SlideShare a Scribd company logo
#MongoDBSydney




Indexing and Query
Optimisation
Stephen Steneker (stennie@10gen.com)
Support Engineer, 10gen Australia
Agenda
• What are indexes?
• Why do I need them?
• Working with indexes in MongoDB
• Optimise your queries
• Avoiding common mistakes
What are indexes?
What are indexes?
Imagine you’re looking for a recipe in a cookbook
ordered by recipe name. Looking up a recipe by
name is quick and easy.
What are indexes?
• How would you find a recipe using chicken?
• How about a 250-350 calorie recipe using
 chicken?
KRISTINE TO INSERT IMAGE OF COOKBOOK




Consult the index!
1   2   3    4    5   6   7




        Linked List
1    2    3     4    5     6   7




    Finding 7 in Linked List
4


    2                       6


1          3        5           7


        Finding 7 in Tree
Indexes in MongoDB are B-trees
Queries, inserts and deletes:
       O(log(n)) time
Indexes are the single
biggest tuneable
performance factor in
MongoDB
Absent or suboptimal
indexes are the most
common avoidable
MongoDB performance
problem.
Why do I need indexes?
A brief story
Working with Indexes in
MongoDB
How do I create indexes?
// Create an index if one does not exist
db.recipes.createIndex({ main_ingredient: 1 })



// The client remembers the index and raises no errors
db.recipes.ensureIndex({ main_ingredient: 1 })




* 1 means ascending, -1 descending
What can be indexed?
// Multiple fields (compound key indexes)
db.recipes.ensureIndex({
   main_ingredient: 1,
   calories: -1
})

// Arrays of values (multikey indexes)
{
   name: 'Chicken Noodle Soup’,
   ingredients : ['chicken', 'noodles']
}

db.recipes.ensureIndex({ ingredients: 1 })
What can be indexed?
// Subdocuments
{
   name : 'Pavlova',
   contributor: {
     name: 'Ima Aussie',
     id: 'ima123'
   }
}

db.recipes.ensureIndex({ 'contributor.id': 1 })

db.recipes.ensureIndex({ 'contributor': 1 })
How do I manage indexes?
// List a collection's indexes
db.recipes.getIndexes()
db.recipes.getIndexKeys()


// Drop a specific index
db.recipes.dropIndex({ ingredients: 1 })


// Drop all indexes and recreate them
db.recipes.reIndex()


// Default (unique) index on _id
Background Index Builds
// Index creation is a blocking operation that can take a long time
// Background creation yields to other operations
db.recipes.ensureIndex(
    { ingredients: 1 },
    { background: true }
)
Options
• Uniqueness constraints (unique, dropDups)
• Sparse Indexes
• Geospatial (2d) Indexes
• TTL Collections (expireAfterSeconds)
Uniqueness Constraints
// Only one recipe can have a given value for name
db.recipes.ensureIndex( { name: 1 }, { unique: true } )


// Force index on collection with duplicate recipe names – drop the
duplicates
db.recipes.ensureIndex(
    { name: 1 },
    { unique: true, dropDups: true }
)


* dropDups is probably never what you want
Sparse Indexes
// Only documents with field calories will be indexed
db.recipes.ensureIndex(
    { calories: -1 },
    { sparse: true }
)
// Allow multiple documents to not have calories field
db.recipes.ensureIndex(
    { name: 1 , calories: -1 },
    { unique: true, sparse: true }
)
* Missing fields are stored as null(s) in the index
Geospatial Indexes
// Add latitude, longitude coordinates
{
     name: '10gen Sydney’,
     loc: [ 151.21037, -33.88456 ]
}
// Index the coordinates
db.locations.ensureIndex( { loc : '2d' } )


// Query for locations 'near' a particular coordinate
db.locations.find({
     loc: { $near: [ 151.21, -33.88 ] }
})
TTL Collections
// Documents must have a BSON UTC Date field
{ 'status' : ISODate('2012-11-09T11:44:07.211Z'), … }


// Documents are removed after 'expireAfterSeconds' seconds
db.recipes.ensureIndex(
    { submitted_date: 1 },
    { expireAfterSeconds: 3600 }
)
Limitations
• Collections can not have > 64 indexes.

• Index keys can not be > 1024 bytes (1K).

• The name of an index, including the namespace, must be <
  128 characters.
• Queries can only use 1 index*

• Indexes have storage requirements, and impact the
  performance of writes.
• In memory sort (no-index) limited to 32mb of return data.
Optimise Your Queries
Profiling Slow Ops
db.setProfilingLevel( n , slowms=100ms )


n=0 profiler off
n=1 record operations longer than slowms
n=2 record all queries


db.system.profile.find()




* The profile collection is a capped collection, and fixed in size
The Explain Plan (Pre Index)
db.recipes.find( { calories:
    { $lt : 40 } }
).explain( )
{
    "cursor" : "BasicCursor" ,
    "n" : 42,
    "nscannedObjects” : 12345
    "nscanned" : 12345,
    ...
    "millis" : 356,
    ...
}
* Doesn’t use cached plans, re-evals and resets cache
The Explain Plan (Post Index)
db.recipes.find( { calories:
    { $lt : 40 } }
).explain( )
{
    "cursor" : "BtreeCursor calories_-1" ,
    "n" : 42,
    "nscannedObjects": 42
    "nscanned" : 42,
    ...
    "millis" : 0,
    ...
}
* Doesn’t use cached plans, re-evals and resets cache
The Query Optimiser
The Query Optimiser
• For each "type" of query, MongoDB
  periodically tries all useful indexes
• Aborts the rest as soon as one plan wins
• The winning plan is temporarily cached for
  each “type” of query
Manually Select Index to Use
// Tell the database what index to use
db.recipes.find({
  calories: { $lt: 1000 } }
).hint({ _id: 1 })


// Tell the database to NOT use an index
db.recipes.find(
  { calories: { $lt: 1000 } }
).hint({ $natural: 1 })
Use Indexes to Sort Query
Results
// Given the following index
db.collection.ensureIndex({ a:1, b:1 , c:1, d:1 })

// The following query and sort operations can use the index
db.collection.find( ).sort({ a:1 })
db.collection.find( ).sort({ a:1, b:1 })

db.collection.find({ a:4 }).sort({ a:1, b:1 })
db.collection.find({ b:5 }).sort({ a:1, b:1 })
Indexes that won’t work for
sorting query results
// Given the following index
db.collection.ensureIndex({ a:1, b:1, c:1, d:1 })


// These can not sort using the index
db.collection.find( ).sort({ b: 1 })
db.collection.find({ b: 5 }).sort({ b: 1 })
Index Covered Queries
// MongoDB can return data from just the index
db.recipes.ensureIndex({ main_ingredient: 1, name: 1 })

// Return only the ingredients field
db.recipes.find(
   { main_ingredient: 'chicken’ },
   { _id: 0, name: 1 }
)

// indexOnly will be true in the explain plan
db.recipes.find(
    { main_ingredient: 'chicken' },
    { _id: 0, name: 1 }
).explain()
{
    "indexOnly": true,
}
Absent or suboptimal
indexes are the most
common avoidable
MongoDB performance
problem.
Avoiding Common
Mistakes
Trying to Use Multiple
Indexes
// MongoDB can only use one index for a query
db.collection.ensureIndex({ a: 1 })
db.collection.ensureIndex({ b: 1 })


// Only one of the above indexes is used
db.collection.find({ a: 3, b: 4 })
Compound Key Mistakes
// Compound key indexes are very effective
db.collection.ensureIndex({ a: 1, b: 1, c: 1 })


// But only if the query is a prefix of the index


// This query can't effectively use the index
db.collection.find({ c: 2 })


// …but this query can
db.collection.find({ a: 3, b: 5 })
Low Selectivity Indexes
db.collection.distinct('status’)
[ 'new', 'processed' ]


db.collection.ensureIndex({ status: 1 })


// Low selectivity indexes provide little benefit
db.collection.find({ status: 'new' })


// Better
db.collection.ensureIndex({ status: 1, created_at: -1 })
db.collection.find(
  { status: 'new' }
).sort({ created_at: -1 })
Regular Expressions
db.users.ensureIndex({ username: 1 })


// Left anchored regex queries can use the index
db.users.find({ username: /^joe smith/ })


// But not generic regexes
db.users.find({username: /smith/ })


// Or case insensitive queries
db.users.find({ username: /Joe/i })
Negation
// Indexes aren't helpful with negations
db.things.ensureIndex({ x: 1 })

// e.g. "not equal" queries
db.things.find({ x: { $ne: 3 } })

// …or "not in" queries
db.things.find({ x: { $nin: [2, 3, 4 ] } })

// …or the $not operator
db.people.find({ name: { $not: 'John Doe' } })
Choosing the right
indexes is one of the
most important things
you can do as a
MongoDB developer so
take the time to get your
indexes right!
#MongoDBSydney




Thank you
Stephen Steneker (stennie@10gen.com)
Support Engineer, 10gen

More Related Content

PPTX
Indexing and Query Optimization
PPTX
Indexing documents
PPTX
Getting started with Elasticsearch and .NET
PDF
Green dao
PDF
Appengine Java Night #2a
PDF
greenDAO
PDF
Appengine Java Night #2b
PPTX
Slick: Bringing Scala’s Powerful Features to Your Database Access
Indexing and Query Optimization
Indexing documents
Getting started with Elasticsearch and .NET
Green dao
Appengine Java Night #2a
greenDAO
Appengine Java Night #2b
Slick: Bringing Scala’s Powerful Features to Your Database Access

What's hot (20)

PDF
Tips of CakePHP and MongoDB - Cakefest2011 ichikaway
PDF
Hitchhiker's guide to the win8
PDF
How te bring common UI patterns to ADF
PDF
Be lazy, be ESI: HTTP caching and Symfony2 @ PHPDay 2011 05-13-2011
PDF
Solr's Search Relevancy (Understand Solr's query debug)
PDF
Timothy N. Tsvetkov, Rails 3.1
KEY
Introducing CakeEntity
PPTX
CocoaHeads Moscow. Азиз Латыпов, VIPole. «Запросы в CoreData с агрегатными фу...
PDF
How to use MongoDB with CakePHP
PPTX
How to Bring Common UI Patterns to ADF
PPTX
PostgreSQL's Secret NoSQL Superpowers
PDF
Everything About PowerShell
PDF
Mongo db for C# Developers
KEY
Introducing CakeEntity
PPTX
Google cloud datastore driver for Google Apps Script DB abstraction
PPTX
Intro to Parse
PPTX
Dbabstraction
PDF
자마린.안드로이드 기본 내장레이아웃(Built-In List Item Layouts)
PDF
From mysql to MongoDB(MongoDB2011北京交流会)
PDF
Perl object ?
Tips of CakePHP and MongoDB - Cakefest2011 ichikaway
Hitchhiker's guide to the win8
How te bring common UI patterns to ADF
Be lazy, be ESI: HTTP caching and Symfony2 @ PHPDay 2011 05-13-2011
Solr's Search Relevancy (Understand Solr's query debug)
Timothy N. Tsvetkov, Rails 3.1
Introducing CakeEntity
CocoaHeads Moscow. Азиз Латыпов, VIPole. «Запросы в CoreData с агрегатными фу...
How to use MongoDB with CakePHP
How to Bring Common UI Patterns to ADF
PostgreSQL's Secret NoSQL Superpowers
Everything About PowerShell
Mongo db for C# Developers
Introducing CakeEntity
Google cloud datastore driver for Google Apps Script DB abstraction
Intro to Parse
Dbabstraction
자마린.안드로이드 기본 내장레이아웃(Built-In List Item Layouts)
From mysql to MongoDB(MongoDB2011北京交流会)
Perl object ?
Ad

Similar to Indexing and Query Optimisation (20)

PPTX
Indexing & Query Optimization
PPTX
Indexing and Query Optimisation
PPTX
Webinar: Indexing and Query Optimization
PPTX
Indexing and Query Optimization
PPTX
Indexing Strategies to Help You Scale
PPT
Fast querying indexing for performance (4)
PDF
Mongophilly indexing-2011-04-26
PDF
Mongoseattle indexing-2010-07-27
PDF
Indexing and Query Optimizer (Richard Kreuter)
PDF
Indexing and Query Optimizer (Mongo Austin)
PDF
Indexing and Query Optimizer
DOCX
unit 4,Indexes in database.docx
PPTX
MongoDB.local DC 2018: Tips and Tricks for Avoiding Common Query Pitfalls
PPTX
Indexing In MongoDB
PPTX
Indexing with MongoDB
PDF
10gen Presents Schema Design and Data Modeling
PDF
Nosql part 2
PPTX
Automated Slow Query Analysis: Dex the Index Robot
PPTX
MongoDB and Indexes - MUG Denver - 20160329
PPTX
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Indexing & Query Optimization
Indexing and Query Optimisation
Webinar: Indexing and Query Optimization
Indexing and Query Optimization
Indexing Strategies to Help You Scale
Fast querying indexing for performance (4)
Mongophilly indexing-2011-04-26
Mongoseattle indexing-2010-07-27
Indexing and Query Optimizer (Richard Kreuter)
Indexing and Query Optimizer (Mongo Austin)
Indexing and Query Optimizer
unit 4,Indexes in database.docx
MongoDB.local DC 2018: Tips and Tricks for Avoiding Common Query Pitfalls
Indexing In MongoDB
Indexing with MongoDB
10gen Presents Schema Design and Data Modeling
Nosql part 2
Automated Slow Query Analysis: Dex the Index Robot
MongoDB and Indexes - MUG Denver - 20160329
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...

Indexing and Query Optimisation

  • 1. #MongoDBSydney Indexing and Query Optimisation Stephen Steneker (stennie@10gen.com) Support Engineer, 10gen Australia
  • 2. Agenda • What are indexes? • Why do I need them? • Working with indexes in MongoDB • Optimise your queries • Avoiding common mistakes
  • 4. What are indexes? Imagine you’re looking for a recipe in a cookbook ordered by recipe name. Looking up a recipe by name is quick and easy.
  • 5. What are indexes? • How would you find a recipe using chicken? • How about a 250-350 calorie recipe using chicken?
  • 6. KRISTINE TO INSERT IMAGE OF COOKBOOK Consult the index!
  • 7. 1 2 3 4 5 6 7 Linked List
  • 8. 1 2 3 4 5 6 7 Finding 7 in Linked List
  • 9. 4 2 6 1 3 5 7 Finding 7 in Tree
  • 10. Indexes in MongoDB are B-trees
  • 11. Queries, inserts and deletes: O(log(n)) time
  • 12. Indexes are the single biggest tuneable performance factor in MongoDB
  • 13. Absent or suboptimal indexes are the most common avoidable MongoDB performance problem.
  • 14. Why do I need indexes? A brief story
  • 15. Working with Indexes in MongoDB
  • 16. How do I create indexes? // Create an index if one does not exist db.recipes.createIndex({ main_ingredient: 1 }) // The client remembers the index and raises no errors db.recipes.ensureIndex({ main_ingredient: 1 }) * 1 means ascending, -1 descending
  • 17. What can be indexed? // Multiple fields (compound key indexes) db.recipes.ensureIndex({ main_ingredient: 1, calories: -1 }) // Arrays of values (multikey indexes) { name: 'Chicken Noodle Soup’, ingredients : ['chicken', 'noodles'] } db.recipes.ensureIndex({ ingredients: 1 })
  • 18. What can be indexed? // Subdocuments { name : 'Pavlova', contributor: { name: 'Ima Aussie', id: 'ima123' } } db.recipes.ensureIndex({ 'contributor.id': 1 }) db.recipes.ensureIndex({ 'contributor': 1 })
  • 19. How do I manage indexes? // List a collection's indexes db.recipes.getIndexes() db.recipes.getIndexKeys() // Drop a specific index db.recipes.dropIndex({ ingredients: 1 }) // Drop all indexes and recreate them db.recipes.reIndex() // Default (unique) index on _id
  • 20. Background Index Builds // Index creation is a blocking operation that can take a long time // Background creation yields to other operations db.recipes.ensureIndex( { ingredients: 1 }, { background: true } )
  • 21. Options • Uniqueness constraints (unique, dropDups) • Sparse Indexes • Geospatial (2d) Indexes • TTL Collections (expireAfterSeconds)
  • 22. Uniqueness Constraints // Only one recipe can have a given value for name db.recipes.ensureIndex( { name: 1 }, { unique: true } ) // Force index on collection with duplicate recipe names – drop the duplicates db.recipes.ensureIndex( { name: 1 }, { unique: true, dropDups: true } ) * dropDups is probably never what you want
  • 23. Sparse Indexes // Only documents with field calories will be indexed db.recipes.ensureIndex( { calories: -1 }, { sparse: true } ) // Allow multiple documents to not have calories field db.recipes.ensureIndex( { name: 1 , calories: -1 }, { unique: true, sparse: true } ) * Missing fields are stored as null(s) in the index
  • 24. Geospatial Indexes // Add latitude, longitude coordinates { name: '10gen Sydney’, loc: [ 151.21037, -33.88456 ] } // Index the coordinates db.locations.ensureIndex( { loc : '2d' } ) // Query for locations 'near' a particular coordinate db.locations.find({ loc: { $near: [ 151.21, -33.88 ] } })
  • 25. TTL Collections // Documents must have a BSON UTC Date field { 'status' : ISODate('2012-11-09T11:44:07.211Z'), … } // Documents are removed after 'expireAfterSeconds' seconds db.recipes.ensureIndex( { submitted_date: 1 }, { expireAfterSeconds: 3600 } )
  • 26. Limitations • Collections can not have > 64 indexes. • Index keys can not be > 1024 bytes (1K). • The name of an index, including the namespace, must be < 128 characters. • Queries can only use 1 index* • Indexes have storage requirements, and impact the performance of writes. • In memory sort (no-index) limited to 32mb of return data.
  • 28. Profiling Slow Ops db.setProfilingLevel( n , slowms=100ms ) n=0 profiler off n=1 record operations longer than slowms n=2 record all queries db.system.profile.find() * The profile collection is a capped collection, and fixed in size
  • 29. The Explain Plan (Pre Index) db.recipes.find( { calories: { $lt : 40 } } ).explain( ) { "cursor" : "BasicCursor" , "n" : 42, "nscannedObjects” : 12345 "nscanned" : 12345, ... "millis" : 356, ... } * Doesn’t use cached plans, re-evals and resets cache
  • 30. The Explain Plan (Post Index) db.recipes.find( { calories: { $lt : 40 } } ).explain( ) { "cursor" : "BtreeCursor calories_-1" , "n" : 42, "nscannedObjects": 42 "nscanned" : 42, ... "millis" : 0, ... } * Doesn’t use cached plans, re-evals and resets cache
  • 32. The Query Optimiser • For each "type" of query, MongoDB periodically tries all useful indexes • Aborts the rest as soon as one plan wins • The winning plan is temporarily cached for each “type” of query
  • 33. Manually Select Index to Use // Tell the database what index to use db.recipes.find({ calories: { $lt: 1000 } } ).hint({ _id: 1 }) // Tell the database to NOT use an index db.recipes.find( { calories: { $lt: 1000 } } ).hint({ $natural: 1 })
  • 34. Use Indexes to Sort Query Results // Given the following index db.collection.ensureIndex({ a:1, b:1 , c:1, d:1 }) // The following query and sort operations can use the index db.collection.find( ).sort({ a:1 }) db.collection.find( ).sort({ a:1, b:1 }) db.collection.find({ a:4 }).sort({ a:1, b:1 }) db.collection.find({ b:5 }).sort({ a:1, b:1 })
  • 35. Indexes that won’t work for sorting query results // Given the following index db.collection.ensureIndex({ a:1, b:1, c:1, d:1 }) // These can not sort using the index db.collection.find( ).sort({ b: 1 }) db.collection.find({ b: 5 }).sort({ b: 1 })
  • 36. Index Covered Queries // MongoDB can return data from just the index db.recipes.ensureIndex({ main_ingredient: 1, name: 1 }) // Return only the ingredients field db.recipes.find( { main_ingredient: 'chicken’ }, { _id: 0, name: 1 } ) // indexOnly will be true in the explain plan db.recipes.find( { main_ingredient: 'chicken' }, { _id: 0, name: 1 } ).explain() { "indexOnly": true, }
  • 37. Absent or suboptimal indexes are the most common avoidable MongoDB performance problem.
  • 39. Trying to Use Multiple Indexes // MongoDB can only use one index for a query db.collection.ensureIndex({ a: 1 }) db.collection.ensureIndex({ b: 1 }) // Only one of the above indexes is used db.collection.find({ a: 3, b: 4 })
  • 40. Compound Key Mistakes // Compound key indexes are very effective db.collection.ensureIndex({ a: 1, b: 1, c: 1 }) // But only if the query is a prefix of the index // This query can't effectively use the index db.collection.find({ c: 2 }) // …but this query can db.collection.find({ a: 3, b: 5 })
  • 41. Low Selectivity Indexes db.collection.distinct('status’) [ 'new', 'processed' ] db.collection.ensureIndex({ status: 1 }) // Low selectivity indexes provide little benefit db.collection.find({ status: 'new' }) // Better db.collection.ensureIndex({ status: 1, created_at: -1 }) db.collection.find( { status: 'new' } ).sort({ created_at: -1 })
  • 42. Regular Expressions db.users.ensureIndex({ username: 1 }) // Left anchored regex queries can use the index db.users.find({ username: /^joe smith/ }) // But not generic regexes db.users.find({username: /smith/ }) // Or case insensitive queries db.users.find({ username: /Joe/i })
  • 43. Negation // Indexes aren't helpful with negations db.things.ensureIndex({ x: 1 }) // e.g. "not equal" queries db.things.find({ x: { $ne: 3 } }) // …or "not in" queries db.things.find({ x: { $nin: [2, 3, 4 ] } }) // …or the $not operator db.people.find({ name: { $not: 'John Doe' } })
  • 44. Choosing the right indexes is one of the most important things you can do as a MongoDB developer so take the time to get your indexes right!
  • 45. #MongoDBSydney Thank you Stephen Steneker (stennie@10gen.com) Support Engineer, 10gen

Editor's Notes

  • #26: &apos;2d&apos; index is a geohash on top of the b-tree.Allows you to search for documents &apos;near&apos; a latitude/longitude position. Bounds queries are also possible using $within.TODO: Google maps image, or something similar. Kristine to provide.
  • #27: Index must be on a BSON date field.Documents are removed after expireAfterSeconds seconds.Reaper thread runs every 60 seconds.TODO: Hourglass image, or something similar. Kristine to provide.
  • #28: Indexes are a really powerful feature of MongoDB, however there are some limitations.Understanding these limitations is an important part of using MongoDB correctly.With the exception of $or queries.If index key exceeds 1k, documents silently dropped/not included
  • #31: cursor – the type of cursor used. BasicCursor means no index was used. TODO: Use a real example here instead of made up numbers…n – the number of documents that match the querynscannedObjects – the number of documents that had to be scannednscanned – the number of items (index entries or documents) examinedmillis – how long the query tookRatio of n to nscanned should be as close to 1 as possible.
  • #32: cursor – the type of cursor used. BasicCursor means no index was used.n – the number of documents that match the querynscannedObjects – the number of documents that had to be scannednscanned – the number of items (index entries or documents) examinedmillis – how long the query tookRatio of n to nscanned should be as close to 1 as possible.
  • #33: 2008 melbourne cup