The document discusses combining CART (Classification and Regression Tree) and logistic regression models to take advantage of their respective strengths in classification and data mining tasks. It describes how running a logistic regression on the entire dataset using CART terminal node assignments as dummy variables allows the logistic model to find effects across nodes that CART cannot detect. This improves CART's predictions by imposing slopes on cases within nodes and providing a more granular, continuous response than CART alone. The approach also allows compensating for some of CART's weaknesses like coarse-grained responses.