SlideShare a Scribd company logo
Hourly Precipitation
Prediction
Nithya
Agenda
• Model
• Variable Selection
• Correlation
• Time Lagged Correlations
• Simulation Result
• Variable selection Vs Mean Error
• Input -Neighbor Stations Selections
• Stations which can be used as good predictors
• Cross Correlation Between Stations for Hourly Precipitation
• Correlation Plots
• Results
• Error Plot
• Hourly System output
Model
Data Collection Train Network Predict Data Web Interface
Train
Network
Normalize Data.
.
Neural Network Training Section Cubic Spline Interpolation Multiple Sections
Online Prediction and Web Section Trained Neural Network Aggregate Data
Variable Selection-Correlation
• Output
• 4 hours of Probability data for
Hourly Precipitation
http://10.39.8.247/predict/correlation.php#div-1
All Variables
Temperature
Humidity
Dew point
Pressure
Wind Speed
Wind Speed Gust
Wind Direction
Wind Direction Degree
Daily Rain
Hourly Precipitation
Selected Variables
Hourly Precipitation
Humidity
Wind Direction
Daily Rain
Solar Radiation
Temperature
Cross Correlation Between Variables
HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation
HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed
*HP- Hourly Precipitation
Variable Selection-Cross Correlation
HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation
HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed
Selected Variables
Hourly Precipitation
Humidity
Wind Direction
Daily Rain
Solar Radiation
Temperature
All Variables
Temperature
Humidity
Dew point
Pressure
Wind Speed
Wind Speed Gust
Wind Direction
Wind Direction Degree
Daily Rain
Hourly Precipitation
Selected Variables
Hourly Precipitation
Humidity
Daily Rain
Wind Direction
Correlation
Cross Correlation
Simulation –Variable Combination
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
HP-WD-DR-T
HP-P-WD-H-T
HP-P-WD-T
HP-WD-H-T
HP-SR-P-WS
HP-P-WD-DR-T
HP-SR-P-WD-WS
HP-P-WS-DR
HP-T
HP-H-T
HP-SR-WS-H-DR
T-HP-SR-P-WD-WS-DR
HP-SR-WS-H-T
HP-SR-P-WS-H
HP-WS-DR-T
HP-WD-DR
HP-SR-T
T-HP-SR-P-WD-H-DR
HP-P-WD
HP-SR-WD-WS-DR-T
HP-SR-P-WD-WS-T
HP-SR-P-WD-H-T
HP-WS-H-DR-T
HP-SR-H-DR-T
HP-SR-P-H-T
HP-P-WD-H
HP-P-WS
HP-SR-P-H
HP-P-T
HP-SR-P
HP-P-WD-WS-H-T
HP-SR-WD-H-DR-T
MeanAbsoluteError
Mean Absolute Error
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0 1 2 3 4 5 6 7 8
MeanAbsoluteError
Number of Variables used
Mean Absolute Error
• List of Selected Variables Combinations
• HP-WD-H-DR
• HP-WD-DR-T
• HP-WD-H-DR-T
• HP-P-WD-WS-DR
• HP-P-WD-H-T
• Legend
• T- Temperature
• HP- Hourly Precipitation
• WD- Wind Direction
• WS- Wind Speed
• P- Pressure
• H- Humidity
• DR- Daily Rain
• SR- Solar Radiation
• HP-SR-WD-DR
• HP-P-WD-DR
• HP-P-WD-WS-H
• HP-P-WD-T
• HP-WD-WS-H-T
Variable Selection-Simulation
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
HP-WD-DR-T
HP-P-WD-WS-DR
HP-P-WD-DR
HP-WD-WS-H-T
HP-WD-H-T
HP-WD-WS-DR-T
HP-P-WD-H-DR
HP-SR-H-DR
HP-SR-P-WD-WS
HP-SR-DR-T
HP-SR
HP-SR-WS-DR
HP-H-T
HP-SR-WS-DR-T
HP-SR-WD-WS
HP-H
HP-SR-WS-H-T
HP-SR-WD-H-DR
T-HP-SR-P-WS-…
HP-SR-P-WD-H
HP-WD-DR
HP-SR-P-WD-…
HP-SR-WS-H-DR-T
HP-P-WS-H-T
HP-P-WD
HP-SR-H
HP-SR-P-WD-DR-T
HP-SR-WD-WS-…
HP-SR-P-WD-H-T
HP-WD-WS
HP-P-H-DR
HP-SR-P-H-DR
HP-SR-P-H-T
HP-WD-WS-H-DR
HP-WD-WS-H
HP-SR-WS-H
HP-SR-P-H
HP-H-DR
HP-P-H-DR-T
HP-WD
HP-P-WD-WS-H-T
HP-SR-P-WS-DR-T
MeanAbsoluteError
Mean Absolute Error
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0 1 2 3 4 5 6 7 8
MeanAbsoluteError
Number of Variables used
Mean Absolute ErrorSelected Variables
Hourly Precipitation
Humidity
Wind Direction
Daily Rain
Solar Radiation
Temperature
All Variables
Temperature
Humidity
Dew point
Pressure
Wind Speed
Wind Speed Gust
Wind Direction
Wind Direction Degree
Daily Rain
Hourly Precipitation
Selected Variables
Hourly Precipitation
Humidity
Daily Rain
Wind Direction
Selected Variables
Hourly Precipitation
Humidity
Daily Rain
Wind Direction
Correlation
Cross Correlation
Simulation
Number of Hours of input data
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0 5 10 15 20 25 30
MAE
Number of hours
Number of Input hours of data required
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
0 5 10 15 20 25 30 35
MAE
Number of Neurons
Number of Neurons
• Number of Hours input data- 24
• Number of hidden Neurons=7
Stations which can be used as good predictors
0
5
10
15
20
25
-18 -17 -16 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
COUNT
NUMBER HOURS AHEAD
Number of Times Rainfall occured at stations before IBSURRE21
Burna10
CWWK
Ibccoqui5
Ibcpittm3
Surre10
Surre6
Possible Predictor Burna 10, Coqui5, Surre6
0
5
10
15
20
25
-7 -6 -5 -4 -3 -2 -1
Burna10
CWWK
Ibccoqui5
Ibcpittm3
Surre10
Surre6
Cross Correlation Between Stations for Hourly
Precipitation
SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-PITTM3
SURRE21-BURNA 10 SURRE21-SURRE10
Cross Correlation Between Stations for Hourly
Precipitation- Daily Rain
SURRE21-Surre10 SURRE21-Surre6
SURRE21-COQUI5 SURRE21-BURNA10
Cross Correlation Between Stations for Hourly
Precipitation- Humidity
SURRE21-BURNA10 SURRE21-CWMM SURRE21-CWWK
SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-SURRE10
Input Selection –Station Combination
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0 1 2 3 4 5 6 7
MAE
Number of Input Variables
MEAN Absolute Error
Best Combination
Surre21,Burna 10, Ibccoqui5
Surre21,Burna 10, PITM3
Surre21,PITM3, Surre6
0
0.05
0.1
0.15
0.2
0.25
0.3
Sur21-NA10-IBC5
Sur21-PIT3-Sur10-CWMM
Sur21-NA10-IBC5-PIT3-Sur6
Sur21-NA10-PIT3-Sur10-CWMM-CWWK
Sur21-NA10-IBC5-Sur10-Sur6
Sur21-NA10-IBC5-PIT3-Sur6-CWWK
Sur21-NA10-PIT3-Sur6-CWMM-CWWK
Sur21-NA10-IBC5-Sur6-CWWK
Sur21-IBC5-Sur10-Sur6
Sur21-IBC5-Sur6
Sur21-IBC5-PIT3-Sur10-Sur6
Sur21-NA10-IBC5-PIT3-Sur6-CWMM
Sur21-IBC5-Sur10-Sur6-CWWK
Sur21-Sur10-CWMM-CWWK
Sur21-PIT3-Sur10-CWWK
Sur21-IBC5
Sur21-NA10-IBC5-PIT3-Sur10
Sur21-NA10-PIT3-CWMM
Sur21-IBC5-PIT3-Sur10-CWWK
Sur21-IBC5-CWMM
Sur21-NA10-PIT3-Sur10-CWWK
Sur21-Sur10-Sur6-CWWK
Sur21-IBC5-PIT3-Sur6
Sur21-Sur6-CWMM
Sur21-IBC5-Sur10-CWWK
Sur21-PIT3-Sur10-Sur6-CWMM
Sur21-IBC5-Sur6-CWMM
Sur21-NA10-Sur10-CWWK
Sur21-IBC5-Sur6-CWWK
Sur21-IBC5-Sur6-CWMM-CWWK
Sur21-Sur10-Sur6-CWMM
Sur21-NA10-Sur10-CWMM-CWWK
Sur21-NA10-IBC5-PIT3-CWMM
Sur21-Sur10-CWMM
Sur21-PIT3
MeanAbsoluteError
Combination Plot for Stations
Input Selection –Station Combination
0
0.05
0.1
0.15
0.2
0.25
0.3
Sur21-NA10-IBC5
Sur21-PIT3-Sur6
Sur21-NA10-PIT3
Sur21-NA10-IBC5-PIT3-Sur6
Sur21-NA10-IBC5-Sur10-CWMM-CWWK
Sur21-IBC5-CWMM-CWWK
Sur21-NA10-IBC5-Sur10-Sur6
Sur21-NA10-IBC5-Sur6-CWMM
Sur21-PIT3-Sur10-CWMM-CWWK
Sur21-NA10-PIT3-Sur6-CWMM-CWWK
Sur21-IBC5-PIT3
Sur21-NA10-IBC5-PIT3-CWWK
Sur21-IBC5-Sur10-Sur6
Sur21-NA10-IBC5-PIT3-Sur10-CWWK
Sur21-NA10-IBC5-Sur10-CWMM
Sur21-IBC5-PIT3-Sur10-Sur6
Sur21-PIT3-Sur6-CWWK
Sur21-IBC5-PIT3-CWWK
Sur21-IBC5-Sur10-Sur6-CWWK
Sur21-NA10-Sur10-Sur6-CWMM
Sur21-NA10
Sur21-PIT3-Sur10-CWWK
Sur21-PIT3-CWWK
Sur21-NA10-Sur10-Sur6
Sur21-NA10-IBC5-PIT3-Sur10
Sur21-Sur6
Sur21-NA10-IBC5-Sur6-CWMM-CWWK
Sur21-IBC5-PIT3-Sur10-CWWK
Sur21-NA10-IBC5-CWMM-CWWK
Sur21-IBC5-CWWK
Sur21-NA10-PIT3-Sur10-CWWK
Sur21-NA10-PIT3-CWMM-CWWK
Sur21-IBC5-PIT3-Sur10-CWMM
Sur21-IBC5-PIT3-Sur6
Sur21-Sur6-CWMM-CWWK
Sur21-Sur10-Sur6-CWMM-CWWK
Sur21-IBC5-Sur10-CWWK
Sur21-PIT3-Sur10-Sur6
Sur21-NA10-Sur6-CWMM-CWWK
Sur21-IBC5-Sur6-CWMM
Sur21-NA10-CWWK
Sur21-PIT3-Sur6-CWMM
Sur21-IBC5-Sur6-CWWK
Sur21-NA10-CWMM
Sur21-IBC5-Sur10-CWMM
Sur21-Sur10-Sur6-CWMM
Sur21-Sur10-CWWK
Sur21-NA10-PIT3-Sur10-Sur6-CWMM
Sur21-NA10-IBC5-PIT3-CWMM
Sur21-NA10-IBC5-Sur10-Sur6-CWWK
Sur21-PIT3-Sur10-Sur6-CWWK
Sur21-PIT3
MeanAbsoluteError
Combination Plot for Stations
Input/output Representation
• Input is 24 hour Normalized data from three stations and 3 variables
from the stations.
• Output is 4 variable. Each variable indicating probability of rain for
every hour ahead.
Date Time Hour1 Hour2 Hour3 Hour4
… 0 0 0 0
…. 0 1 0 0
… 1 0 0 0
…. 0 0 0 1
• Sample Actual OutputData Used for Training
• Rainfall>1(mm) ? Output=1 : Output =0
We Have 2^4= 16 different
Combinations of possible Output
Distribution of Actual Output Classes
2011-2013
Error Plot
Predicted
Error Computed for Random Sample data 2011-2013
*This data was not used for Training
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Output Class 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Predicted
actual actual
counts percentage
Hourly Precipitation Results
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
12:00AM
1:00AM
2:00AM
3:00AM
4:00AM
5:00AM
6:00AM
7:00AM
8:00AM
9:00AM
10:00AM
11:00AM
12:00PM
1:00PM
2:00PM
3:00PM
4:00PM
5:00PM
6:00PM
Precipitation(mm)
Probability(%)
Low Rain 1/7/2014
0
0.5
1
1.5
2
2.5
3
3.5
4
0
10
20
30
40
50
60
70
80
90
100
2:00AM
3:00AM
4:00AM
5:00AM
6:00AM
7:00AM
8:00AM
9:00AM
10:00AM
11:00AM
12:00PM
1:00PM
2:00PM
3:00PM
4:00PM
5:00PM
6:00PM
7:00PM
8:00PM
Precipitation(mm)
Probability(%)
Average Rain 1/2/2014
0
1
2
3
4
5
6
7
8
0
20
40
60
80
100
Precipitation(mm)
Probability(%)
Heavy Rain 1/11/2014
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
6:00AM
7:00AM
8:00AM
9:00AM
10:00AM
11:00AM
12:00PM
1:00PM
2:00PM
3:00PM
4:00PM
5:00PM
6:00PM
7:00PM
8:00PM
9:00PM
10:00PM
11:00PM
Precipitation(mm)
Probability(%)
Snow Fall 2/22/2014
Hourly Precipitation – Low rain
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM
Precipitation(mm)
Probability(%)
Rainfall Prediction 1/7/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
Hourly Precipitation – Average rain
0
0.5
1
1.5
2
2.5
3
3.5
4
0
10
20
30
40
50
60
70
80
90
100
2:00
AM
3:00
AM
4:00
AM
5:00
AM
6:00
AM
7:00
AM
8:00
AM
9:00
AM
10:00
AM
11:00
AM
12:00
PM
1:00
PM
2:00
PM
3:00
PM
4:00
PM
5:00
PM
6:00
PM
7:00
PM
8:00
PM
PRECIPITATION(MM)
PROBABILITY(%)
Rainfall Prediction 1/2/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
Hourly Precipitation – Heavy rain
0
1
2
3
4
5
6
7
8
0
20
40
60
80
100
4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 8:00 PM
Precipitation(mm)
Probability(%)
Rainfall Prediction 1/11/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
Hourly Precipitation – Snow Fall
0
0.5
1
1.5
2
2.5
3
0
10
20
30
40
50
60
70
80
90
100
6:00
AM
7:00
AM
8:00
AM
9:00
AM
10:00
AM
11:00
AM
12:00
PM
1:00
PM
2:00
PM
3:00
PM
4:00
PM
5:00
PM
6:00
PM
7:00
PM
8:00
PM
9:00
PM
10:00
PM
11:00
PM
PRECIPITATION(MM)
PROBABILITY(%)
Rainfall Prediction 2/22/2014
Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
Cross Correlation Plots
Hourly Precipitation Vs Humidity
6-23-13
5-11-13
1-3-13
Hourly Precipitation Vs Pressure
6-23-13
5-11-13
1-3-13
Hourly Precipitation Vs Solar Radiation
6-23-13
5-25-13
1-3-13
Hourly Precipitation Vs Temperature
6-23-13
5-25-13
1-3-13
Hourly Precipitation Vs Wind Direction
6-23-13
5-25-13
1-3-13
Back time lagged correlation
Hourly Precipitation Vs Wind Direction
Back time lagged correlation
0
50
100
150
200
250
300
350
Degree
Direction Vs Degress
2013- 6 Hours Prior to Rainfall- Wind Direction Distribution
Correlation Matrix
1. SURRE 21
2. CWWK
*Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
Correlation Matrix
1. SURRE 21
2. SURRE6
*Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
Correlation Matrix
1. SURRE 21
2. CWMM
*Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
Correlation Matrix
1. SURRE 21
2. SURRE10
*Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
Correlation Matrix
1. SURRE 21
2. PITM3
*Daily Rain and Wind Direction Deg are dropped, because more 80% of the data is NA Back To Station Correlation>>
Correlation Matrix
1. SURRE 21
2. IBCCOQUI5
*Daily Rain and Wind Direction Deg are dropped, because more 80% of the data is NA Back To Station Correlation>>
Correlation Matrix
1. SURRE 21
2. BURNA10
*Daily Rain and Wind Direction Deg are dropped, because more 80% of the data is NA Back To Station Correlation>>

More Related Content

PDF
Decadal Signals In Precipitation
PPTX
Clouds 2011
PPT
Population Data Workbench - Meteorology Data Query
PDF
Hydroclimatology of Sariz Creek Watershed, Located In Seyhan Basin, And Simul...
PPTX
BJohnson_1473_IGARSS_2011_oral_final.pptx
PDF
Weather!: Meteorology and Meteorological Collections at the Royal Irish Acade...
PPTX
kruczkiewicz_pier_7.10.15_v2
PPTX
Develop statistical model to predict extreme precipitation through
Decadal Signals In Precipitation
Clouds 2011
Population Data Workbench - Meteorology Data Query
Hydroclimatology of Sariz Creek Watershed, Located In Seyhan Basin, And Simul...
BJohnson_1473_IGARSS_2011_oral_final.pptx
Weather!: Meteorology and Meteorological Collections at the Royal Irish Acade...
kruczkiewicz_pier_7.10.15_v2
Develop statistical model to predict extreme precipitation through

Viewers also liked (20)

PPT
Meteorology -Weather acloutier 2011 power point
PDF
Nir y. krakauer
PPT
03 lect1meteorology
PDF
5 - K Prasad - Weather forecasting in modern age-Sep-16
PPT
Flash floods: Current practice and new developments in quantitative precipita...
PPT
Presentation Siebesma - (Extreme Precipitation, Present and Future
PPT
Wlk Presentation Final3
PPT
03 lect1meteorology
PPTX
Remote sensing products in support of crop subsidy in Mexico
PPT
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
PPT
Remote sensing
PPTX
Meteorology Jobs in Renewable Energy
PDF
Downscaling climate information (BC3 Summer School _July 2015)
PPTX
Chapter 2 Precipitation
PPTX
Precipitation
PPTX
Factors affecting monsoon precipitation in Nepal
PDF
Hydro-Meteorology and Sustainable Development in the Caribbean
PDF
impact of climat on health
PPTX
History of Meteorology and Invention of Weather Instruments
PPT
Meteorology-a student's report( a compilation of facts from books,internet,jo...
Meteorology -Weather acloutier 2011 power point
Nir y. krakauer
03 lect1meteorology
5 - K Prasad - Weather forecasting in modern age-Sep-16
Flash floods: Current practice and new developments in quantitative precipita...
Presentation Siebesma - (Extreme Precipitation, Present and Future
Wlk Presentation Final3
03 lect1meteorology
Remote sensing products in support of crop subsidy in Mexico
TU2.L10 - NEXT-GENERATION GLOBAL PRECIPITATION PRODUCTS AND THEIR APPLICATIONS
Remote sensing
Meteorology Jobs in Renewable Energy
Downscaling climate information (BC3 Summer School _July 2015)
Chapter 2 Precipitation
Precipitation
Factors affecting monsoon precipitation in Nepal
Hydro-Meteorology and Sustainable Development in the Caribbean
impact of climat on health
History of Meteorology and Invention of Weather Instruments
Meteorology-a student's report( a compilation of facts from books,internet,jo...
Ad

Similar to Hourly Precipitation Prediction (20)

PPTX
Masters Thesis
PPT
Sampling-SDM2012_Jun
PDF
An Autonomic Approach to Real-Time Predictive Analytics using Open Data and ...
PDF
Power Performance Optimization using LiDAR technology : India Pilot Project R...
PDF
14 jan remund_accuracy_of_meteonorm_7
PPTX
Presentation on Spot Speed Study Analysis for the course CE 454
PDF
Forecasting time series powerful and simple
PDF
Know Your Data: The stats behind your alerts
PPTX
Forecasting fine grained air quality based on big data
PDF
OSMC 2023 | Know your data: The stats behind your alerts by Dave McAllister
PPTX
Statr session 25 and 26
PPTX
Cloud Dataflow - A Unified Model for Batch and Streaming Data Processing
PPTX
Data Collection 2.pptx
PDF
ADCMT Digital multimeter Catalog 7461 a-7451a Nihon Denkei
PPTX
TECO Final Presentation to the Sponsor.pptx
PDF
System and User Aspects of Web Search Latency
PPT
How to develop pm tasks for a machine
PPTX
Computer Vision for Measurement & FR
PDF
Precipitation and its estimation
PDF
4-ESP-Data-Analytics-V3-for-release.pdf
Masters Thesis
Sampling-SDM2012_Jun
An Autonomic Approach to Real-Time Predictive Analytics using Open Data and ...
Power Performance Optimization using LiDAR technology : India Pilot Project R...
14 jan remund_accuracy_of_meteonorm_7
Presentation on Spot Speed Study Analysis for the course CE 454
Forecasting time series powerful and simple
Know Your Data: The stats behind your alerts
Forecasting fine grained air quality based on big data
OSMC 2023 | Know your data: The stats behind your alerts by Dave McAllister
Statr session 25 and 26
Cloud Dataflow - A Unified Model for Batch and Streaming Data Processing
Data Collection 2.pptx
ADCMT Digital multimeter Catalog 7461 a-7451a Nihon Denkei
TECO Final Presentation to the Sponsor.pptx
System and User Aspects of Web Search Latency
How to develop pm tasks for a machine
Computer Vision for Measurement & FR
Precipitation and its estimation
4-ESP-Data-Analytics-V3-for-release.pdf
Ad

Hourly Precipitation Prediction

  • 2. Agenda • Model • Variable Selection • Correlation • Time Lagged Correlations • Simulation Result • Variable selection Vs Mean Error • Input -Neighbor Stations Selections • Stations which can be used as good predictors • Cross Correlation Between Stations for Hourly Precipitation • Correlation Plots • Results • Error Plot • Hourly System output
  • 3. Model Data Collection Train Network Predict Data Web Interface Train Network Normalize Data. . Neural Network Training Section Cubic Spline Interpolation Multiple Sections Online Prediction and Web Section Trained Neural Network Aggregate Data
  • 4. Variable Selection-Correlation • Output • 4 hours of Probability data for Hourly Precipitation http://10.39.8.247/predict/correlation.php#div-1 All Variables Temperature Humidity Dew point Pressure Wind Speed Wind Speed Gust Wind Direction Wind Direction Degree Daily Rain Hourly Precipitation Selected Variables Hourly Precipitation Humidity Wind Direction Daily Rain Solar Radiation Temperature
  • 5. Cross Correlation Between Variables HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed *HP- Hourly Precipitation
  • 6. Variable Selection-Cross Correlation HP Vs Humidity HP Vs Pressure HP Vs Solar Radiation HP Vs Temperature HP Vs Wind Direction Degree HP Vs Wind Speed Selected Variables Hourly Precipitation Humidity Wind Direction Daily Rain Solar Radiation Temperature All Variables Temperature Humidity Dew point Pressure Wind Speed Wind Speed Gust Wind Direction Wind Direction Degree Daily Rain Hourly Precipitation Selected Variables Hourly Precipitation Humidity Daily Rain Wind Direction Correlation Cross Correlation
  • 7. Simulation –Variable Combination 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 HP-WD-DR-T HP-P-WD-H-T HP-P-WD-T HP-WD-H-T HP-SR-P-WS HP-P-WD-DR-T HP-SR-P-WD-WS HP-P-WS-DR HP-T HP-H-T HP-SR-WS-H-DR T-HP-SR-P-WD-WS-DR HP-SR-WS-H-T HP-SR-P-WS-H HP-WS-DR-T HP-WD-DR HP-SR-T T-HP-SR-P-WD-H-DR HP-P-WD HP-SR-WD-WS-DR-T HP-SR-P-WD-WS-T HP-SR-P-WD-H-T HP-WS-H-DR-T HP-SR-H-DR-T HP-SR-P-H-T HP-P-WD-H HP-P-WS HP-SR-P-H HP-P-T HP-SR-P HP-P-WD-WS-H-T HP-SR-WD-H-DR-T MeanAbsoluteError Mean Absolute Error 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 1 2 3 4 5 6 7 8 MeanAbsoluteError Number of Variables used Mean Absolute Error • List of Selected Variables Combinations • HP-WD-H-DR • HP-WD-DR-T • HP-WD-H-DR-T • HP-P-WD-WS-DR • HP-P-WD-H-T • Legend • T- Temperature • HP- Hourly Precipitation • WD- Wind Direction • WS- Wind Speed • P- Pressure • H- Humidity • DR- Daily Rain • SR- Solar Radiation • HP-SR-WD-DR • HP-P-WD-DR • HP-P-WD-WS-H • HP-P-WD-T • HP-WD-WS-H-T
  • 8. Variable Selection-Simulation 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 HP-WD-DR-T HP-P-WD-WS-DR HP-P-WD-DR HP-WD-WS-H-T HP-WD-H-T HP-WD-WS-DR-T HP-P-WD-H-DR HP-SR-H-DR HP-SR-P-WD-WS HP-SR-DR-T HP-SR HP-SR-WS-DR HP-H-T HP-SR-WS-DR-T HP-SR-WD-WS HP-H HP-SR-WS-H-T HP-SR-WD-H-DR T-HP-SR-P-WS-… HP-SR-P-WD-H HP-WD-DR HP-SR-P-WD-… HP-SR-WS-H-DR-T HP-P-WS-H-T HP-P-WD HP-SR-H HP-SR-P-WD-DR-T HP-SR-WD-WS-… HP-SR-P-WD-H-T HP-WD-WS HP-P-H-DR HP-SR-P-H-DR HP-SR-P-H-T HP-WD-WS-H-DR HP-WD-WS-H HP-SR-WS-H HP-SR-P-H HP-H-DR HP-P-H-DR-T HP-WD HP-P-WD-WS-H-T HP-SR-P-WS-DR-T MeanAbsoluteError Mean Absolute Error 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 1 2 3 4 5 6 7 8 MeanAbsoluteError Number of Variables used Mean Absolute ErrorSelected Variables Hourly Precipitation Humidity Wind Direction Daily Rain Solar Radiation Temperature All Variables Temperature Humidity Dew point Pressure Wind Speed Wind Speed Gust Wind Direction Wind Direction Degree Daily Rain Hourly Precipitation Selected Variables Hourly Precipitation Humidity Daily Rain Wind Direction Selected Variables Hourly Precipitation Humidity Daily Rain Wind Direction Correlation Cross Correlation Simulation
  • 9. Number of Hours of input data 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 5 10 15 20 25 30 MAE Number of hours Number of Input hours of data required 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 0 5 10 15 20 25 30 35 MAE Number of Neurons Number of Neurons • Number of Hours input data- 24 • Number of hidden Neurons=7
  • 10. Stations which can be used as good predictors 0 5 10 15 20 25 -18 -17 -16 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 COUNT NUMBER HOURS AHEAD Number of Times Rainfall occured at stations before IBSURRE21 Burna10 CWWK Ibccoqui5 Ibcpittm3 Surre10 Surre6
  • 11. Possible Predictor Burna 10, Coqui5, Surre6 0 5 10 15 20 25 -7 -6 -5 -4 -3 -2 -1 Burna10 CWWK Ibccoqui5 Ibcpittm3 Surre10 Surre6
  • 12. Cross Correlation Between Stations for Hourly Precipitation SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-PITTM3 SURRE21-BURNA 10 SURRE21-SURRE10
  • 13. Cross Correlation Between Stations for Hourly Precipitation- Daily Rain SURRE21-Surre10 SURRE21-Surre6 SURRE21-COQUI5 SURRE21-BURNA10
  • 14. Cross Correlation Between Stations for Hourly Precipitation- Humidity SURRE21-BURNA10 SURRE21-CWMM SURRE21-CWWK SURRE21-COQUI5 SURRE21-SURRE6 SURRE21-SURRE10
  • 15. Input Selection –Station Combination 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 1 2 3 4 5 6 7 MAE Number of Input Variables MEAN Absolute Error Best Combination Surre21,Burna 10, Ibccoqui5 Surre21,Burna 10, PITM3 Surre21,PITM3, Surre6 0 0.05 0.1 0.15 0.2 0.25 0.3 Sur21-NA10-IBC5 Sur21-PIT3-Sur10-CWMM Sur21-NA10-IBC5-PIT3-Sur6 Sur21-NA10-PIT3-Sur10-CWMM-CWWK Sur21-NA10-IBC5-Sur10-Sur6 Sur21-NA10-IBC5-PIT3-Sur6-CWWK Sur21-NA10-PIT3-Sur6-CWMM-CWWK Sur21-NA10-IBC5-Sur6-CWWK Sur21-IBC5-Sur10-Sur6 Sur21-IBC5-Sur6 Sur21-IBC5-PIT3-Sur10-Sur6 Sur21-NA10-IBC5-PIT3-Sur6-CWMM Sur21-IBC5-Sur10-Sur6-CWWK Sur21-Sur10-CWMM-CWWK Sur21-PIT3-Sur10-CWWK Sur21-IBC5 Sur21-NA10-IBC5-PIT3-Sur10 Sur21-NA10-PIT3-CWMM Sur21-IBC5-PIT3-Sur10-CWWK Sur21-IBC5-CWMM Sur21-NA10-PIT3-Sur10-CWWK Sur21-Sur10-Sur6-CWWK Sur21-IBC5-PIT3-Sur6 Sur21-Sur6-CWMM Sur21-IBC5-Sur10-CWWK Sur21-PIT3-Sur10-Sur6-CWMM Sur21-IBC5-Sur6-CWMM Sur21-NA10-Sur10-CWWK Sur21-IBC5-Sur6-CWWK Sur21-IBC5-Sur6-CWMM-CWWK Sur21-Sur10-Sur6-CWMM Sur21-NA10-Sur10-CWMM-CWWK Sur21-NA10-IBC5-PIT3-CWMM Sur21-Sur10-CWMM Sur21-PIT3 MeanAbsoluteError Combination Plot for Stations
  • 16. Input Selection –Station Combination 0 0.05 0.1 0.15 0.2 0.25 0.3 Sur21-NA10-IBC5 Sur21-PIT3-Sur6 Sur21-NA10-PIT3 Sur21-NA10-IBC5-PIT3-Sur6 Sur21-NA10-IBC5-Sur10-CWMM-CWWK Sur21-IBC5-CWMM-CWWK Sur21-NA10-IBC5-Sur10-Sur6 Sur21-NA10-IBC5-Sur6-CWMM Sur21-PIT3-Sur10-CWMM-CWWK Sur21-NA10-PIT3-Sur6-CWMM-CWWK Sur21-IBC5-PIT3 Sur21-NA10-IBC5-PIT3-CWWK Sur21-IBC5-Sur10-Sur6 Sur21-NA10-IBC5-PIT3-Sur10-CWWK Sur21-NA10-IBC5-Sur10-CWMM Sur21-IBC5-PIT3-Sur10-Sur6 Sur21-PIT3-Sur6-CWWK Sur21-IBC5-PIT3-CWWK Sur21-IBC5-Sur10-Sur6-CWWK Sur21-NA10-Sur10-Sur6-CWMM Sur21-NA10 Sur21-PIT3-Sur10-CWWK Sur21-PIT3-CWWK Sur21-NA10-Sur10-Sur6 Sur21-NA10-IBC5-PIT3-Sur10 Sur21-Sur6 Sur21-NA10-IBC5-Sur6-CWMM-CWWK Sur21-IBC5-PIT3-Sur10-CWWK Sur21-NA10-IBC5-CWMM-CWWK Sur21-IBC5-CWWK Sur21-NA10-PIT3-Sur10-CWWK Sur21-NA10-PIT3-CWMM-CWWK Sur21-IBC5-PIT3-Sur10-CWMM Sur21-IBC5-PIT3-Sur6 Sur21-Sur6-CWMM-CWWK Sur21-Sur10-Sur6-CWMM-CWWK Sur21-IBC5-Sur10-CWWK Sur21-PIT3-Sur10-Sur6 Sur21-NA10-Sur6-CWMM-CWWK Sur21-IBC5-Sur6-CWMM Sur21-NA10-CWWK Sur21-PIT3-Sur6-CWMM Sur21-IBC5-Sur6-CWWK Sur21-NA10-CWMM Sur21-IBC5-Sur10-CWMM Sur21-Sur10-Sur6-CWMM Sur21-Sur10-CWWK Sur21-NA10-PIT3-Sur10-Sur6-CWMM Sur21-NA10-IBC5-PIT3-CWMM Sur21-NA10-IBC5-Sur10-Sur6-CWWK Sur21-PIT3-Sur10-Sur6-CWWK Sur21-PIT3 MeanAbsoluteError Combination Plot for Stations
  • 17. Input/output Representation • Input is 24 hour Normalized data from three stations and 3 variables from the stations. • Output is 4 variable. Each variable indicating probability of rain for every hour ahead. Date Time Hour1 Hour2 Hour3 Hour4 … 0 0 0 0 …. 0 1 0 0 … 1 0 0 0 …. 0 0 0 1 • Sample Actual OutputData Used for Training • Rainfall>1(mm) ? Output=1 : Output =0 We Have 2^4= 16 different Combinations of possible Output Distribution of Actual Output Classes 2011-2013
  • 18. Error Plot Predicted Error Computed for Random Sample data 2011-2013 *This data was not used for Training Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output Class 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Predicted actual actual counts percentage
  • 19. Hourly Precipitation Results 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 12:00AM 1:00AM 2:00AM 3:00AM 4:00AM 5:00AM 6:00AM 7:00AM 8:00AM 9:00AM 10:00AM 11:00AM 12:00PM 1:00PM 2:00PM 3:00PM 4:00PM 5:00PM 6:00PM Precipitation(mm) Probability(%) Low Rain 1/7/2014 0 0.5 1 1.5 2 2.5 3 3.5 4 0 10 20 30 40 50 60 70 80 90 100 2:00AM 3:00AM 4:00AM 5:00AM 6:00AM 7:00AM 8:00AM 9:00AM 10:00AM 11:00AM 12:00PM 1:00PM 2:00PM 3:00PM 4:00PM 5:00PM 6:00PM 7:00PM 8:00PM Precipitation(mm) Probability(%) Average Rain 1/2/2014 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 Precipitation(mm) Probability(%) Heavy Rain 1/11/2014 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 6:00AM 7:00AM 8:00AM 9:00AM 10:00AM 11:00AM 12:00PM 1:00PM 2:00PM 3:00PM 4:00PM 5:00PM 6:00PM 7:00PM 8:00PM 9:00PM 10:00PM 11:00PM Precipitation(mm) Probability(%) Snow Fall 2/22/2014
  • 20. Hourly Precipitation – Low rain 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM Precipitation(mm) Probability(%) Rainfall Prediction 1/7/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
  • 21. Hourly Precipitation – Average rain 0 0.5 1 1.5 2 2.5 3 3.5 4 0 10 20 30 40 50 60 70 80 90 100 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM PRECIPITATION(MM) PROBABILITY(%) Rainfall Prediction 1/2/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
  • 22. Hourly Precipitation – Heavy rain 0 1 2 3 4 5 6 7 8 0 20 40 60 80 100 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM 12:00 AM 1:00 AM 2:00 AM 3:00 AM 4:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 8:00 PM Precipitation(mm) Probability(%) Rainfall Prediction 1/11/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
  • 23. Hourly Precipitation – Snow Fall 0 0.5 1 1.5 2 2.5 3 0 10 20 30 40 50 60 70 80 90 100 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM PRECIPITATION(MM) PROBABILITY(%) Rainfall Prediction 2/22/2014 Predict 1 Predict 2 Predict 3 Predict 4 Predict 5 Predict 6 Preict 7 Predict 8 Precipitation
  • 25. Hourly Precipitation Vs Humidity 6-23-13 5-11-13 1-3-13
  • 26. Hourly Precipitation Vs Pressure 6-23-13 5-11-13 1-3-13
  • 27. Hourly Precipitation Vs Solar Radiation 6-23-13 5-25-13 1-3-13
  • 28. Hourly Precipitation Vs Temperature 6-23-13 5-25-13 1-3-13
  • 29. Hourly Precipitation Vs Wind Direction 6-23-13 5-25-13 1-3-13 Back time lagged correlation
  • 30. Hourly Precipitation Vs Wind Direction Back time lagged correlation 0 50 100 150 200 250 300 350 Degree Direction Vs Degress 2013- 6 Hours Prior to Rainfall- Wind Direction Distribution
  • 31. Correlation Matrix 1. SURRE 21 2. CWWK *Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
  • 32. Correlation Matrix 1. SURRE 21 2. SURRE6 *Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
  • 33. Correlation Matrix 1. SURRE 21 2. CWMM *Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
  • 34. Correlation Matrix 1. SURRE 21 2. SURRE10 *Everything Variable with a number suffix belongs to corresponding station listed Back To Station Correlation>>
  • 35. Correlation Matrix 1. SURRE 21 2. PITM3 *Daily Rain and Wind Direction Deg are dropped, because more 80% of the data is NA Back To Station Correlation>>
  • 36. Correlation Matrix 1. SURRE 21 2. IBCCOQUI5 *Daily Rain and Wind Direction Deg are dropped, because more 80% of the data is NA Back To Station Correlation>>
  • 37. Correlation Matrix 1. SURRE 21 2. BURNA10 *Daily Rain and Wind Direction Deg are dropped, because more 80% of the data is NA Back To Station Correlation>>