SlideShare a Scribd company logo
2
Most read
3
Most read
4
Most read
The ways of node embedding
Node Embedding
• Goal : Efficient feature learning for ML
• Learned vectors can be used for
• Classification : SVM, Logistic Regression
• Clustering : K-means
• Link Prediction
Node Embedding
𝑆𝑖𝑚 𝑢, 𝑣 ≈ 𝑆𝑖𝑚(𝑧!, 𝑧")
Node Embedding
• How to define Node Similarity?
Common Neighbors : |𝑁 𝑥 ∩ 𝑁 𝑦 |
Adamic-Adar Index : ∑ !∈ # $ ∩# &
'
()* |# ! |
Jaccard Similarity :
# $ ∩# &
# $ ∪# &
Node Embedding
• Why not??
• Unseen node -> how to embed?
• 𝑂(|𝑉|) parameters needed
• Cannot incorporate node features
• GCN
Neighborhood Aggregation
Neighborhood Aggregation
ℎ!
"
= 𝑥!
ℎ!
#
= 𝜎(𝑊# '
$∈& !
ℎ$
#'(
|𝑁 𝑣 |
+ 𝐵#ℎ!
#'(
)
Node embedding
We now introduce the ways of node embedding using idea of word embedding
DeepWalk : Online Learning of Social Representations
나는 점심에 중국집에서 ____ 을 먹었다
짬뽕 짜장면
탕수육
감자탕
축구독서
주변 단어는 중심단어를 표현한다.(CBOW)
𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥$ 𝑠𝑖𝑚 점심, 𝑥 , 𝑠𝑖𝑚 중국집, 𝑥 , 𝑠𝑖𝑚(먹었다, 𝑥)
DeepWalk : Online Learning of Social Representations
___ 짜장면 ___
먹었다 중국집
점심
감자탕
축구독서
중심단어는 주변단어를 표현한다.(Skip-Gram)
𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥$ 𝑠𝑖𝑚 짜장면, 𝑥
DeepWalk : Online Learning of Social Representations
How can we make a sentence of nodes? Random Walk
Neighborhood preserving likelihood
Encoder-decoder structure
DeepWalk : Online Learning of Social Representations
DeepWalk : Online Learning of Social Representations
하지만, SkipGram에서 분류모델의 레이블 수는 V개라서 매우 비효율적 Hierarchical Softmax
h에 W를 곱하고 softmax : O(N) -> infeasible
O(logN)
아직도 많다면??
DeepWalk : Online Learning of Social Representations
Negative Sampling
전체를 보지 말자 : |V| -> K
DeepWalk : Online Learning of Social Representations
Pros :
1. Unseen data에 대해서 해결못함
2. Node/Edge feature 사용 안함.
3. Node label 사용 안함
Cons :
1. Unseen edge는 해결가능
2. Local information 사용
3. 병렬처리 가능
Node2vec: Scalable Feature Learning for Networks
The ways of node embedding

More Related Content

PPTX
Graph Neural Network - Introduction
PDF
Image analysis using python
PDF
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
PDF
GPU上でのNLP向け深層学習の実装について
PDF
Batch normalization paper review
PPTX
Graph Neural Network (한국어)
PDF
Artificial Neural Networks (ANNs) - XOR - Step-By-Step
PPTX
Resnet.pptx
Graph Neural Network - Introduction
Image analysis using python
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
GPU上でのNLP向け深層学習の実装について
Batch normalization paper review
Graph Neural Network (한국어)
Artificial Neural Networks (ANNs) - XOR - Step-By-Step
Resnet.pptx

What's hot (20)

PDF
【学会発表】U-Net++とSE-Netを統合した画像セグメンテーションのための転移学習モデル【IBIS2020】
PDF
強化學習 Reinforcement Learning
PPTX
Semantic segmentation with Convolutional Neural Network Approaches
PDF
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
PPTX
Swin transformer
PPTX
Machine learning with graph
PDF
DeBERTA : Decoding-Enhanced BERT with Disentangled Attention
PDF
Feature Engineering - Getting most out of data for predictive models - TDC 2017
PPTX
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
PDF
Gnn overview
PDF
Introduction to A3C model
PDF
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
PDF
SciPy 1.0 and Beyond - a Story of Community and Code
PDF
MobileNet - PR044
PPTX
Graph Representation Learning
PPTX
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)
PDF
Priorに基づく画像/テンソルの復元
PPTX
Deep Q-learning from Demonstrations DQfD
PPTX
【DL輪読会】ViT + Self Supervised Learningまとめ
PDF
애자일 머신러닝
【学会発表】U-Net++とSE-Netを統合した画像セグメンテーションのための転移学習モデル【IBIS2020】
強化學習 Reinforcement Learning
Semantic segmentation with Convolutional Neural Network Approaches
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Swin transformer
Machine learning with graph
DeBERTA : Decoding-Enhanced BERT with Disentangled Attention
Feature Engineering - Getting most out of data for predictive models - TDC 2017
[DL輪読会]Life-Long Disentangled Representation Learning with Cross-Domain Laten...
Gnn overview
Introduction to A3C model
Introduction to Artificial Neural Networks (ANNs) - Step-by-Step Training & T...
SciPy 1.0 and Beyond - a Story of Community and Code
MobileNet - PR044
Graph Representation Learning
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)
Priorに基づく画像/テンソルの復元
Deep Q-learning from Demonstrations DQfD
【DL輪読会】ViT + Self Supervised Learningまとめ
애자일 머신러닝
Ad

More from SEMINARGROOT (20)

PDF
Metric based meta_learning
PDF
Sampling method : MCMC
PDF
Demystifying Neural Style Transfer
PDF
Towards Deep Learning Models Resistant to Adversarial Attacks.
PDF
Graph Convolutional Network
PDF
Denoising With Frequency Domain
PDF
Bayesian Statistics
PDF
Coding Test Review 3
PDF
Time Series Analysis - ARMA
PDF
Differential Geometry for Machine Learning
PDF
Generative models : VAE and GAN
PDF
Effective Python
PDF
Understanding Blackbox Prediction via Influence Functions
PDF
Attention Is All You Need
PDF
Attention
PDF
WWW 2020 XAI Tutorial Review
PDF
Coding test review 2
PDF
Locality sensitive hashing
PDF
Coding Test Review1
PDF
Strong convexity on gradient descent and newton's method
Metric based meta_learning
Sampling method : MCMC
Demystifying Neural Style Transfer
Towards Deep Learning Models Resistant to Adversarial Attacks.
Graph Convolutional Network
Denoising With Frequency Domain
Bayesian Statistics
Coding Test Review 3
Time Series Analysis - ARMA
Differential Geometry for Machine Learning
Generative models : VAE and GAN
Effective Python
Understanding Blackbox Prediction via Influence Functions
Attention Is All You Need
Attention
WWW 2020 XAI Tutorial Review
Coding test review 2
Locality sensitive hashing
Coding Test Review1
Strong convexity on gradient descent and newton's method
Ad

Recently uploaded (20)

PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
Introduction to machine learning and Linear Models
PDF
Mega Projects Data Mega Projects Data
PPTX
IB Computer Science - Internal Assessment.pptx
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PPTX
Business Acumen Training GuidePresentation.pptx
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PDF
Foundation of Data Science unit number two notes
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
Database Infoormation System (DBIS).pptx
PDF
Lecture1 pattern recognition............
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
1_Introduction to advance data techniques.pptx
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Miokarditis (Inflamasi pada Otot Jantung)
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
Business Ppt On Nestle.pptx huunnnhhgfvu
Introduction to machine learning and Linear Models
Mega Projects Data Mega Projects Data
IB Computer Science - Internal Assessment.pptx
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
Data_Analytics_and_PowerBI_Presentation.pptx
Business Acumen Training GuidePresentation.pptx
STUDY DESIGN details- Lt Col Maksud (21).pptx
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Foundation of Data Science unit number two notes
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Database Infoormation System (DBIS).pptx
Lecture1 pattern recognition............
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
1_Introduction to advance data techniques.pptx

The ways of node embedding

  • 2. Node Embedding • Goal : Efficient feature learning for ML • Learned vectors can be used for • Classification : SVM, Logistic Regression • Clustering : K-means • Link Prediction
  • 3. Node Embedding 𝑆𝑖𝑚 𝑢, 𝑣 ≈ 𝑆𝑖𝑚(𝑧!, 𝑧")
  • 4. Node Embedding • How to define Node Similarity? Common Neighbors : |𝑁 𝑥 ∩ 𝑁 𝑦 | Adamic-Adar Index : ∑ !∈ # $ ∩# & ' ()* |# ! | Jaccard Similarity : # $ ∩# & # $ ∪# &
  • 5. Node Embedding • Why not?? • Unseen node -> how to embed? • 𝑂(|𝑉|) parameters needed • Cannot incorporate node features • GCN
  • 7. Neighborhood Aggregation ℎ! " = 𝑥! ℎ! # = 𝜎(𝑊# ' $∈& ! ℎ$ #'( |𝑁 𝑣 | + 𝐵#ℎ! #'( )
  • 8. Node embedding We now introduce the ways of node embedding using idea of word embedding
  • 9. DeepWalk : Online Learning of Social Representations 나는 점심에 중국집에서 ____ 을 먹었다 짬뽕 짜장면 탕수육 감자탕 축구독서 주변 단어는 중심단어를 표현한다.(CBOW) 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥$ 𝑠𝑖𝑚 점심, 𝑥 , 𝑠𝑖𝑚 중국집, 𝑥 , 𝑠𝑖𝑚(먹었다, 𝑥)
  • 10. DeepWalk : Online Learning of Social Representations ___ 짜장면 ___ 먹었다 중국집 점심 감자탕 축구독서 중심단어는 주변단어를 표현한다.(Skip-Gram) 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥$ 𝑠𝑖𝑚 짜장면, 𝑥
  • 11. DeepWalk : Online Learning of Social Representations How can we make a sentence of nodes? Random Walk Neighborhood preserving likelihood Encoder-decoder structure
  • 12. DeepWalk : Online Learning of Social Representations
  • 13. DeepWalk : Online Learning of Social Representations 하지만, SkipGram에서 분류모델의 레이블 수는 V개라서 매우 비효율적 Hierarchical Softmax h에 W를 곱하고 softmax : O(N) -> infeasible O(logN) 아직도 많다면??
  • 14. DeepWalk : Online Learning of Social Representations Negative Sampling 전체를 보지 말자 : |V| -> K
  • 15. DeepWalk : Online Learning of Social Representations Pros : 1. Unseen data에 대해서 해결못함 2. Node/Edge feature 사용 안함. 3. Node label 사용 안함 Cons : 1. Unseen edge는 해결가능 2. Local information 사용 3. 병렬처리 가능
  • 16. Node2vec: Scalable Feature Learning for Networks