SlideShare a Scribd company logo
Graph Regularised Hashing
Sean Moran and Victor Lavrenko
Institute of Language, Cognition and Computation
School of Informatics
University of Edinburgh
ECIR’15 Vienna, March 2015
Graph Regularised Hashing (GRH)
Overview
GRH
Evaluation
Conclusion
Graph Regularised Hashing (GRH)
Overview
GRH
Evaluation
Conclusion
Locality Sensitive Hashing
H DATABASE
Locality Sensitive Hashing
110101
010111
H
010101
111101
.....
DATABASE
HASH TABLE
Locality Sensitive Hashing
110101
010111
H
H
QUERY
DATABASE
HASH TABLE
010101
111101
.....
Locality Sensitive Hashing
110101
010111
H
H
COMPUTE
SIMILARITY
NEAREST
NEIGHBOURS
QUERY
010101
111101
.....
H DATABASE
QUERY
HASH TABLE
Locality Sensitive Hashing
110101
010111
111101
H
H
Content Based IR
Image: Imense Ltd
Image: Doersch et al.
Image: Xu et al.
Location Recognition
Near duplicate detection
010101
111101
.....
H
QUERY
DATABASE
QUERY
NEAREST
NEIGHBOURS
HASH TABLE
COMPUTE
SIMILARITY
Previous work
Data-independent: Locality Sensitive Hashing (LSH) [Indyk.
98]
Data-dependent (unsupervised): Anchor Graph Hashing
(AGH) [Liu et al. ’11], Spectral Hashing (SH) [Weiss ’08]
Data-dependent (supervised): Self Taught Hashing (STH)
[Zhang ’10], Supervised Hashing with Kernels (KSH) [Liu et
al. ’12], ITQ + CCA [Gong and Lazebnik ’11], Binary
Reconstructive Embedding (BRE) [Kulis and Darrell. ’09]
Previous work
Method Data-Dependent Supervised Scalable Effectiveness
LSH Low
SH Low
STH Medium
BRE Medium
ITQ+CCA Medium
KSH High
GRH High
Graph Regularised Hashing (GRH)
Overview
GRH
Evaluation
Conclusion
Graph Regularised Hashing (GRH)
Two step iterative hashing model:
Step A: Graph Regularisation
Lm ← sgn α SD−1
Lm−1 + (1−α)L0
Step B: Data-Space Partitioning
for k = 1. . .K : min ||hk ||2
+ C
N
i=1 ξik
s.t. Lik (hk xi + bk ) ≥ 1 − ξik for i = 1. . .N
Repeat for a set number of iterations (M)
Graph Regularised Hashing (GRH)
Step A: Graph Regularisation [Diaz ’07][1]
Lm ← sgn α SD−1
Lm−1 + (1−α)L0
S: Affinity (adjacency) matrix
D: Diagonal degree matrix
L: Binary bits at specified iteration
α: Interpolation parameter (0 ≤ α ≤ 1)
[1] Diaz, F.: Regularizing query-based retrieval scores. In: IR
(2007)
Graph Regularised Hashing (GRH)
Step A: Graph Regularisation [Diaz ’07]
Lm ← sgn α SD−1
Lm−1 + (1−α)L0
S: Affinity (adjacency) matrix
D: Diagonal degree matrix
L: Binary bits at specified iteration
α: Interpolation parameter (0 ≤ α ≤ 1)
Graph Regularised Hashing (GRH)
Step A: Graph Regularisation [Diaz ’07]
Lm ← sgn α SD−1
Lm−1 + (1−α)L0
S: Affinity (adjacency) matrix
D: Diagonal degree matrix
L: Binary bits at specified iteration
α: Interpolation parameter (0 ≤ α ≤ 1)
Graph Regularised Hashing (GRH)
Step A: Graph Regularisation [Diaz ’07]
Lm ← sgn α SD−1
Lm−1 + (1−α)L0
S: Affinity (adjacency) matrix
D: Diagonal degree matrix
L: Binary bits at specified iteration
α: Interpolation parameter (0 ≤ α ≤ 1)
Graph Regularised Hashing (GRH)
Step A: Graph Regularisation [Diaz ’07]
Lm ← sgn α SD−1
Lm−1 + (1−α)L0
S: Affinity (adjacency) matrix
D: Diagonal degree matrix
L: Binary bits at specified iteration
α: Interpolation parameter (0 ≤ α ≤ 1)
Graph Regularised Hashing (GRH)
-1 1 1
-1 -1 -1
ba
c
1 1 1


S a b c
a 1 1 0
b 1 1 1
c 0 1 1




D−1
a b c
a 0.5 0 0
b 0 0.33 0
c 0 0 0.5




L0 b1 b2 b3
a −1 −1 −1
b −1 1 1
c 1 1 1


Graph Regularised Hashing (GRH)
-1 1 1
-1 -1 -1
ba
c
1 1 1
L1 = sgn





−1 0 0
−0.33 0.33 0.33
0 1 1





Graph Regularised Hashing (GRH)
-1 1 1
-1 1 1
ba
c
1 1 1
L1 =


b1 b2 b3
a −1 1 1
b −1 1 1
c 1 1 1


Graph Regularised Hashing (GRH)
Step B: Data-Space Partitioning
for k = 1. . .K : min ||hk||2 + C N
i=1 ξik
s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N
hk: Hyperplane k
bk: bias of hyperplane k
xi : data-point i
Lik: bit k of data-point i
ξik: slack variable ij
K: # bits
N: # data-points
Graph Regularised Hashing (GRH)
Step B: Data-Space Partitioning
for k = 1. . .K : min ||hk||2 + C N
i=1 ξik
s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N
hk: Hyperplane k
bk: bias of hyperplane k
xi : data-point i
Lik: bit k of data-point i
ξik: slack variable ij
K: # bits
N: # data-points
Graph Regularised Hashing (GRH)
Step B: Data-Space Partitioning
for k = 1. . .K : min ||hk||2 + C N
i=1 ξik
s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N
hk: Hyperplane k
bk: bias of hyperplane k
xi : data-point i
Lik: bit k of data-point i
ξik: slack variable ij
K: # bits
N: # data-points
Graph Regularised Hashing (GRH)
Step B: Data-Space Partitioning
for k = 1. . .K : min ||hk||2 + C N
i=1 ξik
s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N
hk: Hyperplane k
bk: bias of hyperplane k
xi : data-point i
Lik: bit k of data-point i
ξik: slack variable ij
K: # bits
N: # data-points
Graph Regularised Hashing (GRH)
Step B: Data-Space Partitioning
for k = 1. . .K : min ||hk||2 + C N
i=1 ξik
s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N
hk: Hyperplane k
bk: bias of hyperplane k
xi : data-point i
Lik: bit k of data-point i
ξik: slack variable ij
K: # bits
N: # data-points
Graph Regularised Hashing (GRH)
ba
c
e
f
g
h
d
Graph Regularised Hashing (GRH)
ba
c
e
f
g
h
d
Graph Regularised Hashing (GRH)
-1 1 1
1 1 1
-1 -1 -1
1 1 -1
ba
c
e
f
g
h
d
-1 1 1
1 -1 -1
1 -1 -1
1 1 1
Graph Regularised Hashing (GRH)
1 1 1
-1 1 1
-1 -1 -1
1 1 -1
ba
c
e
f
g
h
d
-1 1 1
1 1 1
1 -1 -1
1 -1 -1
Graph Regularised Hashing (GRH)
-1 1 1
-1 -1 -1
1 1 -1
ba
c
e
f
g
h
d
-1 1 1
-1 1 1
1 1 1
First bit
flipped
1 1 -1
Second bit
flipped
1 -1 -1
Graph Regularised Hashing (GRH)
-1 1 1
1 1 1
-1 -1 -1
1 1 -1
ba
c
e
f
g
h
d
-1 1 1
h1 . x−b1=0
h1
Negative
(-1)
half space
Positive
(+1)
half space
1 1 -1
1 -1 -1
-1 1 1
Graph Regularised Hashing (GRH)
-1 1 1
1 1 1
-1 -1 -1
1 1 -11 -1 -1
ba
c
e
f
g
h
1 1 -1
d
-1 1 1
-1 1 1
h2
Positive
(+1)
half space
h2 . x−b2=0
Negative
(-1)
half space
Evaluation
Overview
GRH
Evaluation
Conclusion
Datasets/Features
Standard evaluation datasets [Liu et al. ’12], [Gong and
Lazebnik ’11]:
CIFAR-10: 60K images, GIST descriptors, 10 classes1
MNIST: 70K images, grayscale pixels, 10 classes2
NUSWIDE: 270K images, GIST descriptors, 21 classes3
True NNs: images that share at least one class in common
[Liu et al. ’12]
1
http://www.cs.toronto.edu/~kriz/cifar.html
2
http://yann.lecun.com/exdb/mnist/
3
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
Evaluation Metrics
Hamming ranking evaluation paradigm [Liu et al. ’12], [Gong
and Lazebnik ’11]
Standard evaluation metrics [Liu et al. ’12], [Gong and
Lazebnik ’11]:
Mean average precison (mAP)
Precision at Hamming radius 2 (P@R2)
GRH vs Literature (CIFAR-10 @ 32 bits)
LSH BRE STH KSH GRH (Linear) GRH (RBF)
0.10
0.15
0.20
0.25
0.30
0.35
mAP
Linear
GRH
Non-linear
GRH
GRH vs Literature (CIFAR-10 @ 32 bits)
LSH BRE STH KSH GRH (Linear)GRH (RBF)
0.10
0.15
0.20
0.25
0.30
0.35
mAP
GRH's straightforward
objective outperforms
more complex
objectives
GRH vs Literature (CIFAR-10)
16 24 32 40 48 56 64
0.10
0.15
0.20
0.25
0.30
0.35
0.40
LSH
BRE
KSH
GRH
# Bits
mAP
GRH vs Literature (CIFAR-10)
Small amount of
supervision
required
16 24 32 40 48 56 64
0.10
0.15
0.20
0.25
0.30
0.35
0.40
LSH
BRE
KSH
GRH
# Bits
mAP
+25-30%
GRH vs. Initialisation Strategy (CIFAR-10 @ 32 bits)
GRH (Linear) GRH (RBF)
0.00
0.05
0.10
0.15
0.20
0.25
0.30 LSH
ITQ+CCA
mAP
Linear
GRH
Non-Linear
GRH
GRH vs. Initialisation Strategy (CIFAR-10 @ 32 bits)
GRH (Linear) GRH (RBF)
0.00
0.05
0.10
0.15
0.20
0.25
0.30 LSH
ITQ+CCA
mAP
Eigendecomposition
not necessary -
saves O(d^3)
GRH vs # Supervisory Data-Points (CIFAR-10)
Linear, T=1K Linear, T=2K RBF, T=1K RBF, T=2K
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
mAP
Linear
GRH
Non-linear
GRH
Linear
GRH
Non-linear
GRH
GRH vs # Supervisory Data-Points (CIFAR-10)
Linear, T=1K Linear, T=2K RBF, T=1K RBF, T=2K
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
mAP
Small amount of
supervision
required
GRH Timing (CIFAR-10 @ 32 bits)
Timings (s)
Method Train Test Total
GRH 42.68 0.613 43.29
KSH [1] 81.17 0.103 82.27
BRE [2] 231.1 0.370 231.4
[1] Liu, W.: Supervised Hashing with Kernels. In: CVPR (2012)
[2] Kulis, B.: Binary Reconstructive Embedding. In: NIPS (2009)
Conclusion
Overview
GRH
Evaluation
Conclusion
Conclusions and Future Work
Supervised hashing model that is both accurate and easily
scalable
Take-home messages:
Regularising bits over a graph is effective (and efficient) for
hashcode learning
An intermediate eigendecomposition step is not necessary
Hyperplanes (linear hypersurfaces) can achieve a very good
retrieval accuracy
Future work: extend to the cross-modal hashing scenario (e.g.
Image ↔ Text, English ↔ Spanish)
Thank you for your attention
Sean Moran
Code and datasets available at:
sean.moran@ed.ac.uk
www.seanjmoran.com

More Related Content

PDF
Csr2011 june14 15_45_musatov
PDF
Andrew Goldberg. Highway Dimension and Provably Efficient Shortest Path Algor...
PPTX
distance_matrix_ch
PPT
R Spatial Analysis using SP
PDF
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
ODP
Geospatial Data in R
PDF
VJAI Paper Reading#3-KDD2019-ClusterGCN
PPT
On Resolution Proofs for Combinational Equivalence
Csr2011 june14 15_45_musatov
Andrew Goldberg. Highway Dimension and Provably Efficient Shortest Path Algor...
distance_matrix_ch
R Spatial Analysis using SP
Joint CSI Estimation, Beamforming and Scheduling Design for Wideband Massive ...
Geospatial Data in R
VJAI Paper Reading#3-KDD2019-ClusterGCN
On Resolution Proofs for Combinational Equivalence

What's hot (20)

PDF
Spatial Analysis with R - the Good, the Bad, and the Pretty
PPT
Reducing Structural Bias in Technology Mapping
PDF
EuroPython 2017 - PyData - Deep Learning your Broadband Network @ HOME
PDF
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
PPT
4A_ 3_Parallel k-means clustering using gp_us for the geocomputation of real-...
DOC
Netautomata1
PDF
Visibility networks for time series
PPTX
R programming language in spatial analysis
PPT
2007 EuRad Conference: Speech on Rough Layers (ppt)
PPTX
3.4 deterministic pda
PDF
NFM 2015 - Sum of abstract domains
PDF
Determining the k in k-means with MapReduce
PDF
Speaker Diarization
PDF
Fine Grained Complexity of Rainbow Coloring and its Variants
PDF
Real-time or full-precision CRS imaging using a cloud computing portal: multi...
KEY
Compiling Imperative and Object-Oriented Languages - Dataflow Analysis
PDF
Europy17_dibernardo
PDF
Box-fitting algorithm presentation
PDF
Path Contraction Faster than 2^n
ODP
2007 EuRad Conference: Speech on Rough Layers (odp)
Spatial Analysis with R - the Good, the Bad, and the Pretty
Reducing Structural Bias in Technology Mapping
EuroPython 2017 - PyData - Deep Learning your Broadband Network @ HOME
VLSI IMPLEMENTATION OF AREA EFFICIENT 2-PARALLEL FIR DIGITAL FILTER
4A_ 3_Parallel k-means clustering using gp_us for the geocomputation of real-...
Netautomata1
Visibility networks for time series
R programming language in spatial analysis
2007 EuRad Conference: Speech on Rough Layers (ppt)
3.4 deterministic pda
NFM 2015 - Sum of abstract domains
Determining the k in k-means with MapReduce
Speaker Diarization
Fine Grained Complexity of Rainbow Coloring and its Variants
Real-time or full-precision CRS imaging using a cloud computing portal: multi...
Compiling Imperative and Object-Oriented Languages - Dataflow Analysis
Europy17_dibernardo
Box-fitting algorithm presentation
Path Contraction Faster than 2^n
2007 EuRad Conference: Speech on Rough Layers (odp)
Ad

Similar to Graph Regularised Hashing (ECIR'15 Talk) (20)

PDF
Graph Regularised Hashing
PDF
Learning to Project and Binarise for Hashing-based Approximate Nearest Neighb...
PDF
5 efficient-matching.ppt
PDF
large_scale_search.pdf
PDF
Building graphs to discover information by David Martínez at Big Data Spain 2015
PDF
Locality-sensitive hashing for search in metric space
PDF
Scribed lec8
PDF
Lec 5-nn-slides
PDF
Yuri Boykov — Combinatorial optimization for higher-order segmentation functi...
PPTX
PDF
Probabilistic Data Structures and Approximate Solutions Oleksandr Pryymak
PPT
20140327 - Hashing Object Embedding
PDF
Дмитрий Селиванов, OK.RU. Finding Similar Items in high-dimensional spaces: L...
PDF
Finding similar items in high dimensional spaces locality sensitive hashing
PDF
Neighbourhood Preserving Quantisation for LSH SIGIR Poster
PPTX
Locality sensitive hashing
PDF
Locality sensitive hashing
PPTX
Doing-the-impossible
PDF
Chromatic Sparse Learning
PDF
PhD thesis defence slides
Graph Regularised Hashing
Learning to Project and Binarise for Hashing-based Approximate Nearest Neighb...
5 efficient-matching.ppt
large_scale_search.pdf
Building graphs to discover information by David Martínez at Big Data Spain 2015
Locality-sensitive hashing for search in metric space
Scribed lec8
Lec 5-nn-slides
Yuri Boykov — Combinatorial optimization for higher-order segmentation functi...
Probabilistic Data Structures and Approximate Solutions Oleksandr Pryymak
20140327 - Hashing Object Embedding
Дмитрий Селиванов, OK.RU. Finding Similar Items in high-dimensional spaces: L...
Finding similar items in high dimensional spaces locality sensitive hashing
Neighbourhood Preserving Quantisation for LSH SIGIR Poster
Locality sensitive hashing
Locality sensitive hashing
Doing-the-impossible
Chromatic Sparse Learning
PhD thesis defence slides
Ad

More from Sean Moran (7)

PDF
Deep Local Parametric Filters for Image Enhancement
PDF
Deep Local Parametric Filters for Image Enhancement
PDF
Regularised Cross-Modal Hashing (SIGIR'15 Poster)
PDF
Data Science Research Day (Talk)
PDF
Sparse Kernel Learning for Image Annotation
PDF
ICMR 2014 - Sparse Kernel Learning Poster
PDF
ACL Variable Bit Quantisation Talk
Deep Local Parametric Filters for Image Enhancement
Deep Local Parametric Filters for Image Enhancement
Regularised Cross-Modal Hashing (SIGIR'15 Poster)
Data Science Research Day (Talk)
Sparse Kernel Learning for Image Annotation
ICMR 2014 - Sparse Kernel Learning Poster
ACL Variable Bit Quantisation Talk

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Sustainable Sites - Green Building Construction
PPTX
Lecture Notes Electrical Wiring System Components
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
DOCX
573137875-Attendance-Management-System-original
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPT
Project quality management in manufacturing
PPT
Mechanical Engineering MATERIALS Selection
PPTX
UNIT 4 Total Quality Management .pptx
PDF
composite construction of structures.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
web development for engineering and engineering
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Sustainable Sites - Green Building Construction
Lecture Notes Electrical Wiring System Components
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Model Code of Practice - Construction Work - 21102022 .pdf
573137875-Attendance-Management-System-original
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Project quality management in manufacturing
Mechanical Engineering MATERIALS Selection
UNIT 4 Total Quality Management .pptx
composite construction of structures.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
web development for engineering and engineering
CH1 Production IntroductoryConcepts.pptx
Automation-in-Manufacturing-Chapter-Introduction.pdf

Graph Regularised Hashing (ECIR'15 Talk)

  • 1. Graph Regularised Hashing Sean Moran and Victor Lavrenko Institute of Language, Cognition and Computation School of Informatics University of Edinburgh ECIR’15 Vienna, March 2015
  • 2. Graph Regularised Hashing (GRH) Overview GRH Evaluation Conclusion
  • 3. Graph Regularised Hashing (GRH) Overview GRH Evaluation Conclusion
  • 8. Locality Sensitive Hashing 110101 010111 111101 H H Content Based IR Image: Imense Ltd Image: Doersch et al. Image: Xu et al. Location Recognition Near duplicate detection 010101 111101 ..... H QUERY DATABASE QUERY NEAREST NEIGHBOURS HASH TABLE COMPUTE SIMILARITY
  • 9. Previous work Data-independent: Locality Sensitive Hashing (LSH) [Indyk. 98] Data-dependent (unsupervised): Anchor Graph Hashing (AGH) [Liu et al. ’11], Spectral Hashing (SH) [Weiss ’08] Data-dependent (supervised): Self Taught Hashing (STH) [Zhang ’10], Supervised Hashing with Kernels (KSH) [Liu et al. ’12], ITQ + CCA [Gong and Lazebnik ’11], Binary Reconstructive Embedding (BRE) [Kulis and Darrell. ’09]
  • 10. Previous work Method Data-Dependent Supervised Scalable Effectiveness LSH Low SH Low STH Medium BRE Medium ITQ+CCA Medium KSH High GRH High
  • 11. Graph Regularised Hashing (GRH) Overview GRH Evaluation Conclusion
  • 12. Graph Regularised Hashing (GRH) Two step iterative hashing model: Step A: Graph Regularisation Lm ← sgn α SD−1 Lm−1 + (1−α)L0 Step B: Data-Space Partitioning for k = 1. . .K : min ||hk ||2 + C N i=1 ξik s.t. Lik (hk xi + bk ) ≥ 1 − ξik for i = 1. . .N Repeat for a set number of iterations (M)
  • 13. Graph Regularised Hashing (GRH) Step A: Graph Regularisation [Diaz ’07][1] Lm ← sgn α SD−1 Lm−1 + (1−α)L0 S: Affinity (adjacency) matrix D: Diagonal degree matrix L: Binary bits at specified iteration α: Interpolation parameter (0 ≤ α ≤ 1) [1] Diaz, F.: Regularizing query-based retrieval scores. In: IR (2007)
  • 14. Graph Regularised Hashing (GRH) Step A: Graph Regularisation [Diaz ’07] Lm ← sgn α SD−1 Lm−1 + (1−α)L0 S: Affinity (adjacency) matrix D: Diagonal degree matrix L: Binary bits at specified iteration α: Interpolation parameter (0 ≤ α ≤ 1)
  • 15. Graph Regularised Hashing (GRH) Step A: Graph Regularisation [Diaz ’07] Lm ← sgn α SD−1 Lm−1 + (1−α)L0 S: Affinity (adjacency) matrix D: Diagonal degree matrix L: Binary bits at specified iteration α: Interpolation parameter (0 ≤ α ≤ 1)
  • 16. Graph Regularised Hashing (GRH) Step A: Graph Regularisation [Diaz ’07] Lm ← sgn α SD−1 Lm−1 + (1−α)L0 S: Affinity (adjacency) matrix D: Diagonal degree matrix L: Binary bits at specified iteration α: Interpolation parameter (0 ≤ α ≤ 1)
  • 17. Graph Regularised Hashing (GRH) Step A: Graph Regularisation [Diaz ’07] Lm ← sgn α SD−1 Lm−1 + (1−α)L0 S: Affinity (adjacency) matrix D: Diagonal degree matrix L: Binary bits at specified iteration α: Interpolation parameter (0 ≤ α ≤ 1)
  • 18. Graph Regularised Hashing (GRH) -1 1 1 -1 -1 -1 ba c 1 1 1   S a b c a 1 1 0 b 1 1 1 c 0 1 1     D−1 a b c a 0.5 0 0 b 0 0.33 0 c 0 0 0.5     L0 b1 b2 b3 a −1 −1 −1 b −1 1 1 c 1 1 1  
  • 19. Graph Regularised Hashing (GRH) -1 1 1 -1 -1 -1 ba c 1 1 1 L1 = sgn      −1 0 0 −0.33 0.33 0.33 0 1 1     
  • 20. Graph Regularised Hashing (GRH) -1 1 1 -1 1 1 ba c 1 1 1 L1 =   b1 b2 b3 a −1 1 1 b −1 1 1 c 1 1 1  
  • 21. Graph Regularised Hashing (GRH) Step B: Data-Space Partitioning for k = 1. . .K : min ||hk||2 + C N i=1 ξik s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N hk: Hyperplane k bk: bias of hyperplane k xi : data-point i Lik: bit k of data-point i ξik: slack variable ij K: # bits N: # data-points
  • 22. Graph Regularised Hashing (GRH) Step B: Data-Space Partitioning for k = 1. . .K : min ||hk||2 + C N i=1 ξik s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N hk: Hyperplane k bk: bias of hyperplane k xi : data-point i Lik: bit k of data-point i ξik: slack variable ij K: # bits N: # data-points
  • 23. Graph Regularised Hashing (GRH) Step B: Data-Space Partitioning for k = 1. . .K : min ||hk||2 + C N i=1 ξik s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N hk: Hyperplane k bk: bias of hyperplane k xi : data-point i Lik: bit k of data-point i ξik: slack variable ij K: # bits N: # data-points
  • 24. Graph Regularised Hashing (GRH) Step B: Data-Space Partitioning for k = 1. . .K : min ||hk||2 + C N i=1 ξik s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N hk: Hyperplane k bk: bias of hyperplane k xi : data-point i Lik: bit k of data-point i ξik: slack variable ij K: # bits N: # data-points
  • 25. Graph Regularised Hashing (GRH) Step B: Data-Space Partitioning for k = 1. . .K : min ||hk||2 + C N i=1 ξik s.t. Lik(hk xi + bk) ≥ 1 − ξik for i = 1. . .N hk: Hyperplane k bk: bias of hyperplane k xi : data-point i Lik: bit k of data-point i ξik: slack variable ij K: # bits N: # data-points
  • 26. Graph Regularised Hashing (GRH) ba c e f g h d
  • 27. Graph Regularised Hashing (GRH) ba c e f g h d
  • 28. Graph Regularised Hashing (GRH) -1 1 1 1 1 1 -1 -1 -1 1 1 -1 ba c e f g h d -1 1 1 1 -1 -1 1 -1 -1 1 1 1
  • 29. Graph Regularised Hashing (GRH) 1 1 1 -1 1 1 -1 -1 -1 1 1 -1 ba c e f g h d -1 1 1 1 1 1 1 -1 -1 1 -1 -1
  • 30. Graph Regularised Hashing (GRH) -1 1 1 -1 -1 -1 1 1 -1 ba c e f g h d -1 1 1 -1 1 1 1 1 1 First bit flipped 1 1 -1 Second bit flipped 1 -1 -1
  • 31. Graph Regularised Hashing (GRH) -1 1 1 1 1 1 -1 -1 -1 1 1 -1 ba c e f g h d -1 1 1 h1 . x−b1=0 h1 Negative (-1) half space Positive (+1) half space 1 1 -1 1 -1 -1 -1 1 1
  • 32. Graph Regularised Hashing (GRH) -1 1 1 1 1 1 -1 -1 -1 1 1 -11 -1 -1 ba c e f g h 1 1 -1 d -1 1 1 -1 1 1 h2 Positive (+1) half space h2 . x−b2=0 Negative (-1) half space
  • 34. Datasets/Features Standard evaluation datasets [Liu et al. ’12], [Gong and Lazebnik ’11]: CIFAR-10: 60K images, GIST descriptors, 10 classes1 MNIST: 70K images, grayscale pixels, 10 classes2 NUSWIDE: 270K images, GIST descriptors, 21 classes3 True NNs: images that share at least one class in common [Liu et al. ’12] 1 http://www.cs.toronto.edu/~kriz/cifar.html 2 http://yann.lecun.com/exdb/mnist/ 3 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
  • 35. Evaluation Metrics Hamming ranking evaluation paradigm [Liu et al. ’12], [Gong and Lazebnik ’11] Standard evaluation metrics [Liu et al. ’12], [Gong and Lazebnik ’11]: Mean average precison (mAP) Precision at Hamming radius 2 (P@R2)
  • 36. GRH vs Literature (CIFAR-10 @ 32 bits) LSH BRE STH KSH GRH (Linear) GRH (RBF) 0.10 0.15 0.20 0.25 0.30 0.35 mAP Linear GRH Non-linear GRH
  • 37. GRH vs Literature (CIFAR-10 @ 32 bits) LSH BRE STH KSH GRH (Linear)GRH (RBF) 0.10 0.15 0.20 0.25 0.30 0.35 mAP GRH's straightforward objective outperforms more complex objectives
  • 38. GRH vs Literature (CIFAR-10) 16 24 32 40 48 56 64 0.10 0.15 0.20 0.25 0.30 0.35 0.40 LSH BRE KSH GRH # Bits mAP
  • 39. GRH vs Literature (CIFAR-10) Small amount of supervision required 16 24 32 40 48 56 64 0.10 0.15 0.20 0.25 0.30 0.35 0.40 LSH BRE KSH GRH # Bits mAP +25-30%
  • 40. GRH vs. Initialisation Strategy (CIFAR-10 @ 32 bits) GRH (Linear) GRH (RBF) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 LSH ITQ+CCA mAP Linear GRH Non-Linear GRH
  • 41. GRH vs. Initialisation Strategy (CIFAR-10 @ 32 bits) GRH (Linear) GRH (RBF) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 LSH ITQ+CCA mAP Eigendecomposition not necessary - saves O(d^3)
  • 42. GRH vs # Supervisory Data-Points (CIFAR-10) Linear, T=1K Linear, T=2K RBF, T=1K RBF, T=2K 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 mAP Linear GRH Non-linear GRH Linear GRH Non-linear GRH
  • 43. GRH vs # Supervisory Data-Points (CIFAR-10) Linear, T=1K Linear, T=2K RBF, T=1K RBF, T=2K 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 mAP Small amount of supervision required
  • 44. GRH Timing (CIFAR-10 @ 32 bits) Timings (s) Method Train Test Total GRH 42.68 0.613 43.29 KSH [1] 81.17 0.103 82.27 BRE [2] 231.1 0.370 231.4 [1] Liu, W.: Supervised Hashing with Kernels. In: CVPR (2012) [2] Kulis, B.: Binary Reconstructive Embedding. In: NIPS (2009)
  • 46. Conclusions and Future Work Supervised hashing model that is both accurate and easily scalable Take-home messages: Regularising bits over a graph is effective (and efficient) for hashcode learning An intermediate eigendecomposition step is not necessary Hyperplanes (linear hypersurfaces) can achieve a very good retrieval accuracy Future work: extend to the cross-modal hashing scenario (e.g. Image ↔ Text, English ↔ Spanish)
  • 47. Thank you for your attention Sean Moran Code and datasets available at: sean.moran@ed.ac.uk www.seanjmoran.com