This document discusses graph convolutional networks (GCNs), which are neural network models for graph-structured data. GCNs aim to learn functions on graphs by preserving the graph's spatial structure and enabling weight sharing. The document outlines the basic components of a GCN, including the adjacency matrix, node features, and application of deep neural network layers. It also notes some challenges with applying convolutions to graphs and discusses approaches like using the graph Fourier transform based on the Laplacian matrix.
Related topics: