SlideShare a Scribd company logo
Grease Fundamentals and Analysis
Basic Properties
Simple Definition
• Grease:
– A lubricant that is a solid to semi‐fluid dispersion of a 
thickening agent (thickener) in a liquid. A lubricating 
grease may be formulated with additives that impart 
special properties such as resistance to oxidation or 
wear.
– Origin: from Old French graisse, based on Latin 
crassus ‘thick, fat.’
Source:  NLGI
Stronger Definition
• Grease:
– A grease is a lubricant which has been thickened in order that it 
remain in contact with the moving surfaces and not leak out
under gravity or centrifugal action, or be squeezed out under 
pressure. Thus, a major practical problem is the provision of a 
structure that will stand up under shear and at all temperatures 
to which it may be subjected during use. At the same time the 
grease must be able to flow into the bearing through grease 
guns and from spot to spot in the lubricated machine as 
needed, and must not of itself add significantly to the power 
required to operate the machine, particularly at the start. This is 
an exacting set of rheological requirements.
Ref: Vold, J. Marjorie, and Vold, Robert D., "Lubrication and Lubricants", J. Inst. Petroleum Technology, Vol. 38, 1952, P155‐163.
Grease Rheology
• Rheology is the science of deformation and flow of 
materials
– Most solids are considered elastic, a material that 
when stressed will store deformation energy and 
recoil to its original shape
– Most fluids are considered viscous, a material that 
when stressed does not store deformation energy and 
will start to flow
• Greases are viscoelastic materials, a little of both
Functionality
• Greases are thick when at rest, and thinner under 
the application of shear, so they are described as 
being shear thinning
– Think of the thickener as a sponge that when 
squeezed will release the oil
Ref: T3‐TRI‐19560, Phillips 66 Company
Composition
Credit: Lubriplate Lubricants Co., 2014
Base Oils
• Mineral
• Synthetic
– Polyalphaolefins (PAO)
– Esters
– Polyglycols
– Polyethers
– Dialkylbenzenes
• Silicone
Base Oil Viscosity
VISCOSITY APPLICATION
ISO 15 ‐ 32 Used for high speeds (>3600 rpm), lower loads, good at 
low temperatures
ISO 68 ‐ 100 Used for high speeds (>3600 rpm), lower loads, higher 
temperatures
ISO 100 ‐ 220 Moderate speeds (<3600 rpm), good load carrying, 
typical multi‐purpose grease’s oil
ISO 460 Medium speeds, high load carrying
ISO 1000 ‐ 1500 Slow speeds (<100 rpm), excellent load carrying
Thickeners
• Thickeners are fibrous, like a sponge, and are used to affect 
grease properties:
– Texture, the appearance and feel of a grease which affects 
its adhesiveness
– Dropping Point, the temperature at which the grease 
releases a drop of oil
– Shear Stability, the ability to resist permanent changes in 
consistency due to work
– Water Resistance, the ability to withstand water without 
adverse effects
– Pumpability, the ability of a grease to flow under pressure
Soaps
• Lithium
• Calcium
• Sodium
• Aluminum
• Barium
Non‐Soaps
• Clays (Bentonite)
• Polyurea
Thickeners
Thickeners
Simple
• Prepared by reacting a 
single organic acid with one 
or more inorganic bases
Complex
• Prepared from two or more 
organic acids
– Primary soap (metallic 
stearate)
– Complexing agent (metallic 
salt)
• The complexing agent 
modifies grease 
characteristics and usually 
increases the dropping 
point.
Soap Thickeners
Source:  NLGI
Dropping Point (ASTM D566, D2265)
• In general, the 
dropping point is the 
temperature at which 
the grease passes from 
a semisolid to a liquid 
state under the 
conditions of test
• Considered to be 
temperature where 
thickener system fails
Ref: ASTM D566‐16, Standard Test Method for Dropping Point of Lubricating Grease, ASTM International, West Conshohocken, PA, 2016.
Grease Properties by Thickener
Shear 
Stability
Dropping Point 
(°F / °C)
Water 
Resistance
Maximum 
Temperature
Lithium Good 375 / 190 Yes 250 / 121
Lithium – Complex Excellent 500 / 260 Moderate 300 / 149
Calcium – Hydrated Good 190 / 88 Yes 150 / 65
Calcium – Anhydrous Poor – Good 290 / 143 Yes ‐‐‐
Calcium – Complex  Good 500+ / 260+ Yes 300 / 149
Sodium Poor – Good  360 / 182 No 250 / 121
Aluminum – Normal Poor 180 / 87 Yes 150 / 65
Aluminum – Complex Good 480 / 249 Yes 300 / 149
Barium Good 400 / 204 Yes 250 / 121
Clay Good 500+ / 260+ Yes 300 / 149
Polyurea Med – Good  470 / 243 Yes 300 / 149
Ref: Tool and Manufacturing Engineers Handbook,  Volume 1, p. 4‐44, Library of Congress, 1983
Penetration (ASTM D217)
• Cone penetration test 
results provide one 
measure of the consistency 
of a grease
– Worked penetration results 
are required to determine to 
which NLGI consistency grade 
a grease belongs
– Undisturbed penetration 
results provide a means of 
evaluating the effect of 
storage conditions on grease 
consistency
Ref: ASTM D217‐10, Standard Test Methods for Cone Penetration of Lubricating Grease, ASTM International, West Conshohocken, PA, 2010.
NLGI Consistency Number
NLGI 
Number
ASTM worked (60 strokes)
penetration at 25 °C
tenths of a millimeter
Appearance
Consistency food 
analogy
000 445‐475 fluid cooking oil
00 400‐430 semi‐fluid apple sauce
0 355‐385 very soft brown mustard
1 310‐340 soft tomato paste
2 265‐295 "normal" grease peanut butter
3 220‐250 firm vegetable shortening
4 175‐205 very firm frozen yogurt
5 130‐160 hard smooth pate
6 85‐115 very hard cheddar cheese
Ref: Rudnick, Leslie R. (2005). Synthetics, Mineral Oils, and Bio‐Based Lubricants: Chemistry and Technology (Chemical Industries). CRC. p. 468.
DIN 51502 Lubricant Codes
Ref: DIN 51502 Designation of lubricants and marking of lubricant containers, equipment and lubricating points
DIN 51502 Lubricant Codes
Ref: DIN 51502 Designation of lubricants and marking of lubricant containers, equipment and lubricating points
DIN 51502 Lubricant Codes
Ref: DIN 51502 Designation of lubricants and marking of lubricant containers, equipment and lubricating points
Performance Properties
Additives
• Structure modifiers
– modify the grease structure & properties
• Anti‐oxidants / Oxidation inhibitors
– rust and corrosion protection particularly for 
applications involving high temperatures and/or 
water contamination
• Extreme pressure additives
– enable greases and equipment to resist extreme heat 
and extreme pressure, particularly in boundary 
lubrication conditionsRef: lubimax.com
Additives
• Anti‐wear agents
– reduce metal wear by binding to metal surfaces, 
forming a lubricious sacrificial coating
• Anti‐rust / Metal deactivators
– reduce metal reactivity to protect surfaces from 
degradation
• Viscosity modifiers
– modify base fluid properties to enhance performance 
in highly variable temperature applications
Ref: lubimax.com
Additives
• Application dependent
– Pour point depressants
– Antifoam agents
– Emulsifiers
– Demulsifiers
– Tackiness agents
– Solid additives
– Friction Modifiers
Ref: lubimax.com
Oil Separation (ASTM D1742)
• Results of this test 
correlate directly with 
the oil separation that 
occurs in 35‐lb pails of 
grease during storage
– Reports % wt of oil 
separated after 24 hours 
at 25 °C
Ref: ASTM D1742‐06(2013), Standard Test Method for Oil Separation from Lubricating Grease During Storage, ASTM International, West 
Conshohocken, PA, 2013.
EP Properties (ASTM D2596)
• Used to differentiate 
between greases 
having low, medium, or 
high levels of extreme 
pressure characteristics
– Reports maximum load 
(OK value) under which 
no welding occurs
– a.k.a. Four‐Ball Method
Ref: ASTM D2596‐15, Standard Test Method for Measurement of Extreme‐Pressure Properties of Lubricating Grease (Four‐Ball Method), ASTM 
International, West Conshohocken, PA, 2015.
AW Properties (ASTM D2266)
• Used to determine the 
relative wear‐
preventing properties 
of greases under the 
test conditions
– Reports the wear scars 
on the lower three balls
– a.k.a. Four‐Ball Method
Ref: ASTM D2266‐01(2015), Standard Test Method for Wear Preventive Characteristics of Lubricating Grease (Four‐Ball Method), ASTM 
International, West Conshohocken, PA, 2015.
Load‐Carrying Capacity (ASTM D2509)
• Used to differentiate 
between greases 
having low, medium, or 
high levels of extreme 
pressure characteristics
– Reports maximum load 
(OK value) under which 
no scoring occurs
– a.k.a. Timken Method
Ref: ASTM D2509‐14, Standard Test Method for Measurement of Load‐Carrying Capacity of Lubricating Grease (Timken Method), ASTM 
International, West Conshohocken, PA, 2014.
Corrosion Prevent (ASTM D1743)
• Uses a grease‐
lubricated tapered 
roller bearings stored 
under wet conditions 
for 48 hours
– Pass/Fail result based on 
presence of corrosion 
spot >1 mm
Ref: ASTM D1743‐13, Standard Test Method for Determining Corrosion Preventive Properties of Lubricating Greases, ASTM International, West 
Conshohocken, PA, 2013.
Water Washout (ASTM D1264)
• Estimates the 
resistance of greases to 
water washout from 
ball bearings under 
conditions of the test
– Reports % wt of grease 
washed out after 
spraying for 60 minutes 
at 38 or 79 °C
Ref: ASTM D1264‐16, Standard Test Method for Determining the Water Washout Characteristics of Lubricating Greases, ASTM International, 
West Conshohocken, PA, 2016.
Water Spray Off (ASTM D4049)
• Evaluates the ability of 
a grease to adhere to a 
metal surface when 
subjected to direct 
water spray
– Reports % wt of grease 
removed after spraying 
for 5 minutes at 38 °C
Ref: ASTM D4049‐06(2011), Standard Test Method for Determining the Resistance of Lubricating Grease to Water Spray, ASTM International, 
West Conshohocken, PA, 2011.
Mobility (US Steel DM 43)
• Measures pumpability 
of grease at lower 
temperatures
– Reports g/min at 150 psi
– A factor in centralized 
grease system’s lines, 
nozzles and fittings
Source: SKF
Roll Stability (ASTM D1831)
• Can show a directional 
change in consistency 
that could occur in 
service
– Reports change in 
consistency
Ref: ASTM D1831‐11, Standard Test Method for Roll Stability of Lubricating Grease, ASTM International, West Conshohocken, PA, 2011.
Grease Compatibility
• Most grease manufacturers produce compatibility 
charts that do not necessarily agree with one 
another (often meant only for their own products)
• ASTM D6185 evaluates mixtures to confirm:
– No significant decrease in dropping point
– Mechanical stability remains in range
– Consistency remains in range after heating
Ref: ASTM D6185‐11, Standard Practice for Evaluating Compatibility of Binary Mixtures of Lubricating Greases, ASTM International, West 
Conshohocken, PA, 2011.
In‐service Grease Testing and 
Interpretation
Elemental Spectroscopy
• The measurement is performed by diluting a 
sample with solvent and injecting into a plasma 
where it is ionized (essentially burned) at a 
temperature of nearly 10,000 K (hotter than the 
surface of the sun)
– Each element on the periodic table emits a unique 
color of light as it is ionized, and the instrument 
measures the intensity of these colors to determine 
the concentration (reported in part per million –
ppm).
Elemental Spectroscopy
• The sample must completely ionize within a very 
small, measured area of the plasma.  As such, only 
particulate within 0‐5 microns is accurately 
measured, and particles larger than 10 microns are 
essentially not measured at all.  
– Wear particles generated under normal conditions 
and airborne contaminants easily fall within this 
range, however severe wear and/or contamination 
may produce particles too large for detection and 
would require supplemental testing such as ferrous 
wear concentration or analytical ferrography.
Elemental Spectroscopy
• Though additives are sub‐micron and will always be 
detected by this method, a second fundamental 
aspect of this test must be considered: this test only 
measures elements, not compounds, alloys or 
chemicals 
– Though certain elements may appear in the results 
and be safely assumed to be from certain types of 
additives, this test does not confirm the functionality 
of those additives.  While additives are slowly 
consumed, so long as they remain present in the fluid, 
the results will not decrease significantly.
Elemental Spectroscopy
• Trending is important, any notable changes can 
indicate mixing or incorrect grease
Water Contamination
• Water can soften or displace grease, leading to a 
lack of lubrication
• Water can cause corrosion or pitting of parts
• Water content may correlate with wear metals or 
ferrous wear concentration
– Trending is important, since a significant increase may 
occur before a corresponding increase in wear
Ferrous Wear Concentration
• May or may not correlate with spectroscopic iron
– If ferrous wear is lower than iron, wear is considered 
normal, i.e. <10 microns
– If ferrous wear increases without an increase in iron, 
wear is considered severe, i.e. >10 microns
– If both increase, wear is abnormal and should be 
followed up with Analytical Ferrography
Analytical Ferrography
• A portion of the sample is passed over a slide on 
top of a magnetic plate to attract ferrous particles
• The prepared slide is then placed under a 
microscope for examination
Image courtesy AZO Materials
Ferrous Particles
Near Exit are
Submicroscopic
Non Ferrous & Weakly
Magnetic Debris
Deposit Randomly
Non-Wetting
Barrier
Entry Region
Oil Flow
Particle Classification
• The particles are then classified by:
– Shape
– Composition
– Size
– Surface condition
• As a result of this classification, determination of an 
abnormal wear mode can be made
Analytical Ferrography
• Levels are subjective and size dictates that results 
may not correlated with elemental spectroscopy
Analytical Ferrography
• Pictures are of areas of interest, not necessarily 
representative of complete interpretation
Data Interpretation Tips
• Grease samples are inherently difficult to ensure 
that they are truly representative, therefore:
– Trending is the most valuable tool, try not to dwell on 
absolute values or limits
– High levels of contamination without corresponding 
wear often suggest poor sampling
– Sampling consistently (location, method, interval) 
provide the best chance for early detection of faults
Thank you for listening
We will allow time for any questions

More Related Content

PPT
Lubrication Fundamentals: Lubricating Oil Basics
PPT
Grease presentation
PPTX
Presentation on lubricants
PPTX
Mobil Lubricant Analysis
PPTX
Lubricants
PPTX
Lubrication and its types
PPTX
Vibration analysis
PPS
Basic Of Lubricants and Lubrication
Lubrication Fundamentals: Lubricating Oil Basics
Grease presentation
Presentation on lubricants
Mobil Lubricant Analysis
Lubricants
Lubrication and its types
Vibration analysis
Basic Of Lubricants and Lubrication

What's hot (20)

PDF
Grease basic knowledge_nk0906
DOCX
Lubrication oil, grease and others
PPTX
Lubrication fundamentals
PDF
Principles of lubrication new
PPTX
Lubrication
PPT
Lubricants 101
PPTX
Lubricant additives
PPT
Oil Analysis Report Interpretation
PPTX
Lubrication fundamentals
PPTX
Gear lubrication
PDF
Basics of lubricant additives
PPTX
Lubricants
PPTX
Types of Lubrication Used in I.C. Engines
PPTX
Engine lubrication basics
PDF
Lubrication
PPTX
Basic Lubricat Knowledge
PPTX
Lubrication
PDF
Grease product knowledge
PPTX
Lubricants
PPTX
Properties of Grease
Grease basic knowledge_nk0906
Lubrication oil, grease and others
Lubrication fundamentals
Principles of lubrication new
Lubrication
Lubricants 101
Lubricant additives
Oil Analysis Report Interpretation
Lubrication fundamentals
Gear lubrication
Basics of lubricant additives
Lubricants
Types of Lubrication Used in I.C. Engines
Engine lubrication basics
Lubrication
Basic Lubricat Knowledge
Lubrication
Grease product knowledge
Lubricants
Properties of Grease
Ad

Viewers also liked (13)

PPTX
Presentation grease 2012
PPTX
Grease
PPTX
Lubricant Deposit Characterization, Greg Livingstone, Fluitec
PDF
Aerospace Lithium Grease
PPT
A karpinska tribology
PPTX
Lubricants, Grease and Oil
PDF
LUBRIFICAÇÃO INDUSTRIAL - MELHORES PRÁTICAS - BEST PRACTICES
PPSX
GESTÃO de Excelência na LUBRIFICAÇÃO
PPSX
GESTAO de Excelencia na LUBRIFICACAO
PPT
Fag roller bearing damages (excellent)
PPTX
Lubrication ppt.
PPTX
Food Grade Grease Fundamentals
PDF
Visual Design with Data
Presentation grease 2012
Grease
Lubricant Deposit Characterization, Greg Livingstone, Fluitec
Aerospace Lithium Grease
A karpinska tribology
Lubricants, Grease and Oil
LUBRIFICAÇÃO INDUSTRIAL - MELHORES PRÁTICAS - BEST PRACTICES
GESTÃO de Excelência na LUBRIFICAÇÃO
GESTAO de Excelencia na LUBRIFICACAO
Fag roller bearing damages (excellent)
Lubrication ppt.
Food Grade Grease Fundamentals
Visual Design with Data
Ad

Similar to Grease Fundamentals and Analysis (20)

PDF
The FUCHS Lubricants book _regarding greases.pdf
PPT
Lubrication
DOCX
MET 105 Lubrication module 3(new)
PPTX
PDF
Volution VPL aritcle
PDF
Lubrication and it's types and properties of the libricabt
PDF
Factors for selection of high speed grease
PPTX
DRY SUMP LUBRICATING SYSTEM BY G.DINESHPIRAN
PDF
What is Moly (Molybdenum Disulphide (MoS2))?
PPTX
Presentation on Lubrication
PPTX
LUBRICANTS presentation slides with types functions and all
PPT
Lubricants in detail about its type .ppt
PDF
Lubricants.pdf
PDF
Project sales corp newsletter dec 2004
PDF
Project Sales Corp Newsletter
PDF
Project sales corp newsletter dec 2004
PPT
Basics of Lubricants and Lubrication in the Industry
PPTX
unit 3Lubrications ppt_1698398759 (2).pptx
PPT
slide share.pptx.ppt
The FUCHS Lubricants book _regarding greases.pdf
Lubrication
MET 105 Lubrication module 3(new)
Volution VPL aritcle
Lubrication and it's types and properties of the libricabt
Factors for selection of high speed grease
DRY SUMP LUBRICATING SYSTEM BY G.DINESHPIRAN
What is Moly (Molybdenum Disulphide (MoS2))?
Presentation on Lubrication
LUBRICANTS presentation slides with types functions and all
Lubricants in detail about its type .ppt
Lubricants.pdf
Project sales corp newsletter dec 2004
Project Sales Corp Newsletter
Project sales corp newsletter dec 2004
Basics of Lubricants and Lubrication in the Industry
unit 3Lubrications ppt_1698398759 (2).pptx
slide share.pptx.ppt

Recently uploaded (20)

PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
Placing the Near-Earth Object Impact Probability in Context
PDF
Sciences of Europe No 170 (2025)
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPT
6.1 High Risk New Born. Padetric health ppt
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
Biophysics 2.pdffffffffffffffffffffffffff
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PPTX
Fluid dynamics vivavoce presentation of prakash
PPTX
Application of enzymes in medicine (2).pptx
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
C1 cut-Methane and it's Derivatives.pptx
PPT
protein biochemistry.ppt for university classes
PDF
An interstellar mission to test astrophysical black holes
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Placing the Near-Earth Object Impact Probability in Context
Sciences of Europe No 170 (2025)
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
6.1 High Risk New Born. Padetric health ppt
ECG_Course_Presentation د.محمد صقران ppt
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
Phytochemical Investigation of Miliusa longipes.pdf
POSITIONING IN OPERATION THEATRE ROOM.ppt
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Biophysics 2.pdffffffffffffffffffffffffff
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Fluid dynamics vivavoce presentation of prakash
Application of enzymes in medicine (2).pptx
TOTAL hIP ARTHROPLASTY Presentation.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
C1 cut-Methane and it's Derivatives.pptx
protein biochemistry.ppt for university classes
An interstellar mission to test astrophysical black holes

Grease Fundamentals and Analysis