BA101 – index exercise 2




Solve the equations using index method:                                                   xii.    log 2 6 x log 2 ( x 3)     2      x    6

                                                                                                                  1
   i.      52 n        1
                               25n     1
                                               125n     1
                                                                   53n      6
                                                                                         xiii.   125 x   2
                                                                                                                                    x    2
                                           3                                                                 25 2 x   4
                    8n                     4
   ii.         p3               q 2n                               p 2n
                                                                                         xiv.     log 2 (4 x 1)       3 log 2 x     x
                                                                                                                                         1
                                                                       3n                                                                4
                                                                        2
                                                                   q
                                       1
  iii.      32 m 5 n                10 5
                                                                   2mn           2
                                                                                         Given that log 7 5 0.83 and log 7 6 0.92 ,find
  iv.       32 n (81n 1 )(9 2                  3n
                                                    )              1
                                                                                         the value of the following without using a
                   2 3 4                                                                 calculator
           (a b )
   v.                                                              a2                       i.    log 7 30                          1.75
           (a 3b 6 ) 2
                                                                                                         1
           82 n 43n                                                                        ii.   log 7 1                            0.09
  vi.                                                              2   3n
                                                                                                         5
           2 n 16 2 n
                  2                                                                      Given that log 2 3 1.59 and log 2 5 2.32 ,find
 vii.      22 x        4
                                            1                                            the value of the following without using a
                16 x                        2
Simplify the logarithmic equations below:                                                calculator
         1                                                                       1          i.    log 2 45                          5.50
   i.      log a 2 log b log c                a c                                3

         3                                log
                                              b                                  2         ii.    log 2 0.6                           0.73

  ii.    4 log x 2 log y log x 4 log z log x y                                   3   2
                                                                                         Given that log2 a = m and log 2 b = n. Write
                                                                                z4
                                                                                               2a
  iii.         3 log b 4 log a 2 log z                                       a4          log2      in terms of m and n.              1 m     n
                                                                   log
                                                                            b3 z 2
                                                                                                b
Find the value of x:
                                                                                         Given that log 3 2 m         and log 3 5   n, write
   i.   log 50 log x                            2 log(2 x 1)   x
                                                                        2
                                                                        3                log1.2 in terms of m and n                     1 m n
   ii.     log 3 (3 2 x) 3                                     x 12

  iii.     log 5 (5 x 4) 2 log 5 3 log 5 4                     x       8

  iv.      log x 8 5 log x 4                                   x       2
                                                                                         If log 5 3 0.682 ,find the value of this equation:
               x               2x
   v.      2               4           16                      x
                                                                        4
                                                                                                3          4       2
                                                                        5                 log 5    2 log 5   log 5                    0.318
                                           1                                                    8          5       5
  vi.      3x      1
                           27 x                                x
                                                                             3
                                           9                                4
                               1
 vii.     128                                                  x            7
                               2x
viii.      27 x                9                               x
                                                                        2
                                                                        3

  ix.      32 x 4 x 36                                         x 1

   x.      3 log x 4 log x 2 5                                 x       2
               4x               x 2
  xi.      8               4                                   x
                                                                             2
                                                                            5

More Related Content

DOCX
Logarithm exercise
KEY
Week 10 - Trigonometry
PDF
鳳山高級中學 B1 3 3---ans
PPTX
BBMP1103 - Sept 2011 exam workshop - part 4
PDF
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
DOC
Ringkasan ba101 dec2011
PPT
Logarithms
PPT
Logarithms
Logarithm exercise
Week 10 - Trigonometry
鳳山高級中學 B1 3 3---ans
BBMP1103 - Sept 2011 exam workshop - part 4
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
Ringkasan ba101 dec2011
Logarithms
Logarithms

Similar to Index+log(koleksi final) (20)

PPTX
Logarithma
DOC
Add Math P1 Trial Spm Sbp 2007
DOCX
Answer to selected_miscellaneous_exercises
PDF
Pr10.3.A
PDF
09 trial kedah_s1
PDF
Exponential and logarithmic_functions
PDF
09 trial melaka_s1
PPTX
Alg2 lesson 10-3
PPTX
Alg2 lesson 10-3
DOC
5 marks scheme for add maths paper 1 trial spm
PDF
09 trial kedah_p1
PDF
Serieshw 2
PDF
5 marks scheme for add maths paper 1 trial spm
DOC
Unit 7 test version 2
PDF
Multiple choice one
PDF
F4 Answer
PDF
Summer Task - MATHS - Yr 12 preparation
DOC
Mathematics Mid Year Form 4 Paper 1 Mathematics
PPTX
Logaritmos
PDF
5 indices & logarithms
Logarithma
Add Math P1 Trial Spm Sbp 2007
Answer to selected_miscellaneous_exercises
Pr10.3.A
09 trial kedah_s1
Exponential and logarithmic_functions
09 trial melaka_s1
Alg2 lesson 10-3
Alg2 lesson 10-3
5 marks scheme for add maths paper 1 trial spm
09 trial kedah_p1
Serieshw 2
5 marks scheme for add maths paper 1 trial spm
Unit 7 test version 2
Multiple choice one
F4 Answer
Summer Task - MATHS - Yr 12 preparation
Mathematics Mid Year Form 4 Paper 1 Mathematics
Logaritmos
5 indices & logarithms
Ad

Recently uploaded (20)

DOCX
Hand book of Entrepreneurship 4 Chapters.docx
DOCX
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
PPT
Lecture 3344;;,,(,(((((((((((((((((((((((
PDF
1911 Gold Corporate Presentation Aug 2025.pdf
PPTX
TRAINNING, DEVELOPMENT AND APPRAISAL.pptx
PDF
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
PPTX
operations management : demand supply ch
PDF
Robin Fischer: A Visionary Leader Making a Difference in Healthcare, One Day ...
PDF
PMB 401-Identification-of-Potential-Biotechnological-Products.pdf
PDF
ANALYZING THE OPPORTUNITIES OF DIGITAL MARKETING IN BANGLADESH TO PROVIDE AN ...
PDF
NEW - FEES STRUCTURES (01-july-2024).pdf
PDF
Solaris Resources Presentation - Corporate August 2025.pdf
PDF
Environmental Law Communication: Strategies for Advocacy (www.kiu.ac.ug)
PPTX
Slide gioi thieu VietinBank Quy 2 - 2025
PDF
#1 Safe and Secure Verified Cash App Accounts for Purchase.pdf
PPTX
CTG - Business Update 2Q2025 & 6M2025.pptx
PPTX
Board-Reporting-Package-by-Umbrex-5-23-23.pptx
PDF
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
PDF
Kishore Vora - Best CFO in India to watch in 2025.pdf
PDF
Keppel_Proposed Divestment of M1 Limited
Hand book of Entrepreneurship 4 Chapters.docx
80 DE ÔN VÀO 10 NĂM 2023vhkkkjjhhhhjjjj
Lecture 3344;;,,(,(((((((((((((((((((((((
1911 Gold Corporate Presentation Aug 2025.pdf
TRAINNING, DEVELOPMENT AND APPRAISAL.pptx
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
operations management : demand supply ch
Robin Fischer: A Visionary Leader Making a Difference in Healthcare, One Day ...
PMB 401-Identification-of-Potential-Biotechnological-Products.pdf
ANALYZING THE OPPORTUNITIES OF DIGITAL MARKETING IN BANGLADESH TO PROVIDE AN ...
NEW - FEES STRUCTURES (01-july-2024).pdf
Solaris Resources Presentation - Corporate August 2025.pdf
Environmental Law Communication: Strategies for Advocacy (www.kiu.ac.ug)
Slide gioi thieu VietinBank Quy 2 - 2025
#1 Safe and Secure Verified Cash App Accounts for Purchase.pdf
CTG - Business Update 2Q2025 & 6M2025.pptx
Board-Reporting-Package-by-Umbrex-5-23-23.pptx
Nante Industrial Plug Factory: Engineering Quality for Modern Power Applications
Kishore Vora - Best CFO in India to watch in 2025.pdf
Keppel_Proposed Divestment of M1 Limited
Ad

Index+log(koleksi final)

  • 1. BA101 – index exercise 2 Solve the equations using index method: xii. log 2 6 x log 2 ( x 3) 2 x 6 1 i. 52 n 1 25n 1 125n 1 53n 6 xiii. 125 x 2 x 2 3 25 2 x 4 8n 4 ii. p3 q 2n p 2n xiv. log 2 (4 x 1) 3 log 2 x x 1 3n 4 2 q 1 iii. 32 m 5 n 10 5 2mn 2 Given that log 7 5 0.83 and log 7 6 0.92 ,find iv. 32 n (81n 1 )(9 2 3n ) 1 the value of the following without using a 2 3 4 calculator (a b ) v. a2 i. log 7 30 1.75 (a 3b 6 ) 2 1 82 n 43n ii. log 7 1 0.09 vi. 2 3n 5 2 n 16 2 n 2 Given that log 2 3 1.59 and log 2 5 2.32 ,find vii. 22 x 4 1 the value of the following without using a 16 x 2 Simplify the logarithmic equations below: calculator 1 1 i. log 2 45 5.50 i. log a 2 log b log c a c 3 3 log b 2 ii. log 2 0.6 0.73 ii. 4 log x 2 log y log x 4 log z log x y 3 2 Given that log2 a = m and log 2 b = n. Write z4 2a iii. 3 log b 4 log a 2 log z a4 log2 in terms of m and n. 1 m n log b3 z 2 b Find the value of x: Given that log 3 2 m and log 3 5 n, write i. log 50 log x 2 log(2 x 1) x 2 3 log1.2 in terms of m and n 1 m n ii. log 3 (3 2 x) 3 x 12 iii. log 5 (5 x 4) 2 log 5 3 log 5 4 x 8 iv. log x 8 5 log x 4 x 2 If log 5 3 0.682 ,find the value of this equation: x 2x v. 2 4 16 x 4 3 4 2 5 log 5 2 log 5 log 5 0.318 1 8 5 5 vi. 3x 1 27 x x 3 9 4 1 vii. 128 x 7 2x viii. 27 x 9 x 2 3 ix. 32 x 4 x 36 x 1 x. 3 log x 4 log x 2 5 x 2 4x x 2 xi. 8 4 x 2 5