SlideShare a Scribd company logo
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 1
Big Data Programming
Using Hadoop Workshop
February 2015
Dr.Thanachart Numnonda
IMC Institute
thanachart@imcinstitute.com
Modifiy from Original Version by Danairat T.
Certified Java Programmer, TOGAF – Silver
danairat@gmail.com
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Running Hadoop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Running this lab using Cloudera Live
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Cloudera VM
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Cloudera VM
Start VirtualBox and Select New
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Cloudera VM (cont)
Name the image as Cloudera and select OS as Linux 64 bit
Then select memory size
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Cloudera VM (cont)
Select >> Use an existing virtual hard drive file
Locate to file cloudera-quickstart-vm-5.1.0-1-virtualbox-disk1.vmdk
Then click Start
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Sign in to Hue
Username: cloudera; Password: cloudera
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Hue on Cloudera
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Viewing HDFS
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Importing/Exporting
Data to HDFS
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Importing Data to Hadoop
Download War and Peace Full Text
www.gutenberg.org/ebooks/2600
$hadoop fs -mkdir input
$hadoop fs -mkdir output
$hadoop fs -copyFromLocal Downloads/pg2600.txt input
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Review file in Hadoop HDFS
[hdadmin@localhost bin]$ hadoop fs -cat input/pg2600.txt
List HDFS File
Read HDFS File
Retrieve HDFS File to Local File System
Please see also http://hadoop.apache.org/docs/r1.0.4/commands_manual.html
[hdadmin@localhost bin]$ hadoop fs -copyToLocal input/pg2600.txt tmp/file.txt
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Review file in Hadoop HDFS using
File Browse
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Review file in Hadoop HDFS using Hue
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hadoop Port Numbers
Daemon Default
Port
Configuration Parameter in
conf/*-site.xml
HDFS Namenode 50070 dfs.http.address
Datanodes 50075 dfs.datanode.http.address
Secondarynamenode 50090 dfs.secondary.http.address
MR JobTracker 50030 mapred.job.tracker.http.addre
ss
Tasktrackers 50060 mapred.task.tracker.http.addr
ess
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Removing data from HDFS using
Shell Command
hdadmin@localhost detach]$ hadoop fs -rm input/pg2600.txt
Deleted hdfs://localhost:54310/input/pg2600.txt
hdadmin@localhost detach]$
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Lecture: Understanding Map Reduce
Processing
Client
Name Node Job Tracker
Data Node
Task Tracker
Data Node
Task Tracker
Data Node
Task Tracker
Map Reduce
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
High Level Architecture of MapReduce
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 21
Before MapReduce…
●
Large scale data processing was difficult!
– Managing hundreds or thousands of processors
– Managing parallelization and distribution
– I/O Scheduling
– Status and monitoring
– Fault/crash tolerance
●
MapReduce provides all of these, easily!
Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 22
MapReduce Overview
●
What is it?
– Programming model used by Google
– A combination of the Map and Reduce models with an
associated implementation
– Used for processing and generating large data sets
Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 23
MapReduce Overview
●
How does it solve our previously mentioned problems?
– MapReduce is highly scalable and can be used across many
computers.
– Many small machines can be used to process jobs that
normally could not be processed by a large machine.
Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
MapReduce Framework
Source: www.bigdatauniversity.com
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
How does the MapReduce work?
Output in a list of (Key, List of Values)
in the intermediate file
Sorting
Partitioning
Output in a list of (Key, Value)
in the intermediate file
InputSplit
RecordReader
RecordWriter
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
How does the MapReduce work?
Output in a list of (Key, List of Values)
in the intermediate file
Sorting
Partitioning
Output in a list of (Key, Value)
in the intermediate file
InputSplit
RecordReader
RecordWriter
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 27
Map Abstraction
●
Inputs a key/value pair
– Key is a reference to the input value
– Value is the data set on which to operate
●
Evaluation
– Function defined by user
– Applies to every value in value input
●
Might need to parse input
●
Produces a new list of key/value pairs
– Can be different type from input pair
Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 28
Reduce Abstraction
●
Starts with intermediate Key / Value pairs
●
Ends with finalized Key / Value pairs
●
Starting pairs are sorted by key
●
Iterator supplies the values for a given key to the
Reduce function.
Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 29
Reduce Abstraction
●
Typically a function that:
– Starts with a large number of key/value pairs
●
One key/value for each word in all files being greped
(including multiple entries for the same word)
– Ends with very few key/value pairs
●
One key/value for each unique word across all the files with
the number of instances summed into this entry
●
Broken up so a given worker works with input of the
same key.
Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 30
How Map and Reduce Work Together
●
Map returns information
●
Reduces accepts information
●
Reduce applies a user defined function to reduce the
amount of data
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 31
Other Applications
●
Yahoo!
– Webmap application uses Hadoop to create a database of
information on all known webpages
●
Facebook
– Hive data center uses Hadoop to provide business statistics to
application developers and advertisers
●
Rackspace
– Analyzes sever log files and usage data using Hadoop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
MapReduce Framework
map: (K1, V1) -> list(K2, V2))
reduce: (K2, list(V2)) -> list(K3, V3)
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
MapReduce Processing – The Data
flow
1. InputFormat, InputSplits, RecordReader
2. Mapper - your focus is here
3. Partition, Shuffle & Sort
4. Reducer - your focus is here
5. OutputFormat, RecordWriter
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
InputFormat
InputFormat: Description: Key: Value:
TextInputFormat
Default format; reads
lines of text files
The byte offset of the
line
The line contents
KeyValueInputFormat
Parses lines into key,
val pairs
Everything up to the
first tab character
The remainder of the
line
SequenceFileInputFor
mat
A Hadoop-specific
high-performance
binary format
user-defined user-defined
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
InputSplit
An InputSplit describes a unit of work that comprises a single map
task.
InputSplit presents a byte-oriented view of the input.
You can control this value by setting the mapred.min.split.size
parameter in core-site.xml, or by overriding the parameter in the
JobConf object used to submit a particular MapReduce job.
RecordReader
RecordReader reads <key, value> pairs from an InputSplit.
Typically the RecordReader converts the byte-oriented view of
the input, provided by the InputSplit, and presents a record-
oriented to the Mapper
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Mapper
Mapper: The Mapper performs the user-defined logic to the input a
key, value and emits (key, value) pair(s) which are forwarded to the
Reducers.
Partition, Shuffle & Sort
After the first map tasks have completed, the nodes may still be
performing several more map tasks each. But they also begin
exchanging the intermediate outputs from the map tasks to where they
are required by the reducers.
Partitioner controls the partitioning of map-outputs to assign to reduce
task . he total number of partitions is the same as the number of reduce
tasks for the job
The set of intermediate keys on a single node is automatically sorted
by internal Hadoop before they are presented to the Reducer
This process of moving map outputs to the reducers is known as
shuffling.
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reducer
This is an instance of user-provided code that performs read each
key, iterator of values in the partition assigned. The OutputCollector
object in Reducer phase has a method named collect() which will
collect a (key, value) output.
OutputFormat, Record Writer
OutputFormat governs the writing format in OutputCollector and
RecordWriter writes output into HDFS.
OutputFormat: Description
TextOutputFormat
Default; writes lines in "key t value"
form
SequenceFileOutputFormat
Writes binary files suitable for
reading into subsequent MapReduce
jobs
NullOutputFormat generates no output files
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Submitting a MapReduce job
Source: www.bigdatauniversity.com
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Writing you own Map
Reduce Program
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Wordcount (HelloWord in Hadoop)
1. package org.myorg;
2.
3. import java.io.IOException;
4. import java.util.*;
5.
6. import org.apache.hadoop.fs.Path;
7. import org.apache.hadoop.conf.*;
8. import org.apache.hadoop.io.*;
9. import org.apache.hadoop.mapred.*;
10. import org.apache.hadoop.util.*;
11.
12. public class WordCount {
13.
14.
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text,
IntWritable> {
15. private final static IntWritable one = new IntWritable(1);
16. private Text word = new Text();
17.
18.
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
19. String line = value.toString();
20. StringTokenizer tokenizer = new StringTokenizer(line);
21. while (tokenizer.hasMoreTokens()) {
22. word.set(tokenizer.nextToken());
23. output.collect(word, one);
24. }
25. }
26. }
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Wordcount (HelloWord in Hadoop)
27.
28. public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text,
IntWritable> {
29.
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable>
output, Reporter reporter) throws IOException {
30. int sum = 0;
31. while (values.hasNext()) {
32. sum += values.next().get();
33. }
34. output.collect(key, new IntWritable(sum));
35. }
36. }
37.
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Wordcount (HelloWord in Hadoop)
38. public static void main(String[] args) throws Exception {
39. JobConf conf = new JobConf(WordCount.class);
40. conf.setJobName("wordcount");
41.
42. conf.setOutputKeyClass(Text.class);
43. conf.setOutputValueClass(IntWritable.class);
44.
45. conf.setMapperClass(Map.class);
46.
47. conf.setReducerClass(Reduce.class);
48.
49. conf.setInputFormat(TextInputFormat.class);
50. conf.setOutputFormat(TextOutputFormat.class);
51.
52. FileInputFormat.setInputPaths(conf, new Path(args[1]));
53. FileOutputFormat.setOutputPath(conf, new Path(args[2]));
54.
55. JobClient.runJob(conf);
57. }
58. }
59.
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Writing Map/Reduce
Program on Eclipse
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Eclipse in Cloudera VM
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Create a Java Project
Let's name it HadoopWordCount
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 46
Add dependencies to the project
●
Add the following two JARs to your build path
●
hadoop-common.jar and hadoop-mapreduce-client-core.jar. Both can be
founded at /usr/lib/hadoop/client
●
By perform the following steps
– Add a folder named lib to the project
– Copy the mentioned JARs in this folder
– Right-click on the project name >> select Build Path >> then
Configure Build Path
– Click on Add Jars, select these two JARs from the lib folder
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 47
Add dependencies to the project
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 48
Writing a source code
●
Right click the project, the select New >> Package
●
Name the package as org.myorg
●
Right click at org.myorg, the select New >> Class
●
Name the package as WordCount
●
Writing a source code as shown in previoud slides
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 49
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 50
Building a Jar file
●
Right click the project, the select Export
●
Select Java and then JAR file
●
Provide the JAR name, as wordcount.jar
●
Leave the JAR package options as default
●
In the JAR Manifest Specification section, in the botton, specify the Main
class
●
In this case, select WordCount
●
Click on Finish
●
The JAR file will be build and will be located at cloudera/workspace
Note: you may need to re-size the dialog font size by select
Windows >> Preferences >> Appearance >> Colors and Fonts
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 51
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Running Map Reduce and
Deploying to Hadoop Runtime
Environment
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Running Map Reduce Program
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing MapReduce Job in Hue
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing MapReduce Job in Hue
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing MapReduce Output Result
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing MapReduce Output Result
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing MapReduce Output Result
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Running Map Reduce
using Oozie workflow
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Hue: select WorkFlow >> Editor
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 61
Create a new workflow
●
Click Create button; the following screen will be displayed
●
Name the workflow as WordCountWorkflow
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 62
Select a Java job for the workflow
●
From the Oozie editor, drag Java and drop between start and end
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 63
Edit the Java Job
●
Assign the following value
– Name: WordCount
– Jar name: wordcount.jar (select … choose upload from local machine)
– Main Class: org.myorg.WordCount
– Arguments: input/* output/wordcount_output2
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 64
Submit the workflow
●
Click Done, follow by Save
●
Then click submit
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Running WordCount.jar
on Amazon EMR
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Architecture Overview of Amazon EMR
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Amazon EMR Cluster
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Creating an AWS account
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Signing up for the necessary services
●
Simple Storage Service (S3)
●
Elastic Compute Cloud (EC2)
●
Elastic MapReduce (EMR)
Caution! This costs real money!
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Creating Amazon S3 bucket
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Create access key using Security Credentials
in the AWS Management Console
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Creating a cluster in EMR
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Choose configure sample application
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Select create cluster
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
View Result from the S3 bucket
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Working with a csv data
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 80
A sample CSV data
●
The input data is access logs with the following form
Date, Requesting-IP-Address
●
We will write a map reduce program to count the number of hits to the
website per country.
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HitsByCountryMapper.java
package learning.bigdata.mapreduce;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class HitsByCountryMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static String[] COUNTRIES = { "India", "UK", "US", "China" };
private Text outputKey = new Text();
private IntWritable outputValue = new IntWritable();
@Override
protected void setup(Context context) throws IOException, InterruptedException {
super.setup(context);
}
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
try {
String valueString = value.toString();
// Split the value string to get Date and ipAddress
String[] row = valueString.split(",");
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HitsByCountryMapper.java
// row[0]= Date and row[1]=ipAddress
String ipAddress = row[1];
// Get the country name to which the ipAddress belongs
String countryName = getCountryNameFromIpAddress(ipAddress);
outputKey.set(countryName);
outputValue.set(1);
context.write(outputKey, outputValue);
} catch (ArrayIndexOutOfBoundsException ex) {
context.getCounter("Custom counters", "MAPPER_EXCEPTION_COUNTER").increment(1);
ex.printStackTrace();
}
}
private static String getCountryNameFromIpAddress(String ipAddress) {
if (ipAddress != null && !ipAddress.isEmpty()) {
int randomIndex = Math.abs(ipAddress.hashCode()) % COUNTRIES.length;
return COUNTRIES[randomIndex];
}
return null;
}
}
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HitsByCountryReducer.java
package learning.bigdata.mapreduce;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class HitsByCountryReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private Text outputKey = new Text();
private IntWritable outputValue = new IntWritable();
private int count = 0;
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,
InterruptedException {
count = 0;
Iterator<IntWritable> iterator = values.iterator();
while (iterator.hasNext()) {
IntWritable value = iterator.next();
count += value.get();
}
outputKey.set(key);
outputValue.set(count);
context.write(outputKey, outputValue);
}
}
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HitsByCountry.java
package learning.bigdata.main;
import learning.bigdata.mapreduce.HitsByCountryMapper;
import learning.bigdata.mapreduce.HitsByCountryReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class HitsByCountry extends Configured implements Tool {
private static final String JOB_NAME = "Calculating hits by country";
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.out.println("Usage: HitsByCountry <comma separated input directories> <output dir>");
System.exit(-1);
}
int result = ToolRunner.run(new HitsByCountry(), args);
System.exit(result);
}
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HitsByCountry.java
@Override
public int run(String[] args) throws Exception {
try {
Configuration conf = getConf();
Job job = Job.getInstance(conf);
job.setJarByClass(HitsByCountry.class);
job.setJobName(JOB_NAME);
job.setMapperClass(HitsByCountryMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(HitsByCountryReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.setInputPaths(job, args[0]);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;
} catch (Exception e) {
e.printStackTrace();
return 1;
}
}
}
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Lecture: Developing Complex
Hadoop MapReduce
Applications
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 88
Choosing appropriate Hadoop data types
●
Hadoop uses the Writable interface based classes as
the data types for the MapReduce computations.
●
Choosing the appropriate Writable data types for your
input, intermediate, and output data can have a large
effect on the performance and the programmability of
your MapReduce programs.
●
In order to be used as a value data type, a data type
must implement the org.apache.hadoop.io.Writable
interface.
●
In order to be used as a key data type, a data type must
implement the
org.apache.hadoop.io.WritableComparable<T> interface
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 89
Examples
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 90
Hadoop built-in data types
●
Text: This stores a UTF8 text
●
BytesWritable: This stores a sequence of bytes
●
VIntWritable and VLongWritable: These store variable
length integer and long values
●
NullWritable: This is a zero-length Writable type that can
be used when you don't want to use a key or value type
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 91
Hadoop built-in data types
●
The following Hadoop build-in collection data types can
only be used as value types.
– ArrayWritable: This stores an array of values belonging to a
Writable type.
– TwoDArrayWritable: This stores a matrix of values belonging to
the same Writable type.
– MapWritable: This stores a map of key-value pairs. Keys and
values should be of the Writable data types.
– SortedMapWritable: This stores a sorted map of key-value
pairs. Keys should implement the WritableComparable
interface.
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 92
Implementing a custom Hadoop Writable
data type
●
we can easily write a custom Writable data type by
implementing the org.apache.hadoop.io.Writable
interface
●
The Writable interface-based types can be used as
value types in Hadoop MapReduce computations.
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 93
Examples
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 94
Examples
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 95
Examples
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 96
Choosing a suitable Hadoop InputFormat
for your input data format
●
Hadoop supports processing of many different formats
and types of data through InputFormat.
●
The InputFormat of a Hadoop MapReduce computation
generates the key-value pair inputs for the mappers by
parsing the input data.
●
InputFormat also performs the splitting of the input data
into logical partitions
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 97
InputFormat that Hadoop provide
●
TextInputFormat: This is used for plain text files.
TextInputFormat generates a key-value record for each
line of the input text files.
●
NLineInputFormat: This is used for plain text files.
NlineInputFormat splits the input files into logical splits
of fixed number of lines.
●
SequenceFileInputFormat: For Hadoop Sequence file
input data
●
DBInputFormat: This supports reading the input data for
MapReduce computation from a SQL table.
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 98
Implementing new input data formats
●
Hadoop enables us to implement and specify custom
InputFormat implementations for our MapReduce
computations.
●
A InputFormat implementation should extend the
org.apache.hadoop.mapreduce.InputFormat<K,V>
abstract class
●
overriding the createRecordReader() and getSplits()
methods.
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 99
Formatting the results of MapReduce
computations – using Hadoop
OutputFormats
●
it is important to store the result of a MapReduce
computation in a format that can be consumed
efficiently by the target application
●
We can use Hadoop OutputFormat interface to define
the data storage format
●
A OutputFormat prepares the output location and
provides a RecordWriter implementation to perform the
actual serialization and storage of the data.
●
Hadoop uses the
org.apache.hadoop.mapreduce.lib.output.
TextOutputFormat<K,V> as the default OutputFormat
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Analytics Using
MapReduce
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Lecture
Understanding Hive
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Introduction
A Petabyte Scale Data Warehouse Using Hadoop
Hive is developed by Facebook, designed to enable easy data
summarization, ad-hoc querying and analysis of large
volumes of data. It provides a simple query language called
Hive QL, which is based on SQL
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
What Hive is NOT
Hive is not designed for online transaction processing and
does not offer real-time queries and row level updates. It is
best used for batch jobs over large sets of immutable data
(like web logs, etc.).
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 117
Hive Metastore
●
Store Hive metadata
●
Configurations
– Embedded: in-process metastore, in-process database
– Local: in-process metastore, out-of-process database
– Remote: out-of-process metastore,out-of-process database
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 118
Hive Schema-On-Read
●
Faster loads into the database (simply copy or move)
●
Slower queries
●
Flexibility – multiple schemas for the same data
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 119
HiveQL
●
Hive Query Language
●
SQL dialect
●
No support for:
– UPDATE, DELETE
– Transactions
– Indexes
– HAVING clause in SELECT
– Updateable or materialized views
– Srored procedure
Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 120
Hive Tables
●
Managed- CREATE TABLE
– LOAD- File moved into Hive's data warehouse directory
– DROP- Both data and metadata are deleted.
●
External- CREATE EXTERNAL TABLE
– LOAD- No file moved
– DROP- Only metadata deleted
– Use when sharing data between Hive and Hadoop applications
or you want to use multiple schema on the same data
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Running Hive
Hive Shell
●
Interactive
hive
●
Script
hive -f myscript
●
Inline
hive -e 'SELECT * FROM mytable'
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
System Architecture and Components
•
Metastore: To store the meta data.
•
Query compiler and execution engine: To convert SQL queries to a
sequence of map/reduce jobs that are then executed on Hadoop.
•
SerDe and ObjectInspectors: Programmable interfaces and
implementations of common data formats and types.
A SerDe is a combination of a Serializer and a Deserializer (hence, Ser-De). The Deserializer interface takes a string or binary
representation of a record, and translates it into a Java object that Hive can manipulate. The Serializer, however, will take a Java
object that Hive has been working with, and turn it into something that Hive can write to HDFS or another supported system.
•
UDF and UDAF: Programmable interfaces and implementations for
user defined functions (scalar and aggregate functions).
•
Clients: Command line client similar to Mysql command line.
hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Architecture Overview
HDFS
Hive CLI
QueriesBrowsing
Map Reduce
MetaStore
Thrift API
SerDe
Thrift Jute JSON..
Execution
Hive QL
Parser
Planner
Mgmt.
WebUI
HDFS
DDL
Hive
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Sample HiveQL
The Query compiler uses the information stored in the metastore to
convert SQL queries into a sequence of map/reduce jobs, e.g. the
following query
SELECT * FROM t where t.c = 'xyz'
SELECT t1.c2 FROM t1 JOIN t2 ON (t1.c1 = t2.c1)
SELECT t1.c1, count(1) from t1 group by t1.c1
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Creating Table and
Retrieving Data using Hive
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Running Hive from terminal
Starting Hive
hive> quit;
Quit from Hive
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Hive Editor from Hue
Scroll Down
the web page
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Creating Hive Table
hive (default)> CREATE TABLE test_tbl(id INT, country STRING) ROW
FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;
OK
Time taken: 4.069 seconds
hive (default)> show tables;
OK
test_tbl
Time taken: 0.138 seconds
hive (default)> describe test_tbl;
OK
id int
country string
Time taken: 0.147 seconds
hive (default)>
See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Hue Query Editor
See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Hue Query Editor
See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Hue Query Editor
See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing Hive Table in HDFS
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Alter and Drop Hive Table
hive (default)> alter table test_tbl add columns (remarks STRING);
hive (default)> describe test_tbl;
OK
id int
country string
remarks string
Time taken: 0.077 seconds
hive (default)> drop table test_tbl;
OK
Time taken: 0.9 seconds
See also: https://cwiki.apache.org/Hive/adminmanual-metastoreadmin.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Loading Data to Hive Table
$ hive
hive (default)> CREATE TABLE test_tbl(id INT, country STRING) ROW
FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;
Creating Hive table
hive (default)> LOAD DATA LOCAL INPATH '/tmp/country.csv' INTO TABLE test_tbl;
Copying data from file:/tmp/test_tbl_data.csv
Copying file: file:/tmp/test_tbl_data.csv
Loading data to table default.test_tbl
OK
Time taken: 0.241 seconds
hive (default)>
Loading data to Hive table
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Querying Data from Hive Table
hive (default)> select * from test_tbl;
OK
1 USA
62 Indonesia
63 Philippines
65 Singapore
66 Thailand
Time taken: 0.287 seconds
hive (default)>
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Insert Overwriting the Hive Table
hive (default)> LOAD DATA LOCAL INPATH
'/home/cloudera/Downloads/test_tbl_data_updated.csv' overwrite INTO
TABLE test_tbl;
Copying data from file:/tmp/test_tbl_data_updated.csv
Copying file: file:/tmp/test_tbl_data_updated.csv
Loading data to table default.test_tbl
Deleted hdfs://localhost:54310/user/hive/warehouse/test_tbl
OK
Time taken: 0.204 seconds
hive (default)>
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
MovieLens
http://grouplens.org/datasets/movielens/
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Create the Hive Table for movielen
hive (default)> CREATE TABLE u_data (
userid INT,
movieid INT,
rating INT,
unixtime STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY 't'
STORED AS TEXTFILE;
hive (default)> LOAD DATA LOCAL INPATH
'/home/cloudera/Downloads/u.data' overwrite INTO TABLE u_data;
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Create the Hive Table for Apache LOf
hive (default)> CREATE TABLE apachelog (
host STRING,
identity STRING,
user STRING,
time STRING,
request STRING,
status STRING,
size STRING,
referer STRING,
agent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "([^]*) ([^]*) ([^]*) (-|[^]*])
([^ "]*|"[^"]*") (-|[0-9]*) (-|[0-9]*)(?: ([^ "]*|".*")
([^ "]*|".*"))?"
)
STORED AS TEXTFILE;
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Lecture
Understanding Pig
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Introduction
A high-level platform for creating MapReduce programs Using Hadoop
Pig is a platform for analyzing large data sets that consists of
a high-level language for expressing data analysis programs,
coupled with infrastructure for evaluating these programs.
The salient property of Pig programs is that their structure is
amenable to substantial parallelization, which in turns enables
them to handle very large data sets.
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Pig Components
●
Two Compnents
●
Language (Pig Latin)
●
Compiler
●
Two Execution Environments
●
Local
pig -x local
●
Distributed
pig -x mapreduce
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Running Pig
●
Script
pig myscript
●
Command line (Grunt)
pig
●
Embedded
Writing a java program
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Pig Latin
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Pig Execution Stages
Hive.apache.orgSource Introduction to Apache Hadoop-Pig: PrashantKommireddi
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Why Pig?
●
Makes writing Hadoop jobs easier
●
5% of the code, 5% of the time
●
You don't need to be a programmer to write Pig scripts
●
Provide major functionality required for
DatawareHouse and Analytics
●
Load, Filter, Join, Group By, Order, Transform
●
User can write custom UDFs (User Defined Function)
Hive.apache.orgSource Introduction to Apache Hadoop-Pig: PrashantKommireddi
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Running MapReduce Job Using Oozie
: Select Java
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Running a Pig script
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Pig Command Line
[hdadmin@localhost ~]$ pig -x local
2013-08-01 10:29:00,027 [main] INFO org.apache.pig.Main - Apache Pig
version 0.11.1 (r1459641) compiled Mar 22 2013, 02:13:53
2013-08-01 10:29:00,027 [main] INFO org.apache.pig.Main - Logging error
messages to: /home/hdadmin/pig_1375327740024.log
2013-08-01 10:29:00,066 [main] INFO org.apache.pig.impl.util.Utils -
Default bootup file /home/hdadmin/.pigbootup not found
2013-08-01 10:29:00,212 [main] INFO
org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting
to hadoop file system at: file:///
grunt>
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting Pig from Hue
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
countryFilter.pig
A = load 'hdi-data.csv' using PigStorage(',') AS (id:int, country:chararray, hdi:float,
lifeex:int, mysch:i
nt, eysch:int, gni:int);
B = FILTER A BY gni > 2000;
C = ORDER B BY gni;
dump C;
#Preparing Data
Download hdi-data.csv
#Edit Your Script
[hdadmin@localhost ~]$ cd Downloads/
[hdadmin@localhost ~]$ vi countryFilter.pig
Writing a Pig Script
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
[hdadmin@localhost ~]$ cd Downloads
[hdadmin@localhost ~]$ pig -x local
grunt > run countryFilter.pig
....
(150,Cameroon,0.482,51,5,10,2031)
(126,Kyrgyzstan,0.615,67,9,12,2036)
(156,Nigeria,0.459,51,5,8,2069)
(154,Yemen,0.462,65,2,8,2213)
(138,Lao People's Democratic Republic,0.524,67,4,9,2242)
(153,Papua New Guinea,0.466,62,4,5,2271)
(165,Djibouti,0.43,57,3,5,2335)
(129,Nicaragua,0.589,74,5,10,2430)
(145,Pakistan,0.504,65,4,6,2550)
Running a Pig Script
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Lecture: Understanding Sqoop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Introduction
Sqoop (“SQL-to-Hadoop”) is a straightforward command-line
tool with the following capabilities:
•
Imports individual tables or entire databases to files in
HDFS
•
Generates Java classes to allow you to interact with your
imported data
•
Provides the ability to import from SQL databases straight
into your Hive data warehouse
See also: http://sqoop.apache.org/docs/1.4.2/SqoopUserGuide.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Architecture Overview
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Loading Data from DBMS
to Hadoop HDFS
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Loading Data into MySQL DB
[root@localhost ~]# service mysqld start
Starting mysqld: [ OK ]
[root@localhost ~]# mysql -u root -p
Password: cloudera
mysql> create database countrydb;
Query OK, 1 row affected (0.00 sec)
mysql> use countrydb;
Database changed
mysql> create table country_tbl(id INT, country VARCHAR(100));
Query OK, 0 rows affected (0.02 sec)
mysql> LOAD DATA LOCAL INFILE '/home/cloudera/Downloads/country.csv' INTO
TABLE country_tbl FIELDS terminated by ',' LINES TERMINATED BY 'n';
Query OK, 237 rows affected, 4 warnings (0.00 sec)
Records: 237 Deleted: 0 Skipped: 0 Warnings: 0
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Loading Data into MySQL DB
mysql> select * from country_tbl;
+------+------------------------------+
| id | country |
+------+------------------------------+
| 93 | Afghanistan |
| 355 | Albania |
| 213 | Algeria |
| 1684 | AmericanSamoa |
| 376 | Andorra |
...
+------+------------------------------+
237 rows in set (0.00 sec)
mysql>
Testing data query from MySQL DB
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Importing data from MySQL to Hive Table
[hdadmin@localhost ~]$ sqoop import --connect
jdbc:mysql://localhost/countrydb --username root -P --table
country_tbl --hive-import --hive-table country_tbl -m 1
Warning: /usr/lib/hbase does not exist! HBase imports will fail.
Please set $HBASE_HOME to the root of your HBase installation.
Warning: $HADOOP_HOME is deprecated.
Enter password: <enter here>
13/03/21 18:07:43 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
13/03/21 18:07:43 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
13/03/21 18:07:43 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
13/03/21 18:07:43 INFO tool.CodeGenTool: Beginning code generation
13/03/21 18:07:44 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `country_tbl` AS t LIMIT 1
13/03/21 18:07:44 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `country_tbl` AS t LIMIT 1
13/03/21 18:07:44 INFO orm.CompilationManager: HADOOP_HOME is /usr/local/hadoop/libexec/..
Note: /tmp/sqoop-hdadmin/compile/0b65b003bf2936e1303f5edf93338215/country_tbl.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
13/03/21 18:07:44 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hdadmin/compile/0b65b003bf2936e1303f5edf93338215/country_tbl.jar
13/03/21 18:07:44 WARN manager.MySQLManager: It looks like you are importing from mysql.
13/03/21 18:07:44 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
13/03/21 18:07:44 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
13/03/21 18:07:44 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
13/03/21 18:07:44 INFO mapreduce.ImportJobBase: Beginning import of country_tbl
13/03/21 18:07:45 INFO mapred.JobClient: Running job: job_201303211744_0001
13/03/21 18:07:46 INFO mapred.JobClient: map 0% reduce 0%
13/03/21 18:08:02 INFO mapred.JobClient: map 100% reduce 0%
13/03/21 18:08:07 INFO mapred.JobClient: Job complete: job_201303211744_0001
13/03/21 18:08:07 INFO mapred.JobClient: Counters: 18
13/03/21 18:08:07 INFO mapred.JobClient: Job Counters
13/03/21 18:08:07 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=12154
13/03/21 18:08:07 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
13/03/21 18:08:07 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing data from Hive Table
[hdadmin@localhost ~]$ hive
Logging initialized using configuration in file:/usr/local/hive-0.9.0-
bin/conf/hive-log4j.properties
Hive history
file=/tmp/hdadmin/hive_job_log_hdadmin_201303211810_964909984.txt
hive (default)> show tables;
OK
country_tbl
test_tbl
Time taken: 2.566 seconds
hive (default)> select * from country_tbl;
OK
93 Afghanistan
355 Albania
.....
Time taken: 0.587 seconds
hive (default)> quit;
[hdadmin@localhost ~]$
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Reviewing HDFS Database Table files
Start Web Browser to http://localhost:50070/ then navigate to /user/hive/warehouse
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Lecture
Understanding HBase
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Introduction
An open source, non-relational, distributed database
HBase is an open source, non-relational, distributed database
modeled after Google's BigTable and is written in Java. It is
developed as part of Apache Software Foundation's Apache
Hadoop project and runs on top of HDFS (, providing
BigTable-like capabilities for Hadoop. That is, it provides a
fault-tolerant way of storing large quantities of sparse data.
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HBase Features
●
Hadoop database modelled after Google's Bigtab;e
●
Column oriented data store, known as Hadoop Database
●
Support random realtime CRUD operations (unlike
HDFS)
●
No SQL Database
●
Opensource, written in Java
●
Run on a cluster of commodity hardware
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
When to use Hbase?
●
When you need high volume data to be stored
●
Un-structured data
●
Sparse data
●
Column-oriented data
●
Versioned data (same data template, captured at various
time, time-elapse data)
●
When you need high scalability
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Which one to use?
●
HDFS
●
Only append dataset (no random write)
●
Read the whole dataset (no random read)
●
HBase
●
Need random write and/or read
●
Has thousands of operation per second on TB+ of data
●
RDBMS
●
Data fits on one big node
●
Need full transaction support
●
Need real-time query capabilities
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HBase Components
Hive.apache.org
●
Region
●
Row of table are stores
●
Region Server
●
Hosts the tables
●
Master
●
Coordinating the Region
Servers
●
ZooKeeper
●
HDFS
●
API
●
The Java Client API
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
HBase Shell Commands
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Hands-On: Running HBase
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Starting HBase shell
[hdadmin@localhost ~]$ start-hbase.sh
starting master, logging to /usr/local/hbase-0.94.10/logs/hbase-hdadmin-
master-localhost.localdomain.out
[hdadmin@localhost ~]$ jps
3064 TaskTracker
2836 SecondaryNameNode
2588 NameNode
3513 Jps
3327 HMaster
2938 JobTracker
2707 DataNode
[hdadmin@localhost ~]$ hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.94.10, r1504995, Fri Jul 19 20:24:16 UTC 2013
hbase(main):001:0>
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Create a table and insert data in HBase
hbase(main):009:0> create 'test', 'cf'
0 row(s) in 1.0830 seconds
hbase(main):010:0> put 'test', 'row1', 'cf:a', 'val1'
0 row(s) in 0.0750 seconds
hbase(main):011:0> scan 'test'
ROW COLUMN+CELL
row1 column=cf:a, timestamp=1375363287644,
value=val1
1 row(s) in 0.0640 seconds
hbase(main):002:0> get 'test', 'row1'
COLUMN CELL
cf:a timestamp=1375363287644, value=val1
1 row(s) in 0.0370 seconds
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Data Browsers in Hue for HBase
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Data Browsers in Hue for HBase
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Using Data Browsers in Hue for HBase
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Project: Flight
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Flight Details Data
http://stat-computing.org/dataexpo/2009/the-data.html
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Data Description
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Snapshot of Dataset
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Problem
●
Write a map reduce to count the frequency of arrival
delay in each airport by classify in to three groups:
●
Very late : delay > 30
●
Late : 5 <delay <= 30
●
Ontime: delay <= 5
●
Export the result to excel and plot the histogram
Hive.apache.org
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Recommendation to Further Study
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
Thank you
www.imcinstitute.com
www.facebook.com/imcinstitute

More Related Content

PDF
Big Data Hadoop using Amazon Elastic MapReduce: Hands-On Labs
PDF
Big Data Hadoop Local and Public Cloud (Amazon EMR)
PDF
Big Data on Public Cloud Using Cloudera on GoGrid & Amazon EMR
PDF
Thailand Hadoop Big Data Challenge #1
PDF
Hadoop Hand-on Lab: Installing Hadoop 2
PDF
Apache Spark in Action
PDF
Big Data Analytics Using Hadoop Cluster On Amazon EMR
PDF
Setting up Hadoop YARN Clustering
Big Data Hadoop using Amazon Elastic MapReduce: Hands-On Labs
Big Data Hadoop Local and Public Cloud (Amazon EMR)
Big Data on Public Cloud Using Cloudera on GoGrid & Amazon EMR
Thailand Hadoop Big Data Challenge #1
Hadoop Hand-on Lab: Installing Hadoop 2
Apache Spark in Action
Big Data Analytics Using Hadoop Cluster On Amazon EMR
Setting up Hadoop YARN Clustering

What's hot (20)

PDF
Hadoop Workshop on EC2 : March 2015
DOCX
Hadoop Report
PDF
Big data Hadoop Analytic and Data warehouse comparison guide
PPTX
Introduction to Apache Hadoop
PPTX
Hadoop for Java Professionals
PPTX
Python for Big Data Analytics
PDF
9/2017 STL HUG - Back to School
PPTX
Introduction to MapReduce | MapReduce Architecture | MapReduce Fundamentals
PDF
Hadoop Career Path and Interview Preparation
PPTX
Building Data Products at LinkedIn with DataFu
PDF
Introduction to Big Data & Hadoop
PDF
Fishing Graphs in a Hadoop Data Lake by Jörg Schad and Max Neunhoeffer at Big...
PPTX
The hadoop 2.0 ecosystem and yarn
PDF
Apache Pig for Data Scientists
PPTX
Python for Big Data Analytics
PDF
Webinar: Big Data & Hadoop - When not to use Hadoop
PPTX
Hadoop and Big Data
PPT
What is Hadoop?
PPT
Another Intro To Hadoop
KEY
Intro to Hadoop
Hadoop Workshop on EC2 : March 2015
Hadoop Report
Big data Hadoop Analytic and Data warehouse comparison guide
Introduction to Apache Hadoop
Hadoop for Java Professionals
Python for Big Data Analytics
9/2017 STL HUG - Back to School
Introduction to MapReduce | MapReduce Architecture | MapReduce Fundamentals
Hadoop Career Path and Interview Preparation
Building Data Products at LinkedIn with DataFu
Introduction to Big Data & Hadoop
Fishing Graphs in a Hadoop Data Lake by Jörg Schad and Max Neunhoeffer at Big...
The hadoop 2.0 ecosystem and yarn
Apache Pig for Data Scientists
Python for Big Data Analytics
Webinar: Big Data & Hadoop - When not to use Hadoop
Hadoop and Big Data
What is Hadoop?
Another Intro To Hadoop
Intro to Hadoop
Ad

Viewers also liked (20)

PDF
Set up Hadoop Cluster on Amazon EC2
PDF
Hadoop Workshop using Cloudera on Amazon EC2
PDF
Map Reduce along with Amazon EMR
PDF
Internal Capabilitty In Training
 
PDF
บทที่ 6 ความปลอดภัยบนระบบคอมพิวเตอร์และเครือข่าย
PDF
Introduction to Feature (Attribute) Selection with RapidMiner Studio 6
PDF
Relational Algebra and MapReduce
PDF
Analyse Tweets using Flume 1.4, Hadoop 2.7 and Hive
PDF
Introduction to Data Analytics with RapidMiner Studio 6 (ภาษาไทย)
PPTX
MapReduce Design Patterns
PDF
Mapreduce Algorithms
PDF
Building Decision Tree model with numerical attributes
PDF
Evaluation metrics: Precision, Recall, F-Measure, ROC
PPT
Hadoop Real Life Use Case & MapReduce Details
PDF
Introduction to Data Mining and Big Data Analytics
PDF
Word count example in hadoop mapreduce using java
PPTX
MapReduce in Simple Terms
PPT
Introduction To Map Reduce
PDF
6 SWOT Analysis Examples to Help You Write Your Own
Set up Hadoop Cluster on Amazon EC2
Hadoop Workshop using Cloudera on Amazon EC2
Map Reduce along with Amazon EMR
Internal Capabilitty In Training
 
บทที่ 6 ความปลอดภัยบนระบบคอมพิวเตอร์และเครือข่าย
Introduction to Feature (Attribute) Selection with RapidMiner Studio 6
Relational Algebra and MapReduce
Analyse Tweets using Flume 1.4, Hadoop 2.7 and Hive
Introduction to Data Analytics with RapidMiner Studio 6 (ภาษาไทย)
MapReduce Design Patterns
Mapreduce Algorithms
Building Decision Tree model with numerical attributes
Evaluation metrics: Precision, Recall, F-Measure, ROC
Hadoop Real Life Use Case & MapReduce Details
Introduction to Data Mining and Big Data Analytics
Word count example in hadoop mapreduce using java
MapReduce in Simple Terms
Introduction To Map Reduce
6 SWOT Analysis Examples to Help You Write Your Own
Ad

Similar to Big Data Programming Using Hadoop Workshop (20)

PPTX
Big Data and Hadoop in Cloud - Leveraging Amazon EMR
PDF
Amazon EMR Masterclass
PPTX
Hadoop Adminstration with Latest Release (2.0)
PDF
Hadoop Tutorial for Big Data Enthusiasts
PPTX
3rd meetup - Intro to Amazon EMR
PDF
Hadoop Administration pdf
PDF
Learning How to Learn Hadoop
PPTX
BigDataCloud meetup - July 8th - Cost effective big-data processing using Ama...
PPTX
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
PDF
SURVEY ON BIG DATA PROCESSING USING HADOOP, MAP REDUCE
PPTX
Introduction to Spark - Phoenix Meetup 08-19-2014
PDF
Big Data and Hadoop in the Cloud
PDF
Hadoop eco system with mapreduce hive and pig
PPTX
What is hadoop
PPTX
Hadoop/MapReduce/HDFS
PDF
Big Data Analytics Chapter3-6@2021.pdf
PDF
AWS EMR (Elastic Map Reduce) explained
PPTX
Fundamentals of big data analytics and Hadoop
PDF
Introduction to Big Data
PPTX
Hadoop, Evolution of Hadoop, Features of Hadoop
Big Data and Hadoop in Cloud - Leveraging Amazon EMR
Amazon EMR Masterclass
Hadoop Adminstration with Latest Release (2.0)
Hadoop Tutorial for Big Data Enthusiasts
3rd meetup - Intro to Amazon EMR
Hadoop Administration pdf
Learning How to Learn Hadoop
BigDataCloud meetup - July 8th - Cost effective big-data processing using Ama...
Optimal Execution Of MapReduce Jobs In Cloud - Voices 2015
SURVEY ON BIG DATA PROCESSING USING HADOOP, MAP REDUCE
Introduction to Spark - Phoenix Meetup 08-19-2014
Big Data and Hadoop in the Cloud
Hadoop eco system with mapreduce hive and pig
What is hadoop
Hadoop/MapReduce/HDFS
Big Data Analytics Chapter3-6@2021.pdf
AWS EMR (Elastic Map Reduce) explained
Fundamentals of big data analytics and Hadoop
Introduction to Big Data
Hadoop, Evolution of Hadoop, Features of Hadoop

More from IMC Institute (20)

PDF
นิตยสาร Digital Trends ฉบับที่ 14
PDF
Digital trends Vol 4 No. 13 Sep-Dec 2019
PDF
บทความ The evolution of AI
PDF
IT Trends eMagazine Vol 4. No.12
PDF
เพราะเหตุใด Digitization ไม่ตอบโจทย์ Digital Transformation
PDF
IT Trends 2019: Putting Digital Transformation to Work
PDF
มูลค่าตลาดดิจิทัลไทย 3 อุตสาหกรรม
PDF
IT Trends eMagazine Vol 4. No.11
PDF
แนวทางการทำ Digital transformation
PDF
บทความ The New Silicon Valley
PDF
นิตยสาร IT Trends ของ IMC Institute ฉบับที่ 10
PDF
แนวทางการทำ Digital transformation
PDF
The Power of Big Data for a new economy (Sample)
PDF
บทความ Robotics แนวโน้มใหม่สู่บริการเฉพาะทาง
PDF
IT Trends eMagazine Vol 3. No.9
PDF
Thailand software & software market survey 2016
PPTX
Developing Business Blockchain Applications on Hyperledger
PDF
Digital transformation @thanachart.org
PDF
บทความ Big Data จากบล็อก thanachart.org
PDF
กลยุทธ์ 5 ด้านกับการทำ Digital Transformation
นิตยสาร Digital Trends ฉบับที่ 14
Digital trends Vol 4 No. 13 Sep-Dec 2019
บทความ The evolution of AI
IT Trends eMagazine Vol 4. No.12
เพราะเหตุใด Digitization ไม่ตอบโจทย์ Digital Transformation
IT Trends 2019: Putting Digital Transformation to Work
มูลค่าตลาดดิจิทัลไทย 3 อุตสาหกรรม
IT Trends eMagazine Vol 4. No.11
แนวทางการทำ Digital transformation
บทความ The New Silicon Valley
นิตยสาร IT Trends ของ IMC Institute ฉบับที่ 10
แนวทางการทำ Digital transformation
The Power of Big Data for a new economy (Sample)
บทความ Robotics แนวโน้มใหม่สู่บริการเฉพาะทาง
IT Trends eMagazine Vol 3. No.9
Thailand software & software market survey 2016
Developing Business Blockchain Applications on Hyperledger
Digital transformation @thanachart.org
บทความ Big Data จากบล็อก thanachart.org
กลยุทธ์ 5 ด้านกับการทำ Digital Transformation

Recently uploaded (20)

PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Encapsulation_ Review paper, used for researhc scholars
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Electronic commerce courselecture one. Pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
cuic standard and advanced reporting.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Big Data Technologies - Introduction.pptx
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
A Presentation on Artificial Intelligence
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Diabetes mellitus diagnosis method based random forest with bat algorithm
Spectral efficient network and resource selection model in 5G networks
Encapsulation_ Review paper, used for researhc scholars
“AI and Expert System Decision Support & Business Intelligence Systems”
Electronic commerce courselecture one. Pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
MIND Revenue Release Quarter 2 2025 Press Release
Agricultural_Statistics_at_a_Glance_2022_0.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
cuic standard and advanced reporting.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Programs and apps: productivity, graphics, security and other tools
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Big Data Technologies - Introduction.pptx
Dropbox Q2 2025 Financial Results & Investor Presentation
A Presentation on Artificial Intelligence
MYSQL Presentation for SQL database connectivity
SOPHOS-XG Firewall Administrator PPT.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton

Big Data Programming Using Hadoop Workshop

  • 1. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 1 Big Data Programming Using Hadoop Workshop February 2015 Dr.Thanachart Numnonda IMC Institute thanachart@imcinstitute.com Modifiy from Original Version by Danairat T. Certified Java Programmer, TOGAF – Silver danairat@gmail.com
  • 2. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Running Hadoop
  • 3. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Running this lab using Cloudera Live
  • 4. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Cloudera VM
  • 5. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Cloudera VM Start VirtualBox and Select New
  • 6. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Cloudera VM (cont) Name the image as Cloudera and select OS as Linux 64 bit Then select memory size
  • 7. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Cloudera VM (cont) Select >> Use an existing virtual hard drive file Locate to file cloudera-quickstart-vm-5.1.0-1-virtualbox-disk1.vmdk Then click Start
  • 8. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Sign in to Hue Username: cloudera; Password: cloudera
  • 9. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Hue on Cloudera
  • 10. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Viewing HDFS
  • 11. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 12. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Importing/Exporting Data to HDFS
  • 13. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Importing Data to Hadoop Download War and Peace Full Text www.gutenberg.org/ebooks/2600 $hadoop fs -mkdir input $hadoop fs -mkdir output $hadoop fs -copyFromLocal Downloads/pg2600.txt input
  • 14. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Review file in Hadoop HDFS [hdadmin@localhost bin]$ hadoop fs -cat input/pg2600.txt List HDFS File Read HDFS File Retrieve HDFS File to Local File System Please see also http://hadoop.apache.org/docs/r1.0.4/commands_manual.html [hdadmin@localhost bin]$ hadoop fs -copyToLocal input/pg2600.txt tmp/file.txt
  • 15. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Review file in Hadoop HDFS using File Browse
  • 16. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Review file in Hadoop HDFS using Hue
  • 17. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hadoop Port Numbers Daemon Default Port Configuration Parameter in conf/*-site.xml HDFS Namenode 50070 dfs.http.address Datanodes 50075 dfs.datanode.http.address Secondarynamenode 50090 dfs.secondary.http.address MR JobTracker 50030 mapred.job.tracker.http.addre ss Tasktrackers 50060 mapred.task.tracker.http.addr ess
  • 18. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Removing data from HDFS using Shell Command hdadmin@localhost detach]$ hadoop fs -rm input/pg2600.txt Deleted hdfs://localhost:54310/input/pg2600.txt hdadmin@localhost detach]$
  • 19. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Lecture: Understanding Map Reduce Processing Client Name Node Job Tracker Data Node Task Tracker Data Node Task Tracker Data Node Task Tracker Map Reduce
  • 20. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop High Level Architecture of MapReduce
  • 21. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 21 Before MapReduce… ● Large scale data processing was difficult! – Managing hundreds or thousands of processors – Managing parallelization and distribution – I/O Scheduling – Status and monitoring – Fault/crash tolerance ● MapReduce provides all of these, easily! Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
  • 22. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 22 MapReduce Overview ● What is it? – Programming model used by Google – A combination of the Map and Reduce models with an associated implementation – Used for processing and generating large data sets Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
  • 23. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 23 MapReduce Overview ● How does it solve our previously mentioned problems? – MapReduce is highly scalable and can be used across many computers. – Many small machines can be used to process jobs that normally could not be processed by a large machine. Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
  • 24. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop MapReduce Framework Source: www.bigdatauniversity.com
  • 25. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop How does the MapReduce work? Output in a list of (Key, List of Values) in the intermediate file Sorting Partitioning Output in a list of (Key, Value) in the intermediate file InputSplit RecordReader RecordWriter
  • 26. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop How does the MapReduce work? Output in a list of (Key, List of Values) in the intermediate file Sorting Partitioning Output in a list of (Key, Value) in the intermediate file InputSplit RecordReader RecordWriter
  • 27. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 27 Map Abstraction ● Inputs a key/value pair – Key is a reference to the input value – Value is the data set on which to operate ● Evaluation – Function defined by user – Applies to every value in value input ● Might need to parse input ● Produces a new list of key/value pairs – Can be different type from input pair Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
  • 28. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 28 Reduce Abstraction ● Starts with intermediate Key / Value pairs ● Ends with finalized Key / Value pairs ● Starting pairs are sorted by key ● Iterator supplies the values for a given key to the Reduce function. Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
  • 29. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 29 Reduce Abstraction ● Typically a function that: – Starts with a large number of key/value pairs ● One key/value for each word in all files being greped (including multiple entries for the same word) – Ends with very few key/value pairs ● One key/value for each unique word across all the files with the number of instances summed into this entry ● Broken up so a given worker works with input of the same key. Source: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0002.html
  • 30. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 30 How Map and Reduce Work Together ● Map returns information ● Reduces accepts information ● Reduce applies a user defined function to reduce the amount of data
  • 31. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 31 Other Applications ● Yahoo! – Webmap application uses Hadoop to create a database of information on all known webpages ● Facebook – Hive data center uses Hadoop to provide business statistics to application developers and advertisers ● Rackspace – Analyzes sever log files and usage data using Hadoop
  • 32. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop MapReduce Framework map: (K1, V1) -> list(K2, V2)) reduce: (K2, list(V2)) -> list(K3, V3)
  • 33. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop MapReduce Processing – The Data flow 1. InputFormat, InputSplits, RecordReader 2. Mapper - your focus is here 3. Partition, Shuffle & Sort 4. Reducer - your focus is here 5. OutputFormat, RecordWriter
  • 34. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop InputFormat InputFormat: Description: Key: Value: TextInputFormat Default format; reads lines of text files The byte offset of the line The line contents KeyValueInputFormat Parses lines into key, val pairs Everything up to the first tab character The remainder of the line SequenceFileInputFor mat A Hadoop-specific high-performance binary format user-defined user-defined
  • 35. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop InputSplit An InputSplit describes a unit of work that comprises a single map task. InputSplit presents a byte-oriented view of the input. You can control this value by setting the mapred.min.split.size parameter in core-site.xml, or by overriding the parameter in the JobConf object used to submit a particular MapReduce job. RecordReader RecordReader reads <key, value> pairs from an InputSplit. Typically the RecordReader converts the byte-oriented view of the input, provided by the InputSplit, and presents a record- oriented to the Mapper
  • 36. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Mapper Mapper: The Mapper performs the user-defined logic to the input a key, value and emits (key, value) pair(s) which are forwarded to the Reducers. Partition, Shuffle & Sort After the first map tasks have completed, the nodes may still be performing several more map tasks each. But they also begin exchanging the intermediate outputs from the map tasks to where they are required by the reducers. Partitioner controls the partitioning of map-outputs to assign to reduce task . he total number of partitions is the same as the number of reduce tasks for the job The set of intermediate keys on a single node is automatically sorted by internal Hadoop before they are presented to the Reducer This process of moving map outputs to the reducers is known as shuffling.
  • 37. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reducer This is an instance of user-provided code that performs read each key, iterator of values in the partition assigned. The OutputCollector object in Reducer phase has a method named collect() which will collect a (key, value) output. OutputFormat, Record Writer OutputFormat governs the writing format in OutputCollector and RecordWriter writes output into HDFS. OutputFormat: Description TextOutputFormat Default; writes lines in "key t value" form SequenceFileOutputFormat Writes binary files suitable for reading into subsequent MapReduce jobs NullOutputFormat generates no output files
  • 38. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Submitting a MapReduce job Source: www.bigdatauniversity.com
  • 39. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Writing you own Map Reduce Program
  • 40. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Wordcount (HelloWord in Hadoop) 1. package org.myorg; 2. 3. import java.io.IOException; 4. import java.util.*; 5. 6. import org.apache.hadoop.fs.Path; 7. import org.apache.hadoop.conf.*; 8. import org.apache.hadoop.io.*; 9. import org.apache.hadoop.mapred.*; 10. import org.apache.hadoop.util.*; 11. 12. public class WordCount { 13. 14. public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { 15. private final static IntWritable one = new IntWritable(1); 16. private Text word = new Text(); 17. 18. public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { 19. String line = value.toString(); 20. StringTokenizer tokenizer = new StringTokenizer(line); 21. while (tokenizer.hasMoreTokens()) { 22. word.set(tokenizer.nextToken()); 23. output.collect(word, one); 24. } 25. } 26. }
  • 41. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Wordcount (HelloWord in Hadoop) 27. 28. public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { 29. public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { 30. int sum = 0; 31. while (values.hasNext()) { 32. sum += values.next().get(); 33. } 34. output.collect(key, new IntWritable(sum)); 35. } 36. } 37.
  • 42. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Wordcount (HelloWord in Hadoop) 38. public static void main(String[] args) throws Exception { 39. JobConf conf = new JobConf(WordCount.class); 40. conf.setJobName("wordcount"); 41. 42. conf.setOutputKeyClass(Text.class); 43. conf.setOutputValueClass(IntWritable.class); 44. 45. conf.setMapperClass(Map.class); 46. 47. conf.setReducerClass(Reduce.class); 48. 49. conf.setInputFormat(TextInputFormat.class); 50. conf.setOutputFormat(TextOutputFormat.class); 51. 52. FileInputFormat.setInputPaths(conf, new Path(args[1])); 53. FileOutputFormat.setOutputPath(conf, new Path(args[2])); 54. 55. JobClient.runJob(conf); 57. } 58. } 59.
  • 43. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Writing Map/Reduce Program on Eclipse
  • 44. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Eclipse in Cloudera VM
  • 45. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Create a Java Project Let's name it HadoopWordCount
  • 46. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 46 Add dependencies to the project ● Add the following two JARs to your build path ● hadoop-common.jar and hadoop-mapreduce-client-core.jar. Both can be founded at /usr/lib/hadoop/client ● By perform the following steps – Add a folder named lib to the project – Copy the mentioned JARs in this folder – Right-click on the project name >> select Build Path >> then Configure Build Path – Click on Add Jars, select these two JARs from the lib folder
  • 47. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 47 Add dependencies to the project
  • 48. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 48 Writing a source code ● Right click the project, the select New >> Package ● Name the package as org.myorg ● Right click at org.myorg, the select New >> Class ● Name the package as WordCount ● Writing a source code as shown in previoud slides
  • 49. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 49
  • 50. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 50 Building a Jar file ● Right click the project, the select Export ● Select Java and then JAR file ● Provide the JAR name, as wordcount.jar ● Leave the JAR package options as default ● In the JAR Manifest Specification section, in the botton, specify the Main class ● In this case, select WordCount ● Click on Finish ● The JAR file will be build and will be located at cloudera/workspace Note: you may need to re-size the dialog font size by select Windows >> Preferences >> Appearance >> Colors and Fonts
  • 51. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 51
  • 52. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Running Map Reduce and Deploying to Hadoop Runtime Environment
  • 53. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Running Map Reduce Program
  • 54. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing MapReduce Job in Hue
  • 55. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing MapReduce Job in Hue
  • 56. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing MapReduce Output Result
  • 57. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing MapReduce Output Result
  • 58. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing MapReduce Output Result
  • 59. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Running Map Reduce using Oozie workflow
  • 60. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Hue: select WorkFlow >> Editor
  • 61. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 61 Create a new workflow ● Click Create button; the following screen will be displayed ● Name the workflow as WordCountWorkflow
  • 62. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 62 Select a Java job for the workflow ● From the Oozie editor, drag Java and drop between start and end
  • 63. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 63 Edit the Java Job ● Assign the following value – Name: WordCount – Jar name: wordcount.jar (select … choose upload from local machine) – Main Class: org.myorg.WordCount – Arguments: input/* output/wordcount_output2
  • 64. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 64 Submit the workflow ● Click Done, follow by Save ● Then click submit
  • 65. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Running WordCount.jar on Amazon EMR
  • 66. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Architecture Overview of Amazon EMR
  • 67. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Amazon EMR Cluster
  • 68. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Creating an AWS account
  • 69. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Signing up for the necessary services ● Simple Storage Service (S3) ● Elastic Compute Cloud (EC2) ● Elastic MapReduce (EMR) Caution! This costs real money!
  • 70. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Creating Amazon S3 bucket
  • 71. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Create access key using Security Credentials in the AWS Management Console
  • 72. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 73. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Creating a cluster in EMR
  • 74. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 75. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Choose configure sample application
  • 76. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Select create cluster
  • 77. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 78. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop View Result from the S3 bucket
  • 79. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Working with a csv data
  • 80. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 80 A sample CSV data ● The input data is access logs with the following form Date, Requesting-IP-Address ● We will write a map reduce program to count the number of hits to the website per country.
  • 81. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HitsByCountryMapper.java package learning.bigdata.mapreduce; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class HitsByCountryMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private final static String[] COUNTRIES = { "India", "UK", "US", "China" }; private Text outputKey = new Text(); private IntWritable outputValue = new IntWritable(); @Override protected void setup(Context context) throws IOException, InterruptedException { super.setup(context); } @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { try { String valueString = value.toString(); // Split the value string to get Date and ipAddress String[] row = valueString.split(",");
  • 82. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HitsByCountryMapper.java // row[0]= Date and row[1]=ipAddress String ipAddress = row[1]; // Get the country name to which the ipAddress belongs String countryName = getCountryNameFromIpAddress(ipAddress); outputKey.set(countryName); outputValue.set(1); context.write(outputKey, outputValue); } catch (ArrayIndexOutOfBoundsException ex) { context.getCounter("Custom counters", "MAPPER_EXCEPTION_COUNTER").increment(1); ex.printStackTrace(); } } private static String getCountryNameFromIpAddress(String ipAddress) { if (ipAddress != null && !ipAddress.isEmpty()) { int randomIndex = Math.abs(ipAddress.hashCode()) % COUNTRIES.length; return COUNTRIES[randomIndex]; } return null; } }
  • 83. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HitsByCountryReducer.java package learning.bigdata.mapreduce; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class HitsByCountryReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private Text outputKey = new Text(); private IntWritable outputValue = new IntWritable(); private int count = 0; protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { count = 0; Iterator<IntWritable> iterator = values.iterator(); while (iterator.hasNext()) { IntWritable value = iterator.next(); count += value.get(); } outputKey.set(key); outputValue.set(count); context.write(outputKey, outputValue); } }
  • 84. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HitsByCountry.java package learning.bigdata.main; import learning.bigdata.mapreduce.HitsByCountryMapper; import learning.bigdata.mapreduce.HitsByCountryReducer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class HitsByCountry extends Configured implements Tool { private static final String JOB_NAME = "Calculating hits by country"; public static void main(String[] args) throws Exception { if (args.length < 2) { System.out.println("Usage: HitsByCountry <comma separated input directories> <output dir>"); System.exit(-1); } int result = ToolRunner.run(new HitsByCountry(), args); System.exit(result); }
  • 85. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HitsByCountry.java @Override public int run(String[] args) throws Exception { try { Configuration conf = getConf(); Job job = Job.getInstance(conf); job.setJarByClass(HitsByCountry.class); job.setJobName(JOB_NAME); job.setMapperClass(HitsByCountryMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setReducerClass(HitsByCountryReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.setInputPaths(job, args[0]); FileOutputFormat.setOutputPath(job, new Path(args[1])); boolean success = job.waitForCompletion(true); return success ? 0 : 1; } catch (Exception e) { e.printStackTrace(); return 1; } } }
  • 86. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 87. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Lecture: Developing Complex Hadoop MapReduce Applications
  • 88. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 88 Choosing appropriate Hadoop data types ● Hadoop uses the Writable interface based classes as the data types for the MapReduce computations. ● Choosing the appropriate Writable data types for your input, intermediate, and output data can have a large effect on the performance and the programmability of your MapReduce programs. ● In order to be used as a value data type, a data type must implement the org.apache.hadoop.io.Writable interface. ● In order to be used as a key data type, a data type must implement the org.apache.hadoop.io.WritableComparable<T> interface
  • 89. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 89 Examples
  • 90. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 90 Hadoop built-in data types ● Text: This stores a UTF8 text ● BytesWritable: This stores a sequence of bytes ● VIntWritable and VLongWritable: These store variable length integer and long values ● NullWritable: This is a zero-length Writable type that can be used when you don't want to use a key or value type
  • 91. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 91 Hadoop built-in data types ● The following Hadoop build-in collection data types can only be used as value types. – ArrayWritable: This stores an array of values belonging to a Writable type. – TwoDArrayWritable: This stores a matrix of values belonging to the same Writable type. – MapWritable: This stores a map of key-value pairs. Keys and values should be of the Writable data types. – SortedMapWritable: This stores a sorted map of key-value pairs. Keys should implement the WritableComparable interface.
  • 92. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 92 Implementing a custom Hadoop Writable data type ● we can easily write a custom Writable data type by implementing the org.apache.hadoop.io.Writable interface ● The Writable interface-based types can be used as value types in Hadoop MapReduce computations.
  • 93. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 93 Examples
  • 94. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 94 Examples
  • 95. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 95 Examples
  • 96. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 96 Choosing a suitable Hadoop InputFormat for your input data format ● Hadoop supports processing of many different formats and types of data through InputFormat. ● The InputFormat of a Hadoop MapReduce computation generates the key-value pair inputs for the mappers by parsing the input data. ● InputFormat also performs the splitting of the input data into logical partitions
  • 97. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 97 InputFormat that Hadoop provide ● TextInputFormat: This is used for plain text files. TextInputFormat generates a key-value record for each line of the input text files. ● NLineInputFormat: This is used for plain text files. NlineInputFormat splits the input files into logical splits of fixed number of lines. ● SequenceFileInputFormat: For Hadoop Sequence file input data ● DBInputFormat: This supports reading the input data for MapReduce computation from a SQL table.
  • 98. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 98 Implementing new input data formats ● Hadoop enables us to implement and specify custom InputFormat implementations for our MapReduce computations. ● A InputFormat implementation should extend the org.apache.hadoop.mapreduce.InputFormat<K,V> abstract class ● overriding the createRecordReader() and getSplits() methods.
  • 99. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 99 Formatting the results of MapReduce computations – using Hadoop OutputFormats ● it is important to store the result of a MapReduce computation in a format that can be consumed efficiently by the target application ● We can use Hadoop OutputFormat interface to define the data storage format ● A OutputFormat prepares the output location and provides a RecordWriter implementation to perform the actual serialization and storage of the data. ● Hadoop uses the org.apache.hadoop.mapreduce.lib.output. TextOutputFormat<K,V> as the default OutputFormat
  • 100. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Analytics Using MapReduce
  • 101. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 102. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 103. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 104. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 105. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 106. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 107. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 108. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 109. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 110. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 111. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 112. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 113. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 114. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Lecture Understanding Hive
  • 115. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Introduction A Petabyte Scale Data Warehouse Using Hadoop Hive is developed by Facebook, designed to enable easy data summarization, ad-hoc querying and analysis of large volumes of data. It provides a simple query language called Hive QL, which is based on SQL
  • 116. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop What Hive is NOT Hive is not designed for online transaction processing and does not offer real-time queries and row level updates. It is best used for batch jobs over large sets of immutable data (like web logs, etc.).
  • 117. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 117 Hive Metastore ● Store Hive metadata ● Configurations – Embedded: in-process metastore, in-process database – Local: in-process metastore, out-of-process database – Remote: out-of-process metastore,out-of-process database
  • 118. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 118 Hive Schema-On-Read ● Faster loads into the database (simply copy or move) ● Slower queries ● Flexibility – multiple schemas for the same data
  • 119. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 119 HiveQL ● Hive Query Language ● SQL dialect ● No support for: – UPDATE, DELETE – Transactions – Indexes – HAVING clause in SELECT – Updateable or materialized views – Srored procedure
  • 120. Danairat T., 2013, danairat@gmail.comBig Data Hadoop – Hands On Workshop 120 Hive Tables ● Managed- CREATE TABLE – LOAD- File moved into Hive's data warehouse directory – DROP- Both data and metadata are deleted. ● External- CREATE EXTERNAL TABLE – LOAD- No file moved – DROP- Only metadata deleted – Use when sharing data between Hive and Hadoop applications or you want to use multiple schema on the same data
  • 121. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Running Hive Hive Shell ● Interactive hive ● Script hive -f myscript ● Inline hive -e 'SELECT * FROM mytable' Hive.apache.org
  • 122. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop System Architecture and Components • Metastore: To store the meta data. • Query compiler and execution engine: To convert SQL queries to a sequence of map/reduce jobs that are then executed on Hadoop. • SerDe and ObjectInspectors: Programmable interfaces and implementations of common data formats and types. A SerDe is a combination of a Serializer and a Deserializer (hence, Ser-De). The Deserializer interface takes a string or binary representation of a record, and translates it into a Java object that Hive can manipulate. The Serializer, however, will take a Java object that Hive has been working with, and turn it into something that Hive can write to HDFS or another supported system. • UDF and UDAF: Programmable interfaces and implementations for user defined functions (scalar and aggregate functions). • Clients: Command line client similar to Mysql command line. hive.apache.org
  • 123. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Architecture Overview HDFS Hive CLI QueriesBrowsing Map Reduce MetaStore Thrift API SerDe Thrift Jute JSON.. Execution Hive QL Parser Planner Mgmt. WebUI HDFS DDL Hive Hive.apache.org
  • 124. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Sample HiveQL The Query compiler uses the information stored in the metastore to convert SQL queries into a sequence of map/reduce jobs, e.g. the following query SELECT * FROM t where t.c = 'xyz' SELECT t1.c2 FROM t1 JOIN t2 ON (t1.c1 = t2.c1) SELECT t1.c1, count(1) from t1 group by t1.c1 Hive.apache.org
  • 125. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Creating Table and Retrieving Data using Hive
  • 126. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Running Hive from terminal Starting Hive hive> quit; Quit from Hive
  • 127. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Hive Editor from Hue Scroll Down the web page
  • 128. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Creating Hive Table hive (default)> CREATE TABLE test_tbl(id INT, country STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; OK Time taken: 4.069 seconds hive (default)> show tables; OK test_tbl Time taken: 0.138 seconds hive (default)> describe test_tbl; OK id int country string Time taken: 0.147 seconds hive (default)> See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
  • 129. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Hue Query Editor See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
  • 130. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Hue Query Editor See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
  • 131. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Hue Query Editor See also: https://cwiki.apache.org/Hive/languagemanual-ddl.html
  • 132. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing Hive Table in HDFS
  • 133. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Alter and Drop Hive Table hive (default)> alter table test_tbl add columns (remarks STRING); hive (default)> describe test_tbl; OK id int country string remarks string Time taken: 0.077 seconds hive (default)> drop table test_tbl; OK Time taken: 0.9 seconds See also: https://cwiki.apache.org/Hive/adminmanual-metastoreadmin.html
  • 134. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Loading Data to Hive Table $ hive hive (default)> CREATE TABLE test_tbl(id INT, country STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; Creating Hive table hive (default)> LOAD DATA LOCAL INPATH '/tmp/country.csv' INTO TABLE test_tbl; Copying data from file:/tmp/test_tbl_data.csv Copying file: file:/tmp/test_tbl_data.csv Loading data to table default.test_tbl OK Time taken: 0.241 seconds hive (default)> Loading data to Hive table
  • 135. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Querying Data from Hive Table hive (default)> select * from test_tbl; OK 1 USA 62 Indonesia 63 Philippines 65 Singapore 66 Thailand Time taken: 0.287 seconds hive (default)>
  • 136. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Insert Overwriting the Hive Table hive (default)> LOAD DATA LOCAL INPATH '/home/cloudera/Downloads/test_tbl_data_updated.csv' overwrite INTO TABLE test_tbl; Copying data from file:/tmp/test_tbl_data_updated.csv Copying file: file:/tmp/test_tbl_data_updated.csv Loading data to table default.test_tbl Deleted hdfs://localhost:54310/user/hive/warehouse/test_tbl OK Time taken: 0.204 seconds hive (default)>
  • 137. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop MovieLens http://grouplens.org/datasets/movielens/
  • 138. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Create the Hive Table for movielen hive (default)> CREATE TABLE u_data ( userid INT, movieid INT, rating INT, unixtime STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY 't' STORED AS TEXTFILE; hive (default)> LOAD DATA LOCAL INPATH '/home/cloudera/Downloads/u.data' overwrite INTO TABLE u_data;
  • 139. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Create the Hive Table for Apache LOf hive (default)> CREATE TABLE apachelog ( host STRING, identity STRING, user STRING, time STRING, request STRING, status STRING, size STRING, referer STRING, agent STRING) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES ( "input.regex" = "([^]*) ([^]*) ([^]*) (-|[^]*]) ([^ "]*|"[^"]*") (-|[0-9]*) (-|[0-9]*)(?: ([^ "]*|".*") ([^ "]*|".*"))?" ) STORED AS TEXTFILE;
  • 140. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Lecture Understanding Pig
  • 141. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Introduction A high-level platform for creating MapReduce programs Using Hadoop Pig is a platform for analyzing large data sets that consists of a high-level language for expressing data analysis programs, coupled with infrastructure for evaluating these programs. The salient property of Pig programs is that their structure is amenable to substantial parallelization, which in turns enables them to handle very large data sets.
  • 142. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Pig Components ● Two Compnents ● Language (Pig Latin) ● Compiler ● Two Execution Environments ● Local pig -x local ● Distributed pig -x mapreduce Hive.apache.org
  • 143. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Running Pig ● Script pig myscript ● Command line (Grunt) pig ● Embedded Writing a java program Hive.apache.org
  • 144. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Pig Latin Hive.apache.org
  • 145. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Pig Execution Stages Hive.apache.orgSource Introduction to Apache Hadoop-Pig: PrashantKommireddi
  • 146. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Why Pig? ● Makes writing Hadoop jobs easier ● 5% of the code, 5% of the time ● You don't need to be a programmer to write Pig scripts ● Provide major functionality required for DatawareHouse and Analytics ● Load, Filter, Join, Group By, Order, Transform ● User can write custom UDFs (User Defined Function) Hive.apache.orgSource Introduction to Apache Hadoop-Pig: PrashantKommireddi
  • 147. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Running MapReduce Job Using Oozie : Select Java
  • 148. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hive.apache.org
  • 149. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Running a Pig script
  • 150. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Pig Command Line [hdadmin@localhost ~]$ pig -x local 2013-08-01 10:29:00,027 [main] INFO org.apache.pig.Main - Apache Pig version 0.11.1 (r1459641) compiled Mar 22 2013, 02:13:53 2013-08-01 10:29:00,027 [main] INFO org.apache.pig.Main - Logging error messages to: /home/hdadmin/pig_1375327740024.log 2013-08-01 10:29:00,066 [main] INFO org.apache.pig.impl.util.Utils - Default bootup file /home/hdadmin/.pigbootup not found 2013-08-01 10:29:00,212 [main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file system at: file:/// grunt>
  • 151. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting Pig from Hue
  • 152. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop countryFilter.pig A = load 'hdi-data.csv' using PigStorage(',') AS (id:int, country:chararray, hdi:float, lifeex:int, mysch:i nt, eysch:int, gni:int); B = FILTER A BY gni > 2000; C = ORDER B BY gni; dump C; #Preparing Data Download hdi-data.csv #Edit Your Script [hdadmin@localhost ~]$ cd Downloads/ [hdadmin@localhost ~]$ vi countryFilter.pig Writing a Pig Script
  • 153. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop [hdadmin@localhost ~]$ cd Downloads [hdadmin@localhost ~]$ pig -x local grunt > run countryFilter.pig .... (150,Cameroon,0.482,51,5,10,2031) (126,Kyrgyzstan,0.615,67,9,12,2036) (156,Nigeria,0.459,51,5,8,2069) (154,Yemen,0.462,65,2,8,2213) (138,Lao People's Democratic Republic,0.524,67,4,9,2242) (153,Papua New Guinea,0.466,62,4,5,2271) (165,Djibouti,0.43,57,3,5,2335) (129,Nicaragua,0.589,74,5,10,2430) (145,Pakistan,0.504,65,4,6,2550) Running a Pig Script
  • 154. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Lecture: Understanding Sqoop
  • 155. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Introduction Sqoop (“SQL-to-Hadoop”) is a straightforward command-line tool with the following capabilities: • Imports individual tables or entire databases to files in HDFS • Generates Java classes to allow you to interact with your imported data • Provides the ability to import from SQL databases straight into your Hive data warehouse See also: http://sqoop.apache.org/docs/1.4.2/SqoopUserGuide.html
  • 156. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Architecture Overview Hive.apache.org
  • 157. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Loading Data from DBMS to Hadoop HDFS
  • 158. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Loading Data into MySQL DB [root@localhost ~]# service mysqld start Starting mysqld: [ OK ] [root@localhost ~]# mysql -u root -p Password: cloudera mysql> create database countrydb; Query OK, 1 row affected (0.00 sec) mysql> use countrydb; Database changed mysql> create table country_tbl(id INT, country VARCHAR(100)); Query OK, 0 rows affected (0.02 sec) mysql> LOAD DATA LOCAL INFILE '/home/cloudera/Downloads/country.csv' INTO TABLE country_tbl FIELDS terminated by ',' LINES TERMINATED BY 'n'; Query OK, 237 rows affected, 4 warnings (0.00 sec) Records: 237 Deleted: 0 Skipped: 0 Warnings: 0
  • 159. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Loading Data into MySQL DB mysql> select * from country_tbl; +------+------------------------------+ | id | country | +------+------------------------------+ | 93 | Afghanistan | | 355 | Albania | | 213 | Algeria | | 1684 | AmericanSamoa | | 376 | Andorra | ... +------+------------------------------+ 237 rows in set (0.00 sec) mysql> Testing data query from MySQL DB
  • 160. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Importing data from MySQL to Hive Table [hdadmin@localhost ~]$ sqoop import --connect jdbc:mysql://localhost/countrydb --username root -P --table country_tbl --hive-import --hive-table country_tbl -m 1 Warning: /usr/lib/hbase does not exist! HBase imports will fail. Please set $HBASE_HOME to the root of your HBase installation. Warning: $HADOOP_HOME is deprecated. Enter password: <enter here> 13/03/21 18:07:43 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override 13/03/21 18:07:43 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc. 13/03/21 18:07:43 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset. 13/03/21 18:07:43 INFO tool.CodeGenTool: Beginning code generation 13/03/21 18:07:44 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `country_tbl` AS t LIMIT 1 13/03/21 18:07:44 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `country_tbl` AS t LIMIT 1 13/03/21 18:07:44 INFO orm.CompilationManager: HADOOP_HOME is /usr/local/hadoop/libexec/.. Note: /tmp/sqoop-hdadmin/compile/0b65b003bf2936e1303f5edf93338215/country_tbl.java uses or overrides a deprecated API. Note: Recompile with -Xlint:deprecation for details. 13/03/21 18:07:44 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hdadmin/compile/0b65b003bf2936e1303f5edf93338215/country_tbl.jar 13/03/21 18:07:44 WARN manager.MySQLManager: It looks like you are importing from mysql. 13/03/21 18:07:44 WARN manager.MySQLManager: This transfer can be faster! Use the --direct 13/03/21 18:07:44 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path. 13/03/21 18:07:44 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql) 13/03/21 18:07:44 INFO mapreduce.ImportJobBase: Beginning import of country_tbl 13/03/21 18:07:45 INFO mapred.JobClient: Running job: job_201303211744_0001 13/03/21 18:07:46 INFO mapred.JobClient: map 0% reduce 0% 13/03/21 18:08:02 INFO mapred.JobClient: map 100% reduce 0% 13/03/21 18:08:07 INFO mapred.JobClient: Job complete: job_201303211744_0001 13/03/21 18:08:07 INFO mapred.JobClient: Counters: 18 13/03/21 18:08:07 INFO mapred.JobClient: Job Counters 13/03/21 18:08:07 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=12154 13/03/21 18:08:07 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 13/03/21 18:08:07 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
  • 161. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing data from Hive Table [hdadmin@localhost ~]$ hive Logging initialized using configuration in file:/usr/local/hive-0.9.0- bin/conf/hive-log4j.properties Hive history file=/tmp/hdadmin/hive_job_log_hdadmin_201303211810_964909984.txt hive (default)> show tables; OK country_tbl test_tbl Time taken: 2.566 seconds hive (default)> select * from country_tbl; OK 93 Afghanistan 355 Albania ..... Time taken: 0.587 seconds hive (default)> quit; [hdadmin@localhost ~]$
  • 162. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Reviewing HDFS Database Table files Start Web Browser to http://localhost:50070/ then navigate to /user/hive/warehouse
  • 163. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Lecture Understanding HBase
  • 164. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Introduction An open source, non-relational, distributed database HBase is an open source, non-relational, distributed database modeled after Google's BigTable and is written in Java. It is developed as part of Apache Software Foundation's Apache Hadoop project and runs on top of HDFS (, providing BigTable-like capabilities for Hadoop. That is, it provides a fault-tolerant way of storing large quantities of sparse data.
  • 165. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HBase Features ● Hadoop database modelled after Google's Bigtab;e ● Column oriented data store, known as Hadoop Database ● Support random realtime CRUD operations (unlike HDFS) ● No SQL Database ● Opensource, written in Java ● Run on a cluster of commodity hardware Hive.apache.org
  • 166. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop When to use Hbase? ● When you need high volume data to be stored ● Un-structured data ● Sparse data ● Column-oriented data ● Versioned data (same data template, captured at various time, time-elapse data) ● When you need high scalability Hive.apache.org
  • 167. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Which one to use? ● HDFS ● Only append dataset (no random write) ● Read the whole dataset (no random read) ● HBase ● Need random write and/or read ● Has thousands of operation per second on TB+ of data ● RDBMS ● Data fits on one big node ● Need full transaction support ● Need real-time query capabilities Hive.apache.org
  • 168. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 169. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 170. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HBase Components Hive.apache.org ● Region ● Row of table are stores ● Region Server ● Hosts the tables ● Master ● Coordinating the Region Servers ● ZooKeeper ● HDFS ● API ● The Java Client API
  • 171. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop HBase Shell Commands Hive.apache.org
  • 172. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Hands-On: Running HBase
  • 173. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Starting HBase shell [hdadmin@localhost ~]$ start-hbase.sh starting master, logging to /usr/local/hbase-0.94.10/logs/hbase-hdadmin- master-localhost.localdomain.out [hdadmin@localhost ~]$ jps 3064 TaskTracker 2836 SecondaryNameNode 2588 NameNode 3513 Jps 3327 HMaster 2938 JobTracker 2707 DataNode [hdadmin@localhost ~]$ hbase shell HBase Shell; enter 'help<RETURN>' for list of supported commands. Type "exit<RETURN>" to leave the HBase Shell Version 0.94.10, r1504995, Fri Jul 19 20:24:16 UTC 2013 hbase(main):001:0>
  • 174. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Create a table and insert data in HBase hbase(main):009:0> create 'test', 'cf' 0 row(s) in 1.0830 seconds hbase(main):010:0> put 'test', 'row1', 'cf:a', 'val1' 0 row(s) in 0.0750 seconds hbase(main):011:0> scan 'test' ROW COLUMN+CELL row1 column=cf:a, timestamp=1375363287644, value=val1 1 row(s) in 0.0640 seconds hbase(main):002:0> get 'test', 'row1' COLUMN CELL cf:a timestamp=1375363287644, value=val1 1 row(s) in 0.0370 seconds
  • 175. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Data Browsers in Hue for HBase
  • 176. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Data Browsers in Hue for HBase
  • 177. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Using Data Browsers in Hue for HBase
  • 178. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Project: Flight
  • 179. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Flight Details Data http://stat-computing.org/dataexpo/2009/the-data.html
  • 180. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Data Description
  • 181. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Snapshot of Dataset
  • 182. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Problem ● Write a map reduce to count the frequency of arrival delay in each airport by classify in to three groups: ● Very late : delay > 30 ● Late : 5 <delay <= 30 ● Ontime: delay <= 5 ● Export the result to excel and plot the histogram Hive.apache.org
  • 183. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Recommendation to Further Study
  • 184. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop
  • 185. Danairat T., , danairat@gmail.com: Thanachart Numnonda, thanachart@imcinstitute.com Aug 2013Big Data Hadoop on Amazon EMR – Hands On Workshop Thank you www.imcinstitute.com www.facebook.com/imcinstitute