for example, in vehicular communication networks .. .. in a privacy-preserving way. .. not used. 2 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 3. 1 IBM Research – Zurich; 2 University of Bristol Outline Motivation Current Situation Security Notion Current Constructions This Paper Our Security Model Our Construction Comparison 3 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 4. 1 IBM Research – Zurich; 2 University of Bristol Group Signature Security Notion 5 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 5. 1 IBM Research – Zurich; 2 University of Bristol Group Signature Security Notion 6 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 6. 1 IBM Research – Zurich; 2 University of Bristol Group Signature Security Notion 7 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 7. 1 IBM Research – Zurich; 2 University of Bristol Group Signature Security Notion 8 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 8. 1 IBM Research – Zurich; 2 University of Bristol Current Constructions 10 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 9. 1 IBM Research – Zurich; 2 University of Bristol Evolving to More Efficient Group Signatures + auction with private bids + vote and prove - key loss 12 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 10. 1 IBM Research – Zurich; 2 University of Bristol Our Construction 14 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 11. 1 IBM Research – Zurich; 2 University of Bristol Pairings Asymmetric pairings with G1 , G2 , GT cyclic groups of prime order q. There exists a efficiently computable map ˆ e : G1 × G2 → GT . ˜ For all x ∈ G1 , y ∈ G2 and α, β ∈ Zq we have ˆ ˜ ˆ ˜ e(x α , y β ) = e(x, y )αβ . ˆ ˜ e(g, g ) = 1. 15 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 12. 1 IBM Research – Zurich; 2 University of Bristol Our Construction – Simplified Join interactive protocol Verify issues a CL signature verify Σ as well as (a ← g ρ , b ← g ρβ , c ← g ρα(1+β ξi ) ) ˆ ˜ ˆ ˜ e(d, g β ) ≡ e(e, g ) Sign Open re-randomize the CL signature for all i check (d ← aζ , e ← bζ , f ← c ζ ) ˆ ˜ ? e(f , g β ) = issue ˆ ˜ ˆ ˜ e(d, g α )e(e, g ξi ) ˆ ˜ e(f ,g ) Σ ← SPK{(ξi ) : ˆ ˜ e(d,x ) ˆ ˜ = e(e, x )ξi }(m) 16 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 13. 1 IBM Research – Zurich; 2 University of Bristol Properties of our Construction - Recap + dynamic groups + selfless anonymity + traceability + non-frameability - linear opening - combined opener and group manager 17 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 14. 1 IBM Research – Zurich; 2 University of Bristol LRSW [Lysyanskaya et al., 1999] ˜ ˜ ˜ ˜ Given (x ← g α , y ← g β ) ∈ G2 and an oracle Ox ,y (·) that, on input of ˜˜ µ ∈ Zq , outputs a triple (a, aβ , aα(1+µβ ) ) ∈ G3 . For all 1 PPT-adversaries it is hard to output (µ, b ∈ G1 ∧ bβ ∧ bα(1+µβ ) ). XDDH XDDH holds if DDH is hard in G1 , i.e., if given a tuple (g, g µ , g ν , g ω ) for µ, ν ← Zq it is hard to decide whether ω = µν mod q or random. q-SDH [Boneh and Boyen, 2004] 2 q ˜ ˜ ˜ Given a q-tuple (g γ , g γ , . . . , g γ ) for some hidden value of γ, it is hard to output a pair (g 1/(γ+α) , α) for some α ∈ Zq . 19 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 15. 1 IBM Research – Zurich; 2 University of Bristol Comparison CL [Camenisch and Lysyanskaya, 2004] CL signature & Cramer-Shoup encryption XDDH & LRSW assumption BBS∗ [Boneh et al., 2004, Shacham, 2007] BBS signature & Cramer-Shoup encryption XDDH & q-SDH assumption ´ DP [Delerablee and Pointcheval, 2006] BBS signature & two ElGamal encryptions XDDH & q-SDH assumption 20 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 16. 1 IBM Research – Zurich; 2 University of Bristol Well... how efficient? 1 ∼ 2 signature length 1 < 2 signature computation time ≈ signature verification time 21 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 17. 1 IBM Research – Zurich; 2 University of Bristol Comparison - Signature Size & Signing Time Scheme Size of Sig. Sign Cost G1 Zq G5 T G3 T G2 T GT G2 1 G1 Ours 3 2 1 3 CL 7 4 1 1 11 DP 4 5 1 1 6 BBS* 4 5 1 3 5 22 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 18. 1 IBM Research – Zurich; 2 University of Bristol Comparison - Verification Scheme Verification Cost P2 P G3 T G2 2 G4 1 G3 1 G2 1 G1 Ours 2 1 1 CL 2 1 2 2 1 DP 1 1 1 1 2 BBS* 1 1 1 4 23 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 19. 1 IBM Research – Zurich; 2 University of Bristol Thank you! 24 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 20. 1 IBM Research – Zurich; 2 University of Bristol ? 25 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 21. 1 IBM Research – Zurich; 2 University of Bristol Security Model Development 1991..2003 unlinkability unforgeability anonymity traceability non-frameability 2003 (static groups) [Bellare et al., 2003] full-anonymity full-traceability 26 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 22. 1 IBM Research – Zurich; 2 University of Bristol Security Model Development 2004 (verifier-local revocation) [Boneh and Shacham, 2004] selfless anonymity 2005 (dynamic groups) [Bellare et al., 2005] non-frameability 2010 (combination) [Bichsel et al., 2010] dynamic groups selfless anonymity traceability non-frameability 27 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 23. 1 IBM Research – Zurich; 2 University of Bristol Comparison - Assumptions Separate Underlying Hard Problems Scheme GM & Opener for Anonymity and Traceability Ours XDDH and LRSW CL XDDH and LRSW DP XDDH and q-SDH BBS∗ XDDH and q-SDH 28 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 24. 1 IBM Research – Zurich; 2 University of Bristol Bellare, M., Micciancio, D., and Warinschi, B. (2003). Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In Biham, E., editor, EUROCRYPT ’03, volume 2656 of LNCS, pages 614–629. Springer. Bellare, M., Shi, H., and Zhang, C. (2005). Foundations of group signatures: The case of dynamic groups. In Menezes, A., editor, CT-RSA ’05, volume 3376 of LNCS, pages 136–153, San Francisco, CA, USA. Springer. Bichsel, P., Camenisch, J., Neven, G., Smart, N. P., and Warinschi, B. (2010). 28 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 25. 1 IBM Research – Zurich; 2 University of Bristol Get shorty via group signatures without encryption. In Garay, J. A. and De Prisco, R., editors, SCN ’10, volume 6280 of LNCS, pages 381–398. Springer. Boneh, D. and Boyen, X. (2004). Short signatures without random oracles. In Cachin, C. and Camenisch, J., editors, EUROCRYPT ’04, volume 3027 of LNCS, pages 54–73. Springer. Boneh, D., Boyen, X., and Shacham, H. (2004). Short group signatures. In Franklin, M. K., editor, CRYPTO ’04, volume 3152 of LNCS, pages 41–55. Springer. Boneh, D. and Shacham, H. (2004). 28 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 26. 1 IBM Research – Zurich; 2 University of Bristol Group signatures with verifier-local revocation. In Atluri, V., Pfitzmann, B., and McDaniel, P., editors, Proc. 11th ACM CCS, pages 168–177. ACM Press. Camenisch, J. and Lysyanskaya, A. (2004). Signature schemes and anonymous credentials from bilinear maps. In Franklin, M. K., editor, CRYPTO ’04, volume 3152 of LNCS, pages 56–72. Springer. ´ Delerablee, C. and Pointcheval, D. (2006). Dynamic fully anonymous short group signatures. In Nguyen, P. Q., editor, VIETCRYPT ’06, volume 4341 of LNCS, pages 193–210, Hanoi, Vietnam. Springer. 28 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation
  • 27. 1 IBM Research – Zurich; 2 University of Bristol Lysyanskaya, A., Rivest, R., Sahai, A., and Wolf, S. (1999). Pseudonym systems. In Heys, H. and Adams, C., editors, Selected Areas in Cryptography, volume 1758 of LNCS. Springer. Shacham, H. (2007). A Cramer-Shoup encryption scheme from the linear assumption and from progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074. http://eprint.iacr.org/. 28 / 28 P. Bichsel1 , J. Camenisch1 , G. Neven1 , N.P. Smart2 , B. Warinschi2 | Get Shorty via Group Signatures without Encryption | 15 September 2010 | ibmStyle.tex 2010-09-12 pbi © 2010 IBM Coorporation