SlideShare a Scribd company logo
ChistaDATA Inc.
ChistaDATA Inc. Introduction
Shiv Iyer
Founder and CEO of ChistaDATA Inc.
An enterprise-grade 24*7 Consultative Support and Managed Services Provider
for Open Source/Free ClickHouse (both on-premises and Cloud)
ChistaDATA Inc.
How is Real-Time Analytics
Different from Traditional
OLAP?
ChistaDATA Inc.
ChistaDATA Inc.
• Data Latency: Real-time analytics provides instant access to up-to-date data,
while traditional OLAP may have a lag between data updates and analysis. In
real-time analytics, data is processed and analyzed in near real-time, so
insights can be quickly obtained and acted upon.
• Data Volume: Real-time analytics is typically designed to handle large
volumes of streaming data, such as data generated by IoT devices, social
media, or web traffic. Traditional OLAP is typically designed for batch
processing of large volumes of historical data.
• Query Performance: Real-time analytics requires fast query response times
to keep up with the speed of incoming data. In contrast, traditional OLAP may
prioritize query accuracy and completeness over query speed.
ChistaDATA Inc.
• Data Models: Real-time analytics often uses flexible, dynamic data models that
can adapt to changing data streams and evolving business needs. Traditional
OLAP uses static, pre-defined data models that can limit the types of analysis
that can be performed.
• Use Cases: Real-time analytics is often used for real-time decision-making,
monitoring, and alerting, such as fraud detection or supply chain optimization.
Traditional OLAP is often used for historical analysis and strategic decision-
making, such as trend analysis or forecasting.
ChistaDATA Inc.
ClickHouse – ColumnStore for Real-Time Analytics
• ClickHouse is an open-source, column-oriented database management system
that was initially developed by the Russian company Yandex in 2016 for the
analytical processing of large-scale data sets in real-time. ClickHouse was
designed to be highly scalable, efficient, and flexible, with the ability to process
petabytes of data and support real-time data processing and analysis. The
system was built using C++ and supports a wide range of data formats and
protocols.
• The development of ClickHouse was motivated by Yandex's need for a highly
performant database system that could process and analyze the massive
amounts of data generated by its web search and advertising services.
ChistaDATA Inc.
ChistaDATA – Partner for building WebScale
Real-Time Analytics on ClickHouse
• ChistaDATA provides full-stack ClickHouse Optimization. We deliver elite-class
Consultative Support (24*7) and Managed Services for both on-premises ClickHouse
infrastructure and Serverless/Cloud/ClickHouse DBaaS operations.
• ChistaDATA Server for ClickHouse (and all tools essential for Data Ops. @ Scale) will
be Open Source (100% GPL forever) and free. We are committed to helping
corporations build Open Source ColumnStore for high-performance Data Analytics.
• Global Team available 24*7 for ClickHouse Consultative Support and Managed
Services.
ChistaDATA Inc.
Why do we recommend ClickHouse over many
other columnar database systems?
• Compact data storage – Ten billion UInt8-type values should exactly consume
10GB uncompressed to efficiently use the available CPU. Optimal storage
even when uncompressed benefits performance and resource management.
ClickHouse is built is store data efficiently without any garbage.
• CPU efficient – Whenever possible, ClickHouse operations are dispatched on
arrays, rather than on individual values. This is called “vectorized query
execution,” and it helps lower the cost of actual data processing.
• Massively Parallel Processing – ClickHouse is capable of Massively Parallel
Processing very large/complex SQL(s) optimally and cost-efficiently
ChistaDATA Inc.
Why do we recommend ClickHouse over many
other columnar database systems?
• Data compression – ClickHouse supports two kinds of compression LZ4 and
ZSTD. LZ4 is faster than ZSTD but the compression ratio is smaller.ZSTD is
faster and compresses better than traditional Zlib but slower than LZ4. We
recommend customers LZ4 when I/O is fast enough so decompression speed
will become a bottleneck. When using super ultra-fast disk subsystems you
have an option to specify “none” compression. ZSTD is recommended when
I/O is the bottleneck in queries with large range scans.
• Can store data in disk – The columnar database systems like SAP
HANA and Google PowerDrill can only work in the RAM
ChistaDATA Inc.
Why do we recommend ClickHouse over many
other columnar database systems?
• Built for web-scale data analytics – ClickHouse supports sharding and
distributed processing. This makes ClickHouse the most preferred columnar
database system for web-scale. Each shard in ClickHouse can be a group of
replicas addressing maximum reliability and fault tolerance.
• ClickHouse support Primary Key – ClickHouse permits real-time data updates
with a primary key (there will be no locking when adding data). Data is sorted
incrementally using the merge tree to perform queries on the range of
primary key values.
• Supports data replication – ClickHouse supports asynchronous multi-master
and master-slave replication.
ChistaDATA Inc.
Why do we recommend ClickHouse over many
other columnar database systems?
• Built for statistical analysis and supporting partial aggregation – ClickHouse
is a statistical query analysis-ready columnar database store
supporting aggregate functions for approximated calculation of the number of
various values, medians, and quantiles. ClickHouse supports aggregation for a
limited number of random keys, instead of for all the keys. You can query on a
part (sample) of data and generate approximate results reducing disk I/O
operations considerably.
• Supports SQL – ClickHouse supports SQL, Subqueries are supported in FROM,
IN, and JOIN clauses, as well as scalar subqueries. Dependent subqueries are
not supported.
ChistaDATA Inc.
Why is ClickHouse recommended for a time-
series Database?
• Column-oriented storage: ClickHouse uses a column-oriented storage model,
which means that data is stored by columns rather than by rows. This allows
for efficient compression and faster data retrieval, especially for time-series
data, where the data is often read in time-based chunks.
• Advanced analytical functions: ClickHouse supports advanced analytical
functions such as window functions, aggregate functions, and SQL-based data
filtering, which are useful for time-series data analysis. This allows users to
perform complex queries on large data sets quickly and efficiently.
• ClickHouse Supports High Availability through Replication.
ChistaDATA Inc.
Why is ClickHouse recommended for a time-
series Database?
• Real-time query performance: ClickHouse is designed to handle high write
and read performance, making it suitable for real-time data analysis. It can
handle millions of writes per second and return results in milliseconds, even
on large datasets.
• Scalability: ClickHouse is a distributed system, which means that it can scale
horizontally by adding more servers. This allows it to handle very large data
sets and handle high write and read loads.
• Compression: ClickHouse supports advanced compression techniques, which
can significantly reduce the size of the data stored on disk, making it more
cost-efficient for storing large data sets.
ChistaDATA Inc.
Why migrate from Hadoop to ClickHouse
for Real-Time Analytics?
• Performance: Hadoop is designed for batch processing and data warehousing,
which can result in longer query times. It’s not optimized for high-
performance analytical queries, which are required for real-time analytics.
• Latency: Hadoop’s batch processing approach means that data is processed in
large chunks, which can result in significant latency. This makes it difficult to
provide near real-time analytics.
• Scalability: Hadoop can scale horizontally, but it requires more resources and
management than other technologies.
ChistaDATA Inc.
Why migrate from Hadoop to ClickHouse
for Real-Time Analytics?
• Complexity: Hadoop requires a significant amount of configuration and
management, which can be complex and time-consuming. It also requires a
knowledge of programming languages such as Java or Python to work with
the data.
• Real-time streaming: Hadoop is not well-suited for real-time streaming data,
which is becoming increasingly important for real-time analytics use cases.
• Cost: Hadoop can be expensive, as it requires expensive commercial licenses
for some of its components, such as for HDFS and YARN.
ChistaDATA Inc.
How can ChistaDATA help you build web-scale
real-time streaming data analytics using
ClickHouse?
• Consulting – We are experts in building optimal, scalable (horizontally and
vertically), highly available and fault-tolerant ClickHouse powered streaming
data analytics platforms for planet-scale internet / mobile properties and the
Internet of Things (IoT). Our elite-class consultants work very closely with
your business and technology teams to build custom columnar database
analytics solutions using ClickHouse.
ChistaDATA Inc.
How can ChistaDATA help you build web-scale
real-time streaming data analytics using
ClickHouse?
• Database Architect services – We architect, engineer and deploy
data analytics platforms for you. We will take care of your data
analytics ecosystem so that you can focus on business.
• ClickHouse Enterprise Support – We have 24*7 enterprise-class
support available for ClickHouse. Our support team will review and
deliver guidance for your data analytics platforms architecture, SQL
engineering, performance optimization, scalability, high availability and
reliability.
ChistaDATA Inc.
ChistaDATA Cloud for ClickHouse DBaaS
• ChistaDATA Cloud Infrastructure for ClickHouse is a Columnar Database
Service built for performance, scalability and reliability, which is
operationally simple and cost-efficient. Cloud Infrastructure for
ClickHouse is fully compatible with Standard ClickHouse Server, so you
can migrate existing applications and tools to run without requiring any
modifications.
• The ChistaDATA Cloud Services team will assist you in Capacity Planning
and Sizing so you can scale compute, memory and storage (SSD only)
resources enabling your ClickHouse deployment up or down
ChistaDATA Inc.
How is ChistaDATA Cloud different?
• Autonomous and Driverless Database Infrastructure for Columnar Analytics:
• Automatic Provisioning of Optimal and Reliable ClickHouse Operations
• Automatic Configuration of ClickHouse for Performance and Scalability
• Fully Autonomous System Failure Detection and Repair
• Secured ClickHouse Database Infrastructure:
• Fully Autonomous ClickHouse Bug Fixing and Patching
• Customized ClickHouse Infrastructure for Data Privacy and Query (both successful and
unsuccessful) Audit
ChistaDATA Inc.
How is ChistaDATA Cloud different?
• Fully Autonomous ClickHouse DR – Maximum Reliability Architecture for Zero
Data Loss
• Fully Autonomous ClickHouse Replication Services
• Fully Autonomous ClickHouse Partitioning (both vertical and horizontal)
• AI-Based ClickHouse Observability and Monitoring Platform
• Advanced SQL IDE for Data Analytics Developer Success
• Fully Autonomous Data Archiving Toolkit for MySQL, MariaDB and PostgreSQL
ChistaDATA Inc.
ChistaDATA Cloud – Why building Data Analytics
on ChistaDATA Cloud is equally recommended for
both startups and large corporations?
• Flexible subscription plans:
• Flexible Serverless ClickHouse Infrastructure available for Development,
Build/Release Engineering and Production environment
• ChistaDATA Cloud provides ClickHouse infrastructure for both compute
and storage ecosystems
• Elastic: You can always upgrade/downgrade your subscription plan
without any operational challenges
ChistaDATA Inc.
ChistaDATA Cloud – Why building Data Analytics
on ChistaDATA Cloud is equally recommended for
both startups and large corporations?
• Just bring your Data to ChistaDATA Cloud – Driverless and fully autonomous
Database Infrastructure for ClickHouse:
• Advanced ClickHouse SQL development IDE provided for developer success and Time-
To-Market
• Are you already on any other DBaaS like Amazon Aurora (PostgreSQL and MySQL),
Amazon RedShift and Google CloudSQL?
• Larger OLTP Database Systems are extremely expensive operationally, with frequent
performance outages
• ChistaDATA Cloud Archiving Toolkit for MySQL, MariaDB, PostgreSQL and other DBaaS will
help you in building lean OLTP databases for both on-premises and serverless infrastructure
• ChistaDATA Proxy helps in transparent load-balancing between OLTP Database
Infrastructure and ClickHouse
ChistaDATA Inc.
ChistaDATA Cloud – Why building Data Analytics
on ChistaDATA Cloud is equally recommended for
both startups and large corporations?
• AI-Based Troubleshooting for ClickHouse Infrastructure Maintenance
Operations
• ChistaDATA Audit Logs for detailed forensics of ClickHouse Server Operations
• Point-in-Time-Recovery for ClickHouse Server
• ChistaDATA ClickHouse Proxy as a Service:
• READ-WRITE Query Distribution / Horizontal Scalability
• Query Caching
• ClickHouse Firewall Implementation with ChistaDATA Proxy
ChistaDATA Inc.
A partial list of customers from the
ChistaDATA Portfolio
• Blue Dart
• PayPal
• Morgan Stanley
• Sony
• Nintendo
• Netflix
• Carlsberg
• Burberry
• PRADA
• Cambridge Investment Research
• VISA
• Unilever
• Garmin
• National Geographic
ChistaDATA Inc.
Contact ChistaDATA for building Real-
Time Analytics at WebScale
ChistaDATA(California)
ChistaDATA Inc.,
440 N BARRANCA AVE #9718 COVINA,
CA 91723
ChistaDATA(Houston)
ChistaDATA Inc., 1321 Upland Dr. PMB
19322, Houston,
TX, 77043, US
ChistaDATA Sales Contact
• (844)395-5717
• +1(209)314-2364 - FAX
• Info(at)chistadata.com

More Related Content

PDF
Building Real-Time Analytics Infrastructure on ClickHouse with ChistaDATA
PDF
My first 90 days with ClickHouse.pdf
PDF
Dok Talks #133 - My First 90 days with Clickhouse
PDF
ChistaDATA Real-Time DATA Analytics Infrastructure
PDF
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
PPTX
ClickHouse Paris Meetup. ClickHouse Analytical DBMS, Introduction. By Alexand...
PDF
(real-time)²: Real-time data for real-time analytics with Kafka and ClickHouse
PDF
OSA Con 2022 - Quick Reflexes_ Building Real-Time Data Analytics with Redpand...
Building Real-Time Analytics Infrastructure on ClickHouse with ChistaDATA
My first 90 days with ClickHouse.pdf
Dok Talks #133 - My First 90 days with Clickhouse
ChistaDATA Real-Time DATA Analytics Infrastructure
ClickHouse Introduction, by Alexander Zaitsev, Altinity CTO
ClickHouse Paris Meetup. ClickHouse Analytical DBMS, Introduction. By Alexand...
(real-time)²: Real-time data for real-time analytics with Kafka and ClickHouse
OSA Con 2022 - Quick Reflexes_ Building Real-Time Data Analytics with Redpand...

Similar to How is Real-Time Analytics Different from Traditional OLAP? (20)

PDF
10 Good Reasons to Use ClickHouse
PDF
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
PDF
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
PDF
Application Monitoring using Open Source: VictoriaMetrics - ClickHouse
PDF
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
PDF
A Fast Intro to Fast Query with ClickHouse, by Robert Hodges
PDF
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
PDF
How OLTP to OLAP Archival Demystified
PDF
ClickHouse 2018. How to stop waiting for your queries to complete and start ...
PPTX
The Most Trusted In-Memory database in the world- Altibase
PPTX
ParStream - Big Data for Business Users
PDF
Introducing InfluxDB Cloud Dedicated
PDF
ClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
PDF
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
PDF
ClickHouse Introduction by Alexander Zaitsev, Altinity CTO
PPTX
Webinar 2017. Supercharge your analytics with ClickHouse. Vadim Tkachenko
PDF
Real-time big data analytics based on product recommendations case study
PDF
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
PDF
Monitoring with Clickhouse
PPTX
How to choose the right Database technology for your business?
10 Good Reasons to Use ClickHouse
21st Athens Big Data Meetup - 1st Talk - Fast and simple data exploration wit...
Application Monitoring using Open Source - VictoriaMetrics & Altinity ClickHo...
Application Monitoring using Open Source: VictoriaMetrics - ClickHouse
Analytics at Speed: Introduction to ClickHouse and Common Use Cases. By Mikha...
A Fast Intro to Fast Query with ClickHouse, by Robert Hodges
ClickHouse in Real Life. Case Studies and Best Practices, by Alexander Zaitsev
How OLTP to OLAP Archival Demystified
ClickHouse 2018. How to stop waiting for your queries to complete and start ...
The Most Trusted In-Memory database in the world- Altibase
ParStream - Big Data for Business Users
Introducing InfluxDB Cloud Dedicated
ClickHouse Analytical DBMS. Introduction and usage, by Alexander Zaitsev
OSA Con 2022 - Using ClickHouse Database to Power Analytics and Customer Enga...
ClickHouse Introduction by Alexander Zaitsev, Altinity CTO
Webinar 2017. Supercharge your analytics with ClickHouse. Vadim Tkachenko
Real-time big data analytics based on product recommendations case study
IoT databases - review and challenges - IoT, Hardware & Robotics meetup - onl...
Monitoring with Clickhouse
How to choose the right Database technology for your business?
Ad

Recently uploaded (20)

PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Introduction to machine learning and Linear Models
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPTX
Business Acumen Training GuidePresentation.pptx
PDF
annual-report-2024-2025 original latest.
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PDF
Business Analytics and business intelligence.pdf
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PDF
Mega Projects Data Mega Projects Data
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
1_Introduction to advance data techniques.pptx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PDF
Lecture1 pattern recognition............
PPTX
Supervised vs unsupervised machine learning algorithms
Introduction to Knowledge Engineering Part 1
Introduction to machine learning and Linear Models
Business Ppt On Nestle.pptx huunnnhhgfvu
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Business Acumen Training GuidePresentation.pptx
annual-report-2024-2025 original latest.
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Data_Analytics_and_PowerBI_Presentation.pptx
Business Analytics and business intelligence.pdf
oil_refinery_comprehensive_20250804084928 (1).pptx
.pdf is not working space design for the following data for the following dat...
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
Mega Projects Data Mega Projects Data
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
1_Introduction to advance data techniques.pptx
Galatica Smart Energy Infrastructure Startup Pitch Deck
Lecture1 pattern recognition............
Supervised vs unsupervised machine learning algorithms
Ad

How is Real-Time Analytics Different from Traditional OLAP?

  • 1. ChistaDATA Inc. ChistaDATA Inc. Introduction Shiv Iyer Founder and CEO of ChistaDATA Inc. An enterprise-grade 24*7 Consultative Support and Managed Services Provider for Open Source/Free ClickHouse (both on-premises and Cloud)
  • 2. ChistaDATA Inc. How is Real-Time Analytics Different from Traditional OLAP?
  • 4. ChistaDATA Inc. • Data Latency: Real-time analytics provides instant access to up-to-date data, while traditional OLAP may have a lag between data updates and analysis. In real-time analytics, data is processed and analyzed in near real-time, so insights can be quickly obtained and acted upon. • Data Volume: Real-time analytics is typically designed to handle large volumes of streaming data, such as data generated by IoT devices, social media, or web traffic. Traditional OLAP is typically designed for batch processing of large volumes of historical data. • Query Performance: Real-time analytics requires fast query response times to keep up with the speed of incoming data. In contrast, traditional OLAP may prioritize query accuracy and completeness over query speed.
  • 5. ChistaDATA Inc. • Data Models: Real-time analytics often uses flexible, dynamic data models that can adapt to changing data streams and evolving business needs. Traditional OLAP uses static, pre-defined data models that can limit the types of analysis that can be performed. • Use Cases: Real-time analytics is often used for real-time decision-making, monitoring, and alerting, such as fraud detection or supply chain optimization. Traditional OLAP is often used for historical analysis and strategic decision- making, such as trend analysis or forecasting.
  • 6. ChistaDATA Inc. ClickHouse – ColumnStore for Real-Time Analytics • ClickHouse is an open-source, column-oriented database management system that was initially developed by the Russian company Yandex in 2016 for the analytical processing of large-scale data sets in real-time. ClickHouse was designed to be highly scalable, efficient, and flexible, with the ability to process petabytes of data and support real-time data processing and analysis. The system was built using C++ and supports a wide range of data formats and protocols. • The development of ClickHouse was motivated by Yandex's need for a highly performant database system that could process and analyze the massive amounts of data generated by its web search and advertising services.
  • 7. ChistaDATA Inc. ChistaDATA – Partner for building WebScale Real-Time Analytics on ClickHouse • ChistaDATA provides full-stack ClickHouse Optimization. We deliver elite-class Consultative Support (24*7) and Managed Services for both on-premises ClickHouse infrastructure and Serverless/Cloud/ClickHouse DBaaS operations. • ChistaDATA Server for ClickHouse (and all tools essential for Data Ops. @ Scale) will be Open Source (100% GPL forever) and free. We are committed to helping corporations build Open Source ColumnStore for high-performance Data Analytics. • Global Team available 24*7 for ClickHouse Consultative Support and Managed Services.
  • 8. ChistaDATA Inc. Why do we recommend ClickHouse over many other columnar database systems? • Compact data storage – Ten billion UInt8-type values should exactly consume 10GB uncompressed to efficiently use the available CPU. Optimal storage even when uncompressed benefits performance and resource management. ClickHouse is built is store data efficiently without any garbage. • CPU efficient – Whenever possible, ClickHouse operations are dispatched on arrays, rather than on individual values. This is called “vectorized query execution,” and it helps lower the cost of actual data processing. • Massively Parallel Processing – ClickHouse is capable of Massively Parallel Processing very large/complex SQL(s) optimally and cost-efficiently
  • 9. ChistaDATA Inc. Why do we recommend ClickHouse over many other columnar database systems? • Data compression – ClickHouse supports two kinds of compression LZ4 and ZSTD. LZ4 is faster than ZSTD but the compression ratio is smaller.ZSTD is faster and compresses better than traditional Zlib but slower than LZ4. We recommend customers LZ4 when I/O is fast enough so decompression speed will become a bottleneck. When using super ultra-fast disk subsystems you have an option to specify “none” compression. ZSTD is recommended when I/O is the bottleneck in queries with large range scans. • Can store data in disk – The columnar database systems like SAP HANA and Google PowerDrill can only work in the RAM
  • 10. ChistaDATA Inc. Why do we recommend ClickHouse over many other columnar database systems? • Built for web-scale data analytics – ClickHouse supports sharding and distributed processing. This makes ClickHouse the most preferred columnar database system for web-scale. Each shard in ClickHouse can be a group of replicas addressing maximum reliability and fault tolerance. • ClickHouse support Primary Key – ClickHouse permits real-time data updates with a primary key (there will be no locking when adding data). Data is sorted incrementally using the merge tree to perform queries on the range of primary key values. • Supports data replication – ClickHouse supports asynchronous multi-master and master-slave replication.
  • 11. ChistaDATA Inc. Why do we recommend ClickHouse over many other columnar database systems? • Built for statistical analysis and supporting partial aggregation – ClickHouse is a statistical query analysis-ready columnar database store supporting aggregate functions for approximated calculation of the number of various values, medians, and quantiles. ClickHouse supports aggregation for a limited number of random keys, instead of for all the keys. You can query on a part (sample) of data and generate approximate results reducing disk I/O operations considerably. • Supports SQL – ClickHouse supports SQL, Subqueries are supported in FROM, IN, and JOIN clauses, as well as scalar subqueries. Dependent subqueries are not supported.
  • 12. ChistaDATA Inc. Why is ClickHouse recommended for a time- series Database? • Column-oriented storage: ClickHouse uses a column-oriented storage model, which means that data is stored by columns rather than by rows. This allows for efficient compression and faster data retrieval, especially for time-series data, where the data is often read in time-based chunks. • Advanced analytical functions: ClickHouse supports advanced analytical functions such as window functions, aggregate functions, and SQL-based data filtering, which are useful for time-series data analysis. This allows users to perform complex queries on large data sets quickly and efficiently. • ClickHouse Supports High Availability through Replication.
  • 13. ChistaDATA Inc. Why is ClickHouse recommended for a time- series Database? • Real-time query performance: ClickHouse is designed to handle high write and read performance, making it suitable for real-time data analysis. It can handle millions of writes per second and return results in milliseconds, even on large datasets. • Scalability: ClickHouse is a distributed system, which means that it can scale horizontally by adding more servers. This allows it to handle very large data sets and handle high write and read loads. • Compression: ClickHouse supports advanced compression techniques, which can significantly reduce the size of the data stored on disk, making it more cost-efficient for storing large data sets.
  • 14. ChistaDATA Inc. Why migrate from Hadoop to ClickHouse for Real-Time Analytics? • Performance: Hadoop is designed for batch processing and data warehousing, which can result in longer query times. It’s not optimized for high- performance analytical queries, which are required for real-time analytics. • Latency: Hadoop’s batch processing approach means that data is processed in large chunks, which can result in significant latency. This makes it difficult to provide near real-time analytics. • Scalability: Hadoop can scale horizontally, but it requires more resources and management than other technologies.
  • 15. ChistaDATA Inc. Why migrate from Hadoop to ClickHouse for Real-Time Analytics? • Complexity: Hadoop requires a significant amount of configuration and management, which can be complex and time-consuming. It also requires a knowledge of programming languages such as Java or Python to work with the data. • Real-time streaming: Hadoop is not well-suited for real-time streaming data, which is becoming increasingly important for real-time analytics use cases. • Cost: Hadoop can be expensive, as it requires expensive commercial licenses for some of its components, such as for HDFS and YARN.
  • 16. ChistaDATA Inc. How can ChistaDATA help you build web-scale real-time streaming data analytics using ClickHouse? • Consulting – We are experts in building optimal, scalable (horizontally and vertically), highly available and fault-tolerant ClickHouse powered streaming data analytics platforms for planet-scale internet / mobile properties and the Internet of Things (IoT). Our elite-class consultants work very closely with your business and technology teams to build custom columnar database analytics solutions using ClickHouse.
  • 17. ChistaDATA Inc. How can ChistaDATA help you build web-scale real-time streaming data analytics using ClickHouse? • Database Architect services – We architect, engineer and deploy data analytics platforms for you. We will take care of your data analytics ecosystem so that you can focus on business. • ClickHouse Enterprise Support – We have 24*7 enterprise-class support available for ClickHouse. Our support team will review and deliver guidance for your data analytics platforms architecture, SQL engineering, performance optimization, scalability, high availability and reliability.
  • 18. ChistaDATA Inc. ChistaDATA Cloud for ClickHouse DBaaS • ChistaDATA Cloud Infrastructure for ClickHouse is a Columnar Database Service built for performance, scalability and reliability, which is operationally simple and cost-efficient. Cloud Infrastructure for ClickHouse is fully compatible with Standard ClickHouse Server, so you can migrate existing applications and tools to run without requiring any modifications. • The ChistaDATA Cloud Services team will assist you in Capacity Planning and Sizing so you can scale compute, memory and storage (SSD only) resources enabling your ClickHouse deployment up or down
  • 19. ChistaDATA Inc. How is ChistaDATA Cloud different? • Autonomous and Driverless Database Infrastructure for Columnar Analytics: • Automatic Provisioning of Optimal and Reliable ClickHouse Operations • Automatic Configuration of ClickHouse for Performance and Scalability • Fully Autonomous System Failure Detection and Repair • Secured ClickHouse Database Infrastructure: • Fully Autonomous ClickHouse Bug Fixing and Patching • Customized ClickHouse Infrastructure for Data Privacy and Query (both successful and unsuccessful) Audit
  • 20. ChistaDATA Inc. How is ChistaDATA Cloud different? • Fully Autonomous ClickHouse DR – Maximum Reliability Architecture for Zero Data Loss • Fully Autonomous ClickHouse Replication Services • Fully Autonomous ClickHouse Partitioning (both vertical and horizontal) • AI-Based ClickHouse Observability and Monitoring Platform • Advanced SQL IDE for Data Analytics Developer Success • Fully Autonomous Data Archiving Toolkit for MySQL, MariaDB and PostgreSQL
  • 21. ChistaDATA Inc. ChistaDATA Cloud – Why building Data Analytics on ChistaDATA Cloud is equally recommended for both startups and large corporations? • Flexible subscription plans: • Flexible Serverless ClickHouse Infrastructure available for Development, Build/Release Engineering and Production environment • ChistaDATA Cloud provides ClickHouse infrastructure for both compute and storage ecosystems • Elastic: You can always upgrade/downgrade your subscription plan without any operational challenges
  • 22. ChistaDATA Inc. ChistaDATA Cloud – Why building Data Analytics on ChistaDATA Cloud is equally recommended for both startups and large corporations? • Just bring your Data to ChistaDATA Cloud – Driverless and fully autonomous Database Infrastructure for ClickHouse: • Advanced ClickHouse SQL development IDE provided for developer success and Time- To-Market • Are you already on any other DBaaS like Amazon Aurora (PostgreSQL and MySQL), Amazon RedShift and Google CloudSQL? • Larger OLTP Database Systems are extremely expensive operationally, with frequent performance outages • ChistaDATA Cloud Archiving Toolkit for MySQL, MariaDB, PostgreSQL and other DBaaS will help you in building lean OLTP databases for both on-premises and serverless infrastructure • ChistaDATA Proxy helps in transparent load-balancing between OLTP Database Infrastructure and ClickHouse
  • 23. ChistaDATA Inc. ChistaDATA Cloud – Why building Data Analytics on ChistaDATA Cloud is equally recommended for both startups and large corporations? • AI-Based Troubleshooting for ClickHouse Infrastructure Maintenance Operations • ChistaDATA Audit Logs for detailed forensics of ClickHouse Server Operations • Point-in-Time-Recovery for ClickHouse Server • ChistaDATA ClickHouse Proxy as a Service: • READ-WRITE Query Distribution / Horizontal Scalability • Query Caching • ClickHouse Firewall Implementation with ChistaDATA Proxy
  • 24. ChistaDATA Inc. A partial list of customers from the ChistaDATA Portfolio • Blue Dart • PayPal • Morgan Stanley • Sony • Nintendo • Netflix • Carlsberg • Burberry • PRADA • Cambridge Investment Research • VISA • Unilever • Garmin • National Geographic
  • 25. ChistaDATA Inc. Contact ChistaDATA for building Real- Time Analytics at WebScale ChistaDATA(California) ChistaDATA Inc., 440 N BARRANCA AVE #9718 COVINA, CA 91723 ChistaDATA(Houston) ChistaDATA Inc., 1321 Upland Dr. PMB 19322, Houston, TX, 77043, US ChistaDATA Sales Contact • (844)395-5717 • +1(209)314-2364 - FAX • Info(at)chistadata.com