2
Most read
9
Most read
10
Most read
4.6IDENTITY MATRIXLOH HUI YICHANG WAN LINGLEE CHAI EN KAM SIEW HUEY
Definition   An identity matrix, I, is a matrix which when multiplying it to another matrix, such as A, the product is the matrix A itself.IA = A  and AI = AAI = IA = A
Identity Matrix is also called as Unit Matrix or Elementary Matrix.Identity Matrix is denoted with the letter “In×n”, where n×n represents the order of the matrix.One of the important properties of identity matrix is: A×In×n = A, where A is any square matrix of order n×n.
 A matrix with the same number of rows and columns is called a squarematrix.3x3
An identity matrix, I, is a square matrix and the elements are 0 and 1 only.The elements in the main diagonal are 1 while the others are 0.                             1   0   0                             0   1   0                             0   0   1I =3 x 3
EXAMPLE 11  2     1  1         3  7        3  4     1  1         3  7          so     1  1         1  1   is not an identity matrix
EXAMPLE 21  2      1  0         1  2   3  4      0  1        3  4so    1  0        0  1    is the identity for 2x2 matrices
EXERCISES1        1   2       1  0          -2  1       0  12        1  0        1   2           0  1       -2  12-2   1 2-2   1
              -4   -3     If M =  -6    5   ,then find      M×I, where I is an identity matrix.
Solution:Step 1: M =   -4  -3     (Given)                           -6    5Step 2: As M is square matrix of order 2×2, the identity matrix I is also of same order 2×2.          (Rule for Matrix Multiplication)Step 3: Then M×I =      -4  -3             1  0                                          -6   5             0  1                                    =      (-4x1)+(-3x0)   (-4x0)+(-3x1)                                            (-6x1)+(5x0)     (-6x0)+(5x1)(Matrix Multiplication)×
Step 4: =    -4   -3                    -6   5      (Simplifying)Step 5: Hence M×I = M =   -4  -3                                               -6   5   #

More Related Content

PDF
Introduction of matrices
PPTX
Percentage math basics
PPTX
Lesson 3 - matrix multiplication
PPT
Geometric Progressions
PPT
Ppt on polynomial
PPTX
Matrices ppt
PDF
9.1 Systems of Linear Equations
PDF
Matrix algebra
Introduction of matrices
Percentage math basics
Lesson 3 - matrix multiplication
Geometric Progressions
Ppt on polynomial
Matrices ppt
9.1 Systems of Linear Equations
Matrix algebra

What's hot (20)

PPTX
4. ap gp
PPTX
Polynomials
PPTX
Real analysis
PPTX
Cramers rule
PPTX
Real analysis
PPSX
Mathematics (Class VI) Day 1 chapter 1 Know our numbers
PPT
The binomial theorem class 11 maths
PPTX
Matrix presentation By DHEERAJ KATARIA
PPTX
Taylor series
PPTX
Matrix Algebra seminar ppt
PPT
Derivatives
PPTX
Linear dependence & independence vectors
PPT
Matrix and its operation (addition, subtraction, multiplication)
PPTX
the inverse of the matrix
PPTX
Limits and continuity powerpoint
PDF
Grade 8 Probability Cambridge [PPT]
PPTX
(7) Lesson 5.8 - Factor Linear Expressions
PPT
Limits
PDF
Integral calculus
PPT
Ppt on matrices and Determinants
4. ap gp
Polynomials
Real analysis
Cramers rule
Real analysis
Mathematics (Class VI) Day 1 chapter 1 Know our numbers
The binomial theorem class 11 maths
Matrix presentation By DHEERAJ KATARIA
Taylor series
Matrix Algebra seminar ppt
Derivatives
Linear dependence & independence vectors
Matrix and its operation (addition, subtraction, multiplication)
the inverse of the matrix
Limits and continuity powerpoint
Grade 8 Probability Cambridge [PPT]
(7) Lesson 5.8 - Factor Linear Expressions
Limits
Integral calculus
Ppt on matrices and Determinants
Ad

Viewers also liked (20)

PPTX
Identity matrix
PPTX
Identity matrix
ODP
My pebble story
PDF
Estudio CICOM 2012
PDF
Guía para la ordenación territorial en el marco del art. 12 de la directiva s...
RTF
천안오피 optok3.com 오피톡 수원오피 충청오피 청주오피 진주오피
PDF
Green Internet - Dated 2009
PDF
Data Visualization on the Web - Intro to D3
PDF
Nueva+tecnologia+nueva+mentalidad / La transformación digital no es sólo una ...
PDF
Tcr Y Plasmodium
PDF
Branded house vs house of brands
PDF
Ficha gerencia efectiva del tiempo para niños y jóvenes
PDF
Alexandra caguana auditoriainformática_ii_bimestre
ODP
Presentacion Cafu 27 Telefonia Movil
PDF
Hospitality & Social Media - Where is the money ?
PPTX
Regresando a nuestro origen parte2
PPTX
Apresentação Ecotrend 2015
PDF
TRANSBIO. Del laboratorio a la aplicación final.
PDF
Charles platt - Make: Electronics
PPTX
Redes adsl telefonica y viettel (listo 2015) v1
Identity matrix
Identity matrix
My pebble story
Estudio CICOM 2012
Guía para la ordenación territorial en el marco del art. 12 de la directiva s...
천안오피 optok3.com 오피톡 수원오피 충청오피 청주오피 진주오피
Green Internet - Dated 2009
Data Visualization on the Web - Intro to D3
Nueva+tecnologia+nueva+mentalidad / La transformación digital no es sólo una ...
Tcr Y Plasmodium
Branded house vs house of brands
Ficha gerencia efectiva del tiempo para niños y jóvenes
Alexandra caguana auditoriainformática_ii_bimestre
Presentacion Cafu 27 Telefonia Movil
Hospitality & Social Media - Where is the money ?
Regresando a nuestro origen parte2
Apresentação Ecotrend 2015
TRANSBIO. Del laboratorio a la aplicación final.
Charles platt - Make: Electronics
Redes adsl telefonica y viettel (listo 2015) v1
Ad

Similar to Identity matrix (20)

PPT
PPT
Group 5
PPTX
MATRICES-MATHED204.pptx
DOCX
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
DOCX
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
DOCX
University of duhok
PDF
For the following matrices, determine a cot of basis vectors for the.pdf
PDF
Matrices & Determinants.pdf
PDF
matrix-algebra-for-engineers (1).pdf
PPTX
introduction-MATRIX-algebramathematics .pptx
PPTX
Matrix algebra
PPTX
งานนำเสนอMatrixของจริง
PPT
Matrices
PPT
systems of linear equations & matrices
PPTX
matrix algebra
PPTX
งานนำเสนอMatrix
PPT
Linear Algebra and Matrix
PPTX
MATRICES CSEC MATHEMATICS SECTION TWO ..
Group 5
MATRICES-MATHED204.pptx
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
Matrices and its Applications to Solve Some Methods of Systems of Linear Equa...
University of duhok
For the following matrices, determine a cot of basis vectors for the.pdf
Matrices & Determinants.pdf
matrix-algebra-for-engineers (1).pdf
introduction-MATRIX-algebramathematics .pptx
Matrix algebra
งานนำเสนอMatrixของจริง
Matrices
systems of linear equations & matrices
matrix algebra
งานนำเสนอMatrix
Linear Algebra and Matrix
MATRICES CSEC MATHEMATICS SECTION TWO ..

More from 豪 鱟灊 (6)

PPT
Group 1
PPT
Group 1
PPTX
Mathematics
PPTX
Mathematics
PPTX
4.5 Multiplication Of Two Matrices
PPTX
4.5 Multiplication Of Two Matrices
Group 1
Group 1
Mathematics
Mathematics
4.5 Multiplication Of Two Matrices
4.5 Multiplication Of Two Matrices

Identity matrix

  • 1. 4.6IDENTITY MATRIXLOH HUI YICHANG WAN LINGLEE CHAI EN KAM SIEW HUEY
  • 2. Definition An identity matrix, I, is a matrix which when multiplying it to another matrix, such as A, the product is the matrix A itself.IA = A and AI = AAI = IA = A
  • 3. Identity Matrix is also called as Unit Matrix or Elementary Matrix.Identity Matrix is denoted with the letter “In×n”, where n×n represents the order of the matrix.One of the important properties of identity matrix is: A×In×n = A, where A is any square matrix of order n×n.
  • 4.  A matrix with the same number of rows and columns is called a squarematrix.3x3
  • 5. An identity matrix, I, is a square matrix and the elements are 0 and 1 only.The elements in the main diagonal are 1 while the others are 0. 1 0 0 0 1 0 0 0 1I =3 x 3
  • 6. EXAMPLE 11 2 1 1 3 7 3 4 1 1    3 7 so 1 1  1 1 is not an identity matrix
  • 7. EXAMPLE 21 2 1 0 1 2 3 4 0 1   3 4so  1 0 0 1  is the identity for 2x2 matrices
  • 8. EXERCISES1 1 2 1 0 -2 1 0 12 1 0 1 2 0 1 -2 12-2 1 2-2 1
  • 9. -4 -3 If M =  -6 5 ,then find M×I, where I is an identity matrix.
  • 10. Solution:Step 1: M =  -4 -3  (Given) -6 5Step 2: As M is square matrix of order 2×2, the identity matrix I is also of same order 2×2. (Rule for Matrix Multiplication)Step 3: Then M×I =  -4 -3 1 0                -6 5 0 1 = (-4x1)+(-3x0) (-4x0)+(-3x1) (-6x1)+(5x0) (-6x0)+(5x1)(Matrix Multiplication)×
  • 11. Step 4: =   -4 -3 -6 5 (Simplifying)Step 5: Hence M×I = M =  -4 -3 -6 5 #