SlideShare a Scribd company logo
Gravity tests with neutrons
Pinghan Chu

April 13, 2011
                              1
Missing Block in Standard Model



✤   Gravity is missing?

✤   Higgs? Dark Matter? Dark Energy?




                                       2
Non-Newtonian interaction
✤   Higher dimension, gauge forces, massive scalar fields

✤   Newtonian gravitational potential should be modified?

✤   General expression of Newtonian gravitational potential

                              m1 m2            −r/λ
                   V (r) = −G       (1 + α exp      )
                                r
✤   α : strength

✤   λ : range


                                                              3
Possible sources

✤   Arkani-Hamed, Dimopoulos and Dvalis(PRD 59 086004, 1999) :repulsive forces in the
    bulk, solve the hierarchy problem

✤   α=106-1012, λ<30μm

✤   Callin and Burgess(hep-hp/0511216):cosmological constant linking size of extra
    dimensions to dark energy

✤   α<106, λ~10 μm

✤   Axion dark matter(Phys. Rep. 325 1 , 2000)

✤   20μm<λ<200mm, i.e., 10-6 eV < ma c2= hc/2πλ< 10-2 eV,

✤   others....                                                                          4
Tests with neutrons

✤   neutral

✤   small electrical polarizability (no van der Waals or Casimir forces)

✤   very sensitive: for example, neutron EDM.

✤   abundant amount in the universe

✤   neutron sources(ILL, PNPI, PSI, SNS, J-PARC, etc..)

✤   ultracold neutrons

                                                                           5
Gravity tests with neutrons


✤   The first experiment.

✤   Half of Newton’s apple is made of
    neutrons.


                    m1 m2
         V (r) = −G
                      r


                                        6
Neutron sources

    Institut Laue-Langevin (ILL)




✤    




                                   7
Quantum Bounce




✤   Energy conservation          P2
                            E=       + mgz
                                 2m
                                      
✤   Uncertainty principle   ∆p∆z =
                                      2
                            ∂E         2
✤   Minimize energy             =−        3
                                             + mg = 0
                             ∂z      4mz
                                    2 1/3
✤   Length scale            z0 = ( 2 )
                                  2mn g
                                              = 5.87 µm

                                   2 mg 2 1/3
✤   Energy scale            E0 = (
                                      2
                                           )   = 0.602 peV
                                                             8
Schrödinger equation

    2 2
−      ∇ ψ + V (z)ψ = Eψ
   2m
V (z) = mgz if z ≥ 0, and V (z) = ∞ if z  0.


✤   scale with length scale z0, ζ=z/z0
✤   solution is Airy function: ψn(ζ)=Ai(ζ-ζn)
✤   energy is En=mgzn with zn=z0ζn
✤   a displacement ζn=(3π/2(n-1/4))1/4
✤   zn is related to the turning point of a
    classical neutron trajectory with energy
    En
✤   z1=13.7μm, z2=24.1μm
✤   E1=1.41peV, E2=2.46peV                      9
Observation of bounded quantum
states
   a rough mirror coated with a neutron absorbing alloy   ✤   Nature, 417, 297, 2002

         peV UCN




 polished granite stone+passive antivibration table           3He   counter
                     Δθ=3μrad
                                                                                10
Experiment results




z1 = 12.2 ± 1.8syst ± 0.7stat µm
z2 = 21.6 ± 2.2syst ± 0.7stat µm
                                   11
Ramsey’s separated field method




     Magnetic modulation
     or modulation mirror arXiv:0902.0156   12
Application to gravity potential

                                                          Phys. Rev. D 81, 065019, 2010

                                                                                  a state detector




a state selector:
|p
                                    15cm
                      Eq − E p             80cm
             ωpq    =
                         
             ω12    = 2π × 254 Hz
                                         2 ∂ 2                                     ∂Ψ
                                      [−       2
                                                 + mgz + V0 Θ(−z + a sin ωt)]Ψ = i
                                         2m ∂z                                      ∂t
                                                                                                     13
                                                  mirror repulsive potential, V0~100 neVE1
Ramsey’s fringes




         nEDM sensitivity: ΔE=10-22eV
                                        14
Relative frequency shift
general express of non Newtonian potential
              m1 m2
 V (r) = −G         (1 + α exp−r/λ )
                r




     ρ = 19.32 g/cm3
     (gold or tungsten coating)



∆V (z) = 2πmραλ2 Ge−|z|/λ
      = 8.5 × 10−14 αλ2 e−|z|/λ peV
                                             α=1012
 ∆Em = Ψn |∆V (z)|Ψn 




                                                      15
Effect of hypothetical Yukawa-type forces



✤   consider transitions between 1-3.
✤   50 days
✤   count rate 0.1 S-1 and N=430000
✤   ΔΦΔN2π, ΔΦ~10-2rad
✤   interrogation time T=130 ms
✤   energy resolution ΔE=ΔΦh/2πT=5x10-17 eV
✤   for λ=z0, α=108




                                              16
Effect of hypothetical Yukawa-type forces



                         UCN should be stored as long as...
✤   In the future.....
✤   interrogation time T=130 s
✤   energy resolution ΔE=ΔΦh/2πT=5x10-20 eV
✤   with new neutron sources, ΔE=5x10-21 eV
✤   for λ=z0, α104




                                                              17
Axion

                · 1
               σ n      1 −r/λ
V () = gp gs
   r               (  + 2 )e
               8πmc λr r



✤   the axion window: 20μmλ200mm
    (10-6eVma10-2eV), allowed by
    cosmological data


✤   σ is neutron spin and n is a unit vector
    related to geometry of the macroscopic
    matter configuration

✤   for λ=z0, gpgs/hc ≤ 9x10-23/2π




                                               18
Summary



✤   The quantum bounce of neutron has been observed successfully at energy level of peV.

✤   An application of Ramsey’s method of oscillating fields to the quantum bouncer allows
    high precision spectroscopy of a neutron bouncing on a flat surface.

✤   Improve the sensitivity for neutron’s coupling to gravity, to hypothetical short-ranged
    forces or the influence of the cosmological constant.




                                                                                              19
References

✤   T. J. Bowles, Nature, 415, 267, 2002

✤   V. V. Nesvizhevsky, et al., Nature, 417, 297, 2002

✤   V. V. Nesvizhevsky, et al., Phys. Rev. D, 67, 102002, 2003

✤   H. Abele, Pro. Part. and Nucl. Phys. 60, 1-81,2008

✤   H. Abele, Summer school on fundamental neutron physics 2009

✤   H. Abele, et al., Phys. Rev. D, 81, 065019, 2010

                                                                  20
Ramsey’s method of oscillating fields


                 ω0
                                         
                   2
                           1
                           2 ΩR e−iωt
   H=         1
              2 ΩR eiωt/2    − ω0
                                 2
            Ω R 2 2 Ω
 P (t) =   (  ) sin ( R t)
            ΩR           2
           
  Ω =
   R           Ω2 + (ωpq − ω)2
                R




                                             21

More Related Content

PDF
Rumus fisika
PDF
Topic 4 kft 131
PDF
626 pages
DOC
Anschp22
PDF
The inverse droplet coagulation problem
PPT
Ch03 9
PDF
Cluster aggregation with complete collisional fragmentation
PDF
Topic 10 kft 131
Rumus fisika
Topic 4 kft 131
626 pages
Anschp22
The inverse droplet coagulation problem
Ch03 9
Cluster aggregation with complete collisional fragmentation
Topic 10 kft 131

What's hot (20)

DOC
Anschp39
PDF
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
PDF
Topic 3 kft 131
PDF
Topic 5 kft 131
PDF
Topic 6 kft 131
PDF
Cluster-cluster aggregation with (complete) collisional fragmentation
PDF
Seridonio fachini conem_draft
PDF
Phd thesis- Quantum Computation
PDF
Topic 7 kft 131
PDF
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
PDF
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
PDF
Topic 2 kft 131
PDF
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
DOC
Anschp29
PDF
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
DOC
Anschp21
PDF
Oscillatory kinetics in cluster-cluster aggregation
PDF
Topic 1 kft 131
PDF
Fluctuations and rare events in stochastic aggregation
PDF
Introduction to (weak) wave turbulence
Anschp39
What happens when the Kolmogorov-Zakharov spectrum is nonlocal?
Topic 3 kft 131
Topic 5 kft 131
Topic 6 kft 131
Cluster-cluster aggregation with (complete) collisional fragmentation
Seridonio fachini conem_draft
Phd thesis- Quantum Computation
Topic 7 kft 131
Nonequilibrium statistical mechanics of cluster-cluster aggregation, School o...
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Topic 2 kft 131
Nonequilibrium Statistical Mechanics of Cluster-cluster Aggregation Warwick ...
Anschp29
Instantaneous Gelation in Smoluchwski's Coagulation Equation Revisited, Confe...
Anschp21
Oscillatory kinetics in cluster-cluster aggregation
Topic 1 kft 131
Fluctuations and rare events in stochastic aggregation
Introduction to (weak) wave turbulence
Ad

Viewers also liked (6)

PPT
Rare B strangeness decay
PDF
CP Violation in B meson and Belle
PDF
Variation of Fundamental Constants
PDF
Searches for spin-dependent short-range forces
PDF
Neutron EDM and Dressed Spin
Rare B strangeness decay
CP Violation in B meson and Belle
Variation of Fundamental Constants
Searches for spin-dependent short-range forces
Neutron EDM and Dressed Spin
Ad

Similar to Gravity tests with neutrons (20)

PDF
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
PDF
Caltech Composite Inelastic Dark Matter
PPSX
Rutherford scattering show
KEY
Jan2010 Triumf2
PPTX
nuclear physics
PPT
PDF
Solb98mc 090504233342-phpapp02
PPT
Nanomagnetism, Javier Tejada
PDF
Hydrogen atom
PDF
Manuscript 1334
PDF
Manuscript 1334-1
PDF
N. Bilic - Supersymmetric Dark Energy
PDF
Equations
PPT
Science Cafe Discovers a New Form of Alternative Energy
DOC
Emdrive Ceas 2009 Paper
PPTX
Quantum gravity phenomenology: Minimal length
PDF
R. Jimenez - Fundamental Physics from Astronomical Observations
PDF
Searches with LHC
DOC
Fisicaimpulsivaingles
PDF
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Caltech Composite Inelastic Dark Matter
Rutherford scattering show
Jan2010 Triumf2
nuclear physics
Solb98mc 090504233342-phpapp02
Nanomagnetism, Javier Tejada
Hydrogen atom
Manuscript 1334
Manuscript 1334-1
N. Bilic - Supersymmetric Dark Energy
Equations
Science Cafe Discovers a New Form of Alternative Energy
Emdrive Ceas 2009 Paper
Quantum gravity phenomenology: Minimal length
R. Jimenez - Fundamental Physics from Astronomical Observations
Searches with LHC
Fisicaimpulsivaingles
Cosmin Crucean: Perturbative QED on de Sitter Universe.

Recently uploaded (20)

PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
01-Introduction-to-Information-Management.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Cell Structure & Organelles in detailed.
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
RMMM.pdf make it easy to upload and study
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Cell Types and Its function , kingdom of life
PDF
Trump Administration's workforce development strategy
PPTX
GDM (1) (1).pptx small presentation for students
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
01-Introduction-to-Information-Management.pdf
O7-L3 Supply Chain Operations - ICLT Program
Cell Structure & Organelles in detailed.
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Yogi Goddess Pres Conference Studio Updates
Supply Chain Operations Speaking Notes -ICLT Program
Abdominal Access Techniques with Prof. Dr. R K Mishra
Weekly quiz Compilation Jan -July 25.pdf
VCE English Exam - Section C Student Revision Booklet
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Anesthesia in Laparoscopic Surgery in India
RMMM.pdf make it easy to upload and study
Final Presentation General Medicine 03-08-2024.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Computing-Curriculum for Schools in Ghana
Cell Types and Its function , kingdom of life
Trump Administration's workforce development strategy
GDM (1) (1).pptx small presentation for students

Gravity tests with neutrons

  • 1. Gravity tests with neutrons Pinghan Chu April 13, 2011 1
  • 2. Missing Block in Standard Model ✤ Gravity is missing? ✤ Higgs? Dark Matter? Dark Energy? 2
  • 3. Non-Newtonian interaction ✤ Higher dimension, gauge forces, massive scalar fields ✤ Newtonian gravitational potential should be modified? ✤ General expression of Newtonian gravitational potential m1 m2 −r/λ V (r) = −G (1 + α exp ) r ✤ α : strength ✤ λ : range 3
  • 4. Possible sources ✤ Arkani-Hamed, Dimopoulos and Dvalis(PRD 59 086004, 1999) :repulsive forces in the bulk, solve the hierarchy problem ✤ α=106-1012, λ<30μm ✤ Callin and Burgess(hep-hp/0511216):cosmological constant linking size of extra dimensions to dark energy ✤ α<106, λ~10 μm ✤ Axion dark matter(Phys. Rep. 325 1 , 2000) ✤ 20μm<λ<200mm, i.e., 10-6 eV < ma c2= hc/2πλ< 10-2 eV, ✤ others.... 4
  • 5. Tests with neutrons ✤ neutral ✤ small electrical polarizability (no van der Waals or Casimir forces) ✤ very sensitive: for example, neutron EDM. ✤ abundant amount in the universe ✤ neutron sources(ILL, PNPI, PSI, SNS, J-PARC, etc..) ✤ ultracold neutrons 5
  • 6. Gravity tests with neutrons ✤ The first experiment. ✤ Half of Newton’s apple is made of neutrons. m1 m2 V (r) = −G r 6
  • 7. Neutron sources Institut Laue-Langevin (ILL) ✤   7
  • 8. Quantum Bounce ✤ Energy conservation P2 E= + mgz 2m ✤ Uncertainty principle ∆p∆z = 2 ∂E 2 ✤ Minimize energy =− 3 + mg = 0 ∂z 4mz 2 1/3 ✤ Length scale z0 = ( 2 ) 2mn g = 5.87 µm 2 mg 2 1/3 ✤ Energy scale E0 = ( 2 ) = 0.602 peV 8
  • 9. Schrödinger equation 2 2 − ∇ ψ + V (z)ψ = Eψ 2m V (z) = mgz if z ≥ 0, and V (z) = ∞ if z 0. ✤ scale with length scale z0, ζ=z/z0 ✤ solution is Airy function: ψn(ζ)=Ai(ζ-ζn) ✤ energy is En=mgzn with zn=z0ζn ✤ a displacement ζn=(3π/2(n-1/4))1/4 ✤ zn is related to the turning point of a classical neutron trajectory with energy En ✤ z1=13.7μm, z2=24.1μm ✤ E1=1.41peV, E2=2.46peV 9
  • 10. Observation of bounded quantum states a rough mirror coated with a neutron absorbing alloy ✤ Nature, 417, 297, 2002 peV UCN polished granite stone+passive antivibration table 3He counter Δθ=3μrad 10
  • 11. Experiment results z1 = 12.2 ± 1.8syst ± 0.7stat µm z2 = 21.6 ± 2.2syst ± 0.7stat µm 11
  • 12. Ramsey’s separated field method Magnetic modulation or modulation mirror arXiv:0902.0156 12
  • 13. Application to gravity potential Phys. Rev. D 81, 065019, 2010 a state detector a state selector: |p 15cm Eq − E p 80cm ωpq = ω12 = 2π × 254 Hz 2 ∂ 2 ∂Ψ [− 2 + mgz + V0 Θ(−z + a sin ωt)]Ψ = i 2m ∂z ∂t 13 mirror repulsive potential, V0~100 neVE1
  • 14. Ramsey’s fringes nEDM sensitivity: ΔE=10-22eV 14
  • 15. Relative frequency shift general express of non Newtonian potential m1 m2 V (r) = −G (1 + α exp−r/λ ) r ρ = 19.32 g/cm3 (gold or tungsten coating) ∆V (z) = 2πmραλ2 Ge−|z|/λ = 8.5 × 10−14 αλ2 e−|z|/λ peV α=1012 ∆Em = Ψn |∆V (z)|Ψn 15
  • 16. Effect of hypothetical Yukawa-type forces ✤ consider transitions between 1-3. ✤ 50 days ✤ count rate 0.1 S-1 and N=430000 ✤ ΔΦΔN2π, ΔΦ~10-2rad ✤ interrogation time T=130 ms ✤ energy resolution ΔE=ΔΦh/2πT=5x10-17 eV ✤ for λ=z0, α=108 16
  • 17. Effect of hypothetical Yukawa-type forces UCN should be stored as long as... ✤ In the future..... ✤ interrogation time T=130 s ✤ energy resolution ΔE=ΔΦh/2πT=5x10-20 eV ✤ with new neutron sources, ΔE=5x10-21 eV ✤ for λ=z0, α104 17
  • 18. Axion · 1 σ n 1 −r/λ V () = gp gs r ( + 2 )e 8πmc λr r ✤ the axion window: 20μmλ200mm (10-6eVma10-2eV), allowed by cosmological data ✤ σ is neutron spin and n is a unit vector related to geometry of the macroscopic matter configuration ✤ for λ=z0, gpgs/hc ≤ 9x10-23/2π 18
  • 19. Summary ✤ The quantum bounce of neutron has been observed successfully at energy level of peV. ✤ An application of Ramsey’s method of oscillating fields to the quantum bouncer allows high precision spectroscopy of a neutron bouncing on a flat surface. ✤ Improve the sensitivity for neutron’s coupling to gravity, to hypothetical short-ranged forces or the influence of the cosmological constant. 19
  • 20. References ✤ T. J. Bowles, Nature, 415, 267, 2002 ✤ V. V. Nesvizhevsky, et al., Nature, 417, 297, 2002 ✤ V. V. Nesvizhevsky, et al., Phys. Rev. D, 67, 102002, 2003 ✤ H. Abele, Pro. Part. and Nucl. Phys. 60, 1-81,2008 ✤ H. Abele, Summer school on fundamental neutron physics 2009 ✤ H. Abele, et al., Phys. Rev. D, 81, 065019, 2010 20
  • 21. Ramsey’s method of oscillating fields ω0 2 1 2 ΩR e−iωt H= 1 2 ΩR eiωt/2 − ω0 2 Ω R 2 2 Ω P (t) = ( ) sin ( R t) ΩR 2 Ω = R Ω2 + (ωpq − ω)2 R 21