This document discusses a method for handwritten character recognition using a K-nearest neighbors (K-NN) classification algorithm. It begins by introducing the problem of handwritten character recognition and the challenges involved. It then describes the main steps of the proposed method: preprocessing the image data, extracting features, and classifying characters using K-NN. The document tests the method on the MNIST dataset of handwritten digits, achieving an accuracy of 97.67%. It concludes that the method is able to accurately recognize handwritten characters independently of size, font, or writer style.