SlideShare a Scribd company logo
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
DOI : 10.5121/ijitmc.2016.4101 1
INFLUENCE OF OVERLAYERS ON DEPTH OF IM-
PLANTED-HETEROJUNCTION RECTIFIERS
E.L. Pankratov1
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we compare distributions of concentrations of dopants in an implanted-junction rectifiers in a
heterostructures with an overlayer and without the overlayer. Conditions for decreasing of depth of the
considered p-n-junction have been formulated.
KEYWORDS
Heterostructures; implanted-junction rectifiers: overlayers.
1. INTRODUCTION
In the present time integration rate of elements of integrated circuits intensively increasing. At the
same time dimensions of the above elements decreases. To increase integration rate of elements
of integrated circuits and to increase dimensions of the same elements are have been elaborated
different approaches [1-10]. In the present paper we consider a heterostructure with two layers: a
substrate and an epitaxial layer. The heterostructure could include into itself a third layer: an
overlayer (see Figs. 1). We assume, that type of conductivity of the substrate (n or p) is known.
The epitaxial layer has been doped by ion implantation to manufacture required type of conduc-
tivity (p or n). Farther we consider annealing of radiation defects. Main aim of the present paper
is comparison two ways of ion doping of the epitaxial layer: ion doping of epitaxial layer and ion
doping of epitaxial layer through the overlayer.
Fig. 1a. Heterostructure, which consist of a substrate and an epitaxial layer with initial distribution of
implanted dopant
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
2
x
D(x)
D1
D2
0 L
a
fC(x)
D0
Substrate
Epitaxial layer
b
Overlayer
Fig. 1b. Heterostructure, which consist of a substrate, an epitaxial layer and an overlayer with initial distri-
bution of implanted dopant
2. METHOD OF SOLUTION
To solve our aim we determine spatio-temporal distributions of concentrations of dopants. We
calculate the required distributions by solving the second Fick's law in the following form [1]
( ) ( ) ( ) ( )






+






+






=
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C
C
C
C
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
. (1)
Boundary and initial conditions for the equations are
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= y
L
x
y
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= z
L
x
z
t
z
y
x
C
, C(x,y,z,0)=f (x,y,z). (2)
Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and
time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem-
perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of
heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation
defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate
in heterostructure, temperature of annealing and concentrations of dopant and radiation defects
could be written as [11-13]
( ) ( )
( )
( ) ( )
( ) 







+
+






+
= 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D L
C ς
ς
ξ γ
γ
. (3)
Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate
and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit
of solubility of dopant. The parameter γ is integer and usually could be varying in the following
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
3
interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver-
age) with each atom of dopant. Ref.[11] describes more detailed information about dependence of
dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen-
tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of
concentration of vacancies has been denoted as V*
. It is known, that doping of materials by diffu-
sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa-
tio-temporal distributions of concentrations of radiation defects by solving the following system
of equations [12,13]
( ) ( ) ( ) ( ) ( ) ( ) ×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
T
z
y
x
k
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
t
z
y
x
I V
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
−






∂
∂
∂
∂
+
× (4)
( ) ( ) ( ) ( ) ( ) ( )×
−






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
T
z
y
x
k
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
t
z
y
x
V V
I
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
−






∂
∂
∂
∂
+
× .
Boundary and initial conditions for these equations are
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= y
L
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= z
L
z
z
t
z
y
x
ρ
, ρ (x,y,z,0)=fρ (x,y,z). (5)
Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I
(x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and
temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4)
describes generation divacancies and diinterstitials. Parameter of recombination of point radiation
defects and parameters of generation of simplest complexes of point radiation defects have been
denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively.
Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials
ΦI(x,y,z,t) in space and time by solving the following system of equations [12,13]
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
.
Boundary and initial conditions for these equations are
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
4
( )
0
,
,
,
0
=
∂
Φ
∂
=
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= x
L
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= y
L
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
z
z
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= z
L
z
z
t
z
y
x
ρ
, ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7)
The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com-
plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z,
T) describe the parameters of decay of these complexes on coordinate and temperature.
To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to
the following integro-differential form
( ) ( )
( ) ( )
( )
×
∫ ∫ ∫ 





+
+
=
∫ ∫ ∫
t y
L
z
L
L
x
L
y
L
z
L
z
y
x y z
x y z V
w
v
x
V
V
w
v
x
V
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
C
L
L
L
z
y
x
0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
τ
ς
τ
ς
( )
( )
( ) ( ) ( )
( )
×
∫ ∫ ∫ 





+
+






+
×
t x
L
z
L
L
z
y x z T
z
y
x
P
w
y
u
C
T
w
y
u
D
L
L
z
y
d
x
w
v
x
C
T
w
v
x
P
w
v
x
C
0 ,
,
,
,
,
,
1
,
,
,
,
,
,
,
,
,
,
,
,
1 γ
γ
γ
γ
τ
ξ
τ
∂
τ
∂
τ
ξ
( ) ( )
( )
( ) ( ) ×
∫ ∫ ∫
+






+
+
×
t x
L
y
L
L
z
x x y
T
z
v
u
D
L
L
z
x
d
y
w
y
u
C
V
w
y
u
V
V
w
y
u
V
0
2
*
2
2
*
1 ,
,
,
,
,
,
,
,
,
,
,
,
1 τ
∂
τ
∂
τ
ς
τ
ς
( ) ( )
( )
( )
( )
( ) +






+






+
+
×
y
x
L
L
y
x
d
z
z
v
u
C
T
z
y
x
P
z
v
u
C
V
z
v
u
V
V
z
v
u
V
τ
∂
τ
∂
τ
ξ
τ
ς
τ
ς γ
γ
,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1 2
*
2
2
*
1
( )
∫ ∫ ∫
+
x
L
y
L
z
L
z
y
x x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
,
, . (1a)
Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [14]. To use the ap-
proach we consider solution of the Eq.(1a) as the following series
( ) ( ) ( ) ( ) ( )
∑
=
=
N
n
nC
n
n
n
nC t
e
z
c
y
c
x
c
a
t
z
y
x
C
0
0 ,
,
, .
Here ( ) ( )
[ ]
2
2
2
0
2
2
exp −
−
−
+
+
−
= z
y
x
C
nC
L
L
L
t
D
n
t
e π , cn(χ)=cos(π nχ/Lχ). Number of terms N in the
series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0)
and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the
following result
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫



×





∑
+
−
=
∑
=
=
t y
L
z
L
N
n
nC
n
n
n
nC
z
y
N
n
nC
n
n
n
C
y z
e
w
c
v
c
x
c
a
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
0 1
1
3
2
1
γ
τ
π
( )
( ) ( )
( )
( ) ( ) ( )×
∑






+
+



×
=
N
n
n
n
nC
L v
c
x
s
a
T
w
v
x
D
V
w
v
x
V
V
w
v
x
V
T
w
v
x
P 1
2
*
2
2
*
1 ,
,
,
,
,
,
,
,
,
1
,
,
,
τ
ς
τ
ς
ξ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ×











∑
+
−
×
=
t x
L
z
L
N
m
mC
m
m
m
mC
z
x
nC
n
x z T
w
y
u
P
e
w
c
y
c
u
c
a
L
L
z
x
d
e
w
c
n
0 1 ,
,
,
1 γ
γ
ξ
τ
τ
τ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
5
( ) ( ) ( )
( )
( ) ( ) ( ) ( ) ×
∑






+
+
×
=
τ
τ
τ
ς
τ
ς d
e
w
c
y
s
u
c
n
V
w
y
u
V
V
w
y
u
V
T
w
y
u
D
N
n
nC
n
n
n
L
1
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
( )
( )
( ) ( ) ( ) ( ) ×
∫ ∫ ∫











∑
+
−
×
=
t x
L
y
L
N
n
nC
n
n
n
nC
L
y
x
nC
x y
e
z
c
v
c
u
c
a
T
z
v
u
P
T
z
v
u
D
L
L
y
x
a
0 1
,
,
,
1
,
,
,
γ
γ
τ
ξ
( ) ( )
( )
( ) ( ) ( ) ( ) ×
+
∑






+
+
×
=
z
y
x
N
n
nC
n
n
n
nC
L
L
L
z
y
x
d
e
z
s
v
c
u
c
a
n
V
z
v
u
V
V
z
v
u
V
τ
τ
τ
ς
τ
ς
1
2
*
2
2
*
1
,
,
,
,
,
,
1
( )
∫ ∫ ∫
×
x
L
y
L
z
L
x y z
u
d
v
d
w
d
w
v
u
f ,
, ,
where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the
considered series. The coefficients an could be calculated for any quantity of terms N. In the
common case the relations could be written as
( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫



×





∑
+
−
=
∑
−
=
=
t L L L N
n
nC
n
n
n
nC
L
z
y
N
n
nC
nC
z
y
x
x y z
e
z
c
y
c
x
c
a
T
z
y
x
D
L
L
t
e
n
a
L
L
L
0 0 0 0 1
2
1
6
5
2
2
2
1
,
,
,
2
γ
τ
π
π
( )
( ) ( )
( )
( ) ( ) ( ) ( )×
∑






+
+



×
=
N
n
nC
n
n
n
nC
e
z
c
y
c
x
s
n
a
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P 1
2
*
2
2
*
1 2
,
,
,
,
,
,
1
,
,
,
τ
τ
ς
τ
ς
ξ
γ
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∫ ∫ ∫ ∫
−






−
+






−
+
×
t L L L
L
n
z
n
n
y
n
x y z
T
z
y
x
D
d
x
d
y
d
z
d
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0 0 0
,
,
,
1
1 τ
π
π
( ) ( ) ( ) ( ) ( )
( )
( )



+
+











∑
+
×
=
*
1
1
,
,
,
1
,
,
,
1
,
,
,
V
z
y
x
V
T
z
y
x
P
e
z
c
y
c
x
c
a
T
z
y
x
D
N
n
nC
n
n
n
nC
L
τ
ς
ξ
τ γ
γ
( )
( )
( ) ( )
( )
( ) ( )
[ ]
∑ ×






−
+






+
+



+
=
N
n
nC
n
x
n
n
a
x
c
n
L
x
s
x
V
z
y
x
V
V
z
y
x
V
V
z
y
x
V
1
2
*
2
2
*
1
2
*
2
2
1
,
,
,
,
,
,
1
,
,
,
π
τ
ς
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( ) ( )
[ ] ×
−






−
+
× 2
2
2
1
2
2 π
τ
π
τ
π
y
x
n
z
n
nC
n
n
n
z
x
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
e
z
c
y
s
x
c
L
L
( ) ( ) ( ) ( )
( )
( )
( )
∫ ∫ ∫ ∫ 


+
+











∑
+
×
=
t L L L N
n
nC
n
n
n
nC
x y z
V
z
y
x
V
T
z
y
x
P
e
z
c
y
c
x
c
a
0 0 0 0
2
*
2
2
1
,
,
,
1
,
,
,
1
τ
ς
ξ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ] ×
∑






−
+



+
=
N
n
n
x
n
n
n
n
nC
L x
c
n
L
x
s
x
z
s
y
c
x
c
n
a
T
z
y
x
D
V
z
y
x
V
1
*
1 1
,
,
,
,
,
,
π
τ
ς
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∑ ∫ ×






−
+
+






−
+
×
=
N
n
L
n
x
n
nC
n
y
n
x
x
c
n
L
x
s
x
d
x
d
y
d
z
d
e
y
c
n
L
y
s
y
1 0
1
1
π
τ
τ
π
( ) ( )
[ ] ( ) ( )
[ ] ( )
∫ ∫






−
+






−
+
×
y z
L L
n
z
n
n
y
n x
d
y
d
z
d
z
y
x
f
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0
,
,
1
1
π
π
.
As an example for γ=0 we obtain
( ) ( )
[ ] ( ) ( )
[ ] ( ) ( )
{
∫ ∫ ∫ +






−
+






−
+
=
x y z
L L L
n
n
y
n
n
y
n
nC x
s
x
y
d
z
d
z
y
x
f
z
c
n
L
z
s
z
y
c
n
L
y
s
y
a
0 0 0
,
,
1
1
π
π
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
6
( )
[ ] ( ) ( ) ( ) ( )
[ ] ( )







∫ ∫ ∫ ∫ ×






−
+



−
×
t L L L
L
n
y
n
n
n
x
n
x y z
T
z
y
x
D
y
c
n
L
y
s
y
y
c
x
s
n
x
d
n
L
x
c
0 0 0 0
,
,
,
1
2
2
1
π
π
( ) ( )
[ ] ( ) ( )
( ) ( )
×






+






+
+






−
+
×
T
z
y
x
P
V
z
y
x
V
V
z
y
x
V
z
c
n
L
z
s
z n
y
n
,
,
,
1
,
,
,
,
,
,
1
1 2
*
2
2
*
1 γ
ξ
τ
ς
τ
ς
π
( ) ( ) ( ) ( ) ( ) ( )
[ ] ( ) ( )×
∫ ∫ ∫ ∫






−
+
+
×
t L L L
n
n
n
y
n
n
nC
nC
n
x y z
z
c
y
s
x
c
n
L
x
s
x
x
c
e
d
e
x
d
y
d
z
d
z
c
0 0 0 0
2
1
π
τ
τ
τ
( ) ( )
[ ]
( )
( ) ( )
( )
×






+
+






+






−
+
× 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
1
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
z
c
n
L
z
s
z n
y
n
τ
ς
τ
ς
ξ
π γ
( ) ( ) ( ) ( ) ( )
[ ] ( ) ( )
{
∫ ∫ ∫ ×






−
+
+
×
t L L
n
n
n
x
n
n
nC
L
x y
y
s
y
c
x
c
n
L
x
s
x
x
c
e
d
x
d
y
d
z
d
T
z
y
x
D
0 0 0
1
,
,
,
π
τ
τ
( )
[ ] ( ) ( )
( )
( )
( )
∫ 


+
+






+



−
+
×
z
L
L
n
n
y
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D
z
s
y
c
n
L
y
0
2
*
2
2
,
,
,
1
,
,
,
1
,
,
,
2
1
τ
ς
ξ
π γ
( ) ( )
1
6
5
2
2
2
*
1
,
,
,
−




−






+ t
e
n
L
L
L
d
x
d
y
d
z
d
V
z
y
x
V
nC
z
z
z
π
τ
τ
ς .
For γ=1 one can obtain the following relation to determine required parameters
( ) ( ) ( ) ( )
∫ ∫ ∫
+
±
−
=
x y z
L L L
n
n
n
n
n
n
n
nC
x
d
y
d
z
d
z
y
x
f
z
c
y
c
x
c
a
0 0 0
2
,
,
4
2
α
β
α
β
,
where ( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫ ×






+
+
=
t L L L
n
n
n
nC
z
y
n
x y z
V
z
y
x
V
V
z
y
x
V
z
c
y
c
x
s
e
n
L
L
0 0 0 0
2
*
2
2
*
1
2
,
,
,
,
,
,
1
2
2
τ
ς
τ
ς
τ
π
ξ
α
( )
( )
( ) ( )
[ ] ( ) ( )
[ ] ×
+






−
+






−
+
×
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
y
c
n
L
y
s
y
T
z
y
x
P
T
z
y
x
D z
x
n
z
n
n
y
n
L
2
2
1
1
,
,
,
,
,
,
π
ξ
τ
π
π
( ) ( ) ( ) ( )
[ ] ( ) ( )
( )
( ) ( )
[ ] ×
∫ ∫ ∫ ∫






−
−






−
+
×
t L L L
n
z
n
L
n
n
x
n
n
nC
x y z
z
c
n
L
z
s
z
T
z
y
x
P
T
z
y
x
D
z
c
x
c
n
L
x
s
x
x
c
e
0 0 0 0
1
,
,
,
,
,
,
1
π
π
τ
( )
( )
( ) ( )
( )
( ) ×
+






+
+
×
n
L
L
d
x
d
y
d
y
s
z
d
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D y
x
n
L
2
2
*
2
2
*
1
2
2
,
,
,
,
,
,
1
,
,
,
,
,
,
π
ξ
τ
τ
ς
τ
ς
( ) ( ) ( ) ( ) ( )
( )
( ) ( )
( )
×
∫ ∫ ∫ ∫ 





+
+
×
t L L L
L
n
n
n
nC
x y z
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
T
z
y
x
D
z
s
y
c
x
c
e
0 0 0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
2
τ
ς
τ
ς
τ
( ) ( )
[ ] ( ) ( )
[ ] τ
π
π
d
x
d
y
d
z
d
y
c
n
L
y
s
y
x
c
n
L
x
s
x n
y
n
n
x
n






−
+






−
+
× 1
1 ,
( )×
∫
=
t
nC
z
y
n e
n
L
L
0
2
2
τ
π
β
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
7
( ) ( ) ( ) ( )
[ ] ( ) ( ) ( )
( )
∫ ∫ ∫ ×






+
+






−
+
×
x y z
L L L
n
n
y
n
n
n
V
z
y
x
V
V
z
y
x
V
z
c
y
c
n
L
y
s
y
y
c
x
s
0 0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
1
2
τ
ς
τ
ς
π
( ) ( ) ( )
[ ] ( ) ( ) ( )×
∫ ∫ ∫
+






−
+
×
t L L
n
n
nC
z
x
n
z
n
L
x y
y
s
x
c
e
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
0 0 0
2
2
2
1
,
,
, τ
π
τ
π
( ) ( )
[ ] ( ) ( ) ( ) ( )
( )
×
∫ 





+
+






−
+
×
z
L
n
L
n
x
n
V
z
y
x
V
V
z
y
x
V
z
c
T
z
y
x
D
x
c
n
L
x
s
x
0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
τ
ς
τ
ς
π
( ) ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
+






−
+
×
t L
n
x
n
nC
y
x
n
z
n
x
x
c
n
L
x
s
x
e
n
L
L
d
x
d
y
d
z
d
z
c
n
L
z
s
z
0 0
2
1
2
1
π
τ
π
τ
π
( ) ( ) ( )
[ ] ( ) ( ) ( )
( )
∫ ∫ ×






+
+






−
+
×
y z
L L
L
n
y
n
n
V
z
y
x
V
V
z
y
x
V
T
z
y
x
D
y
c
n
L
y
s
y
x
c
0 0
2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
1
τ
ς
τ
ς
π
( ) ( ) ( ) 6
5
2
2
2
2 n
t
e
L
L
L
d
x
d
y
d
y
c
z
d
z
s nC
z
y
x
n
n π
τ −
× .
The same approach could be used for calculation parameters an for different values of parameter
γ. However the relations are bulky and will not be presented in the paper. Advantage of the ap-
proach is absent of necessity to join dopant concentration on interfaces of heterostructure.
The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans-
form the differential equations to the following integro- differential form
( ) ( ) ( ) +
∫ ∫ ∫
∂
∂
=
∫ ∫ ∫
t y
L
z
L
I
z
y
x
L
y
L
z
L
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
I
T
w
v
x
D
L
L
z
y
u
d
v
d
w
d
t
w
v
u
I
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∫ ∫ ∫
∂
∂
+
x
L
y
L
z
L
V
I
z
y
x
t x
L
z
L
I
z
x x y z
x z
t
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
w
d
x
w
y
u
I
T
w
y
u
D
L
L
z
x
,
,
,
,
,
,
,
,
,
,
,
, ,
0
τ
τ
( ) ( ) ( ) ×
−
∫ ∫ ∫
∂
∂
+
×
z
y
x
t x
L
y
L
I
y
x
L
L
L
z
y
x
d
u
d
v
d
T
z
v
u
D
z
z
v
u
I
L
L
y
x
u
d
v
d
w
d
t
w
v
u
V
x y
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
×
x
L
y
L
z
L
I
z
y
x
x
L
y
L
z
L
I
I
x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
t
w
v
u
I
T
w
v
u
k ,
,
,
,
,
,
,
, 2
, (4a)
( ) ( ) ( ) +
∫ ∫ ∫
∂
∂
=
∫ ∫ ∫
t y
L
z
L
V
z
y
x
L
y
L
z
L
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
V
T
w
v
x
D
L
L
z
y
u
d
v
d
w
d
t
w
v
u
V
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
τ
( ) ( ) ( ) ×
∫ ∫ ∫
∂
∂
+
∫ ∫ ∫
∂
∂
+
t x
L
y
L
y
x
t x
L
z
L
V
z
x x y
x z z
z
v
u
V
L
L
y
x
d
u
d
w
d
x
w
y
u
V
T
w
y
u
D
L
L
z
x
0
0
,
,
,
,
,
,
,
,
,
τ
τ
τ
( ) ( ) ( ) ( ) −
∫ ∫ ∫
−
×
x
L
y
L
z
L
V
I
z
y
x
V
x y z
u
d
v
d
w
d
t
w
v
u
V
t
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
T
z
v
u
D ,
,
,
,
,
,
,
,
,
,
,
, ,
τ
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
−
x
L
y
L
z
L
V
z
y
x
x
L
y
L
z
L
V
V
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
t
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, 2
, .
We determine spatio-temporal distributions of concentrations of point defects as the same series
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
8
( ) ( ) ( ) ( ) ( )
∑
=
=
N
n
n
n
n
n
n t
e
z
c
y
c
x
c
a
t
z
y
x
1
0 ,
,
, ρ
ρ
ρ .
Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the
following results
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
=
∑
=
=
N
n
t y
L
z
L
I
n
n
nI
z
y
x
N
n
nI
n
n
n
nI
y z
v
d
w
d
T
w
v
x
D
z
c
y
c
a
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
,
,
,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −
∑ ∫ ∫ ∫
−
×
=
N
n
t x
L
z
L
I
n
n
nI
n
nI
z
y
x
n
nI
x z
d
u
d
w
d
T
w
y
u
D
z
c
x
c
e
y
s
a
L
L
L
z
x
x
s
d
e
1 0
,
,
, τ
τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∑ ∫ ∫ ∫
−
=
x
L
y
L
z
L
I
I
N
n
t x
L
y
L
I
n
n
nI
n
nI
z
y
x x y z
x y
T
v
v
u
k
d
u
d
v
d
T
z
v
u
D
y
c
x
c
e
z
s
a
L
L
L
y
x
,
,
,
,
,
, ,
1 0
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫ ∑
−





∑
×
=
=
x
L
y
L
z
L
N
n
n
n
n
nI
z
y
x
z
y
x
N
n
nI
n
n
n
nI
x y z
w
c
v
c
u
c
a
L
L
L
z
y
x
L
L
L
z
y
x
u
d
v
d
w
d
t
e
w
c
v
c
u
c
a
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∫ ∫ ∫
+
∑
×
=
x
L
y
L
z
L
I
N
n
V
I
nV
n
n
n
nV
nI
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
T
v
v
u
k
t
e
w
c
v
c
u
c
a
t
e ,
,
,
,
,
1
,
z
y
x L
L
L
z
y
x
×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
=
∑
=
=
N
n
t y
L
z
L
V
n
n
nV
z
y
x
N
n
nV
n
n
n
nV
y z
v
d
w
d
T
w
v
x
D
z
c
y
c
a
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
,
,
,
π
π
( ) ( ) ( ) ( ) ( ) ( ) ( ) −
∑ ∫ ∫ ∫
−
×
=
N
n
t x
L
z
L
V
n
n
nV
n
nV
z
y
x
n
nV
x z
d
u
d
w
d
T
w
y
u
D
z
c
x
c
e
y
s
a
L
L
L
z
x
x
s
d
e
1 0
,
,
, τ
τ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫
−
∑ ∫ ∫ ∫
−
=
x
L
y
L
z
L
V
V
N
n
t x
L
y
L
V
n
n
nV
n
nV
z
y
x x y z
x y
T
v
v
u
k
d
u
d
v
d
T
z
v
u
D
y
c
x
c
e
z
s
a
L
L
L
y
x
,
,
,
,
,
, ,
1 0
τ
τ
π
( ) ( ) ( ) ( ) ( ) ( ) ( )×
∫ ∫ ∫ ∑
−





∑
×
=
=
x
L
y
L
z
L
N
n
n
n
n
nI
z
y
x
z
y
x
N
n
nI
n
n
n
nV
x y z
w
c
v
c
u
c
a
L
L
L
z
y
x
L
L
L
z
y
x
u
d
v
d
w
d
t
e
w
c
v
c
u
c
a
1
2
1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∫ ∫ ∫
+
∑
×
=
x
L
y
L
z
L
V
N
n
V
I
nV
n
n
n
nV
nI
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
T
v
v
u
k
t
e
w
c
v
c
u
c
a
t
e ,
,
,
,
,
1
,
z
y
x L
L
L
z
y
x
× .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms
N. In the common case equations for the required coefficients could be written as
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
N
n
t L L
n
y
n
y
n
nI
x
N
n
nI
nI
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
n
a
L
t
e
n
a
L
L
L
1 0 0 0
2
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑ ∫ ∫ +
−
∫






−
+
×
=
N
n
t L
n
nI
y
L
nI
n
z
n
I
x
z
x
s
x
n
a
L
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
1 0 0
2
0
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( ) ( ) ( )
[ ] ( )
[ ]×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
z
n
z
I
n
x
x
y
c
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
x
c
n
L
L
0 0
2
1
1
2
2
2
,
,
,
1
2
π
π
( ) ( ) ( ) ( )
[ ] ( ) −
∫






−
+
+
×
z
L
nI
n
z
n
z
I
nI d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
d
e
x
d
y
d
0
1
2
2
2
,
,
, τ
τ
π
τ
τ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
9
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+






−
+
+
−
=
N
n
t L L
n
y
n
y
n
x
n
x
nI
z
x y
y
c
n
L
y
s
y
L
x
c
n
L
x
s
x
L
n
a
L 1 0 0 0
2
1
2
2
2
1
2
2
2
2
1
π
π
π
( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫



+
−
+
−
∫ −
×
=
N
n
L
n
x
x
nI
nI
L
nI
I
n
x
z
x
c
n
L
L
t
e
a
d
e
x
d
y
d
z
d
T
z
y
x
D
z
c
1 0
2
0
1
2
2
2
,
,
,
2
1
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫



+
−
+






−
+
+
+
y z
L L
n
z
z
I
I
n
y
n
y
n z
c
n
L
L
T
z
y
x
k
y
c
n
L
y
s
y
L
x
s
x
0 0
, 1
2
2
,
,
,
1
2
2
2
2
π
π
( )} ( ) ( ) ( ) ( )
[ ] {
∑ ∫ ∫ +






−
+
+
−
+
=
N
n
L L
y
n
x
n
x
nV
nI
nV
nI
n
x y
L
x
c
n
L
x
s
x
L
t
e
t
e
a
a
x
d
y
d
z
d
z
s
z
1 0 0
1
2
2
2
2
π
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫ ×






−
+
+



−
+
+
z
L
n
z
n
z
V
I
n
y
n z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
c
n
L
y
s
y
0
, 1
2
2
2
,
,
,
1
2
2
2
π
π
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∑ ∫ ∫ ∫






−
+






−
+
+
×
=
N
n
L L L
I
n
y
n
n
x
n
x y z
T
z
y
x
f
y
c
n
L
y
s
y
x
c
n
L
x
s
x
x
d
y
d
1 0 0 0
,
,
,
1
1
π
π
( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L n
z
n
z






−
+
+
× 1
2
2
2
π
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
N
n
t L L
n
y
n
y
n
nV
x
N
n
nV
nV
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
n
a
L
t
e
n
a
L
L
L
1 0 0 0
2
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑ ∫ ∫ +
−
∫






−
+
×
=
N
n
t L
n
nV
y
L
nV
n
z
n
V
x
z
x
s
x
n
a
L
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
1 0 0
2
0
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( ) ( ) ( )
[ ] ( )
[ ]×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
z
n
z
V
n
x
x
y
c
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
x
c
n
L
L
0 0
2
1
1
2
2
2
,
,
,
1
2
π
π
( ) ( ) ( ) ( )
[ ] ( ) −
∫






−
+
+
×
z
L
nV
n
z
n
z
V
nV
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
D
d
e
x
d
y
d
0
1
2
2
2
,
,
, τ
τ
π
τ
τ
( ) ( )
[ ] ( ) ( )
[ ] ×
∑ ∫ ∫ ∫






−
+
+






−
+
+
−
=
N
n
t L L
n
y
n
y
n
x
n
x
nV
z
x y
y
c
n
L
y
s
y
L
x
c
n
L
x
s
x
L
n
a
L 1 0 0 0
2
1
2
2
2
1
2
2
2
2
1
π
π
π
( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫



+
−
+
−
∫ −
×
=
N
n
L
n
x
x
nV
nV
L
nV
V
n
x
z
x
c
n
L
L
t
e
a
d
e
x
d
y
d
z
d
T
z
y
x
D
z
c
1 0
2
0
1
2
2
2
,
,
,
2
1
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫



+
−
+






−
+
+
+
y z
L L
n
z
z
V
V
n
y
n
y
n z
c
n
L
L
T
z
y
x
k
y
c
n
L
y
s
y
L
x
s
x
0 0
, 1
2
2
,
,
,
1
2
2
2
2
π
π
( )} ( ) ( ) ( ) ( )
[ ] {
∑ ∫ ∫ +






−
+
+
−
+
=
N
n
L L
y
n
x
n
x
nV
nI
nV
nI
n
x y
L
x
c
n
L
x
s
x
L
t
e
t
e
a
a
x
d
y
d
z
d
z
s
z
1 0 0
1
2
2
2
2
π
( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫ ×






−
+
+



−
+
+
z
L
n
z
n
z
V
I
n
y
n z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
c
n
L
y
s
y
0
, 1
2
2
2
,
,
,
1
2
2
2
π
π
( ) ( )
[ ] ( ) ( )
[ ] ( )×
∑ ∫ ∫ ∫






−
+






−
+
+
×
=
N
n
L L L
V
n
y
n
n
x
n
x y z
T
z
y
x
f
y
c
n
L
y
s
y
x
c
n
L
x
s
x
x
d
y
d
1 0 0 0
,
,
,
1
1
π
π
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
10
( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L n
z
n
z






−
+
+
× 1
2
2
2
π
.
In the final form relations for required parameters could be written as
( )







 −
+
−
+
±
+
−
=
A
y
b
y
b
A
b
b
A
b
a nI
nV
nI
2
3
4
2
3
4
3
4
4
4
λ
γ
,
nI
nI
nI
nI
nI
nI
nI
nV
a
a
a
a
χ
λ
δ
γ +
+
−
=
2
,
where ( ) ( ) ( ) ( )
[ ] ( )
{
∫ ∫ ∫ +
+






−
+
+
=
x y z
L L L
y
n
n
x
n
x
n
n L
y
s
y
x
c
n
L
x
s
x
L
T
z
y
x
k
t
e
0 0 0
, 2
1
2
2
2
,
,
,
2
π
γ ρ
ρ
ρ
ρ
( )
[ ] ( ) ( )
[ ] x
d
y
d
z
d
z
c
n
L
z
s
z
L
y
c
n
L
n
z
n
z
n
y






−
+
+



−
+ 1
2
2
2
1
2
2 π
π
, ( )×
∫
=
t
n
x
n e
n
L 0
2
2
1
τ
π
δ ρ
ρ
( ) ( )
[ ] ( ) ( )
[ ] ( ) [
∫ ∫ ∫ −






−
+






−
+
×
x y z
L L L
n
z
n
n
y
n y
d
z
d
T
z
y
x
D
z
c
n
L
z
s
z
y
c
n
L
y
s
y
0 0 0
1
,
,
,
1
2
1
2
ρ
π
π
( )] ( ) ( ) ( )
[ ] ( )
[ ] {
∫ ∫ ∫ ∫ +
−






−
+
+
+
−
t L L L
z
n
n
x
n
x
n
y
n
x y z
L
y
c
x
c
n
L
x
s
x
L
e
n
L
d
x
d
x
c
0 0 0 0
2
2
1
1
2
2
2
1
2
π
τ
π
τ ρ
( ) ( )
[ ] ( ) ( ) ( )
{
∫ ∫ +
+



−
+
+
t L
n
n
z
n
z
n
x
x
s
x
e
n
L
d
x
d
y
d
z
d
T
z
y
x
D
z
c
n
L
z
s
z
0 0
2
2
2
1
,
,
,
1
2
2
2 τ
π
τ
π
ρ
ρ
( )
[ ] ( ) ( )
[ ] ( )
[ ] ( ) ×
∫ ∫ −






−
+
+



−
+
+
y z
L L
n
n
y
n
y
n
x
x z
d
T
z
y
x
D
z
c
y
c
n
L
y
s
y
L
x
c
n
L
L
0 0
,
,
,
2
1
1
2
1
2 ρ
π
π
( )
t
e
n
L
L
L
d
x
d
y
d n
z
y
x
ρ
π
τ 6
5
2
2
2
−
× , ( ) ( )
[ ] ( )
[ ]
∫ ∫



+
−
+






−
+
=
x y
L L
n
y
y
n
x
n
nIV y
c
n
L
L
x
c
n
L
x
s
x
0 0
1
2
2
1
π
π
χ
( )} ( ) ( ) ( )
[ ] ( ) ( )
t
e
t
e
x
d
y
d
z
d
z
c
n
L
z
s
z
L
T
z
y
x
k
y
s
y nV
nI
L
n
z
n
z
V
I
n
z
∫






−
+
+
+
0
, 1
2
2
2
,
,
,
2
π
,
( ) ( )
[ ] ( ) ( )
[ ] ( ) ( )
[ ]
∫ ∫ ∫ ×






−
+






−
+






−
+
=
x y z
L L L
n
z
n
n
y
n
n
x
n
n z
c
n
L
z
s
z
y
c
n
L
y
s
y
x
c
n
L
x
s
x
0 0 0
1
1
1
π
π
π
λ ρ
( ) x
d
y
d
z
d
T
z
y
x
f ,
,
,
ρ
× , 2
2
4 nI
nI
nI
nV
b χ
γ
γ
γ −
= , nI
nI
nV
nI
nI
nI
nI
nV
b γ
χ
δ
χ
δ
δ
γ
γ −
−
= 2
3
2 ,
2
2
3
4
8 b
b
y
A −
+
= , ( ) 2
2
2
2 nI
nI
nV
nI
nI
nV
nI
nV
nI
nI
nV
b χ
λ
λ
δ
χ
δ
γ
γ
λ
δ
γ −
+
−
+
= , ×
= nI
b λ
2
1
nI
nI
nV
nI
nV
λ
χ
δ
δ
γ −
× ,
4
3
3 3
2
3 3
2
3b
b
q
p
q
q
p
q
y −
+
+
−
−
+
= , 2
4
2
3
4
2
9
3
b
b
b
b
p
−
= ,
( ) 3
4
2
4
1
3
2
3
3
54
27
9
2 b
b
b
b
b
b
q +
−
= .
We determine distributions of concentrations of simplest complexes of radiation defects in space
and time as the following functional series
( ) ( ) ( ) ( ) ( )
∑
=
Φ
=
Φ
N
n
n
n
n
n
n t
e
z
c
y
c
x
c
a
t
z
y
x
1
0 ,
,
, ρ
ρ
ρ .
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
11
Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs.
(6) to the following integro-differential form
( ) ( ) ( ) ×
∫ ∫ ∫
Φ
=
∫ ∫ ∫Φ Φ
t y
L
z
L
I
I
x
L
y
L
z
L
I
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( )
∫ ∫ ∫ ×
+
∫ ∫ ∫
Φ
+
× Φ
Φ
t x
L
y
L
I
y
x
t x
L
z
L
I
I
z
x
z
y x y
x z
T
z
v
u
D
L
L
y
x
d
u
d
w
d
y
w
y
u
T
w
y
u
D
L
L
z
x
L
L
z
y
0
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( ) −
∫ ∫ ∫
+
Φ
×
x
L
y
L
z
L
I
I
z
y
x
I
x y z
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
z
z
v
u
τ
τ
∂
τ
∂
,
,
,
,
,
,
,
,
, 2
, (6a)
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
− Φ
x
L
y
L
z
L
I
z
y
x
x
L
y
L
z
L
I
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, τ
( ) ( ) ( ) ×
∫ ∫ ∫
Φ
=
∫ ∫ ∫Φ Φ
t y
L
z
L
V
V
x
L
y
L
z
L
V
z
y
x y z
x y z
d
v
d
w
d
x
w
v
x
T
w
v
x
D
u
d
v
d
w
d
t
w
v
u
L
L
L
z
y
x
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( )
∫ ∫ ∫ ×
+
∫ ∫ ∫
Φ
+
× Φ
Φ
t x
L
y
L
V
y
x
t x
L
z
L
V
V
z
x
z
y x y
x z
T
z
v
u
D
L
L
y
x
d
u
d
w
d
y
w
y
u
T
w
y
u
D
L
L
z
x
L
L
z
y
0
0
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
( ) ( ) ( ) −
∫ ∫ ∫
+
Φ
×
x
L
y
L
z
L
V
V
z
y
x
V
x y z
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
d
u
d
v
d
z
z
v
u
τ
τ
∂
τ
∂
,
,
,
,
,
,
,
,
, 2
,
( ) ( ) ( )
∫ ∫ ∫
+
∫ ∫ ∫
− Φ
x
L
y
L
z
L
V
z
y
x
x
L
y
L
z
L
V
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
L
L
L
z
y
x
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, τ .
Substitution of the previously considered series in the Eqs.(6a) leads to the following form
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
=
∑
−
=
Φ
=
Φ
N
n
t y
L
z
L
n
n
nI
n
I
n
z
y
x
N
n
nI
n
n
n
I
n
y z
w
c
v
c
t
e
x
s
a
n
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
π
π
( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
N
n
t x
L
z
L
I
n
n
I
n
z
y
x
I
x z
d
u
d
w
d
T
w
v
u
D
w
c
u
c
a
L
L
L
z
x
d
v
d
w
d
T
w
v
x
D
1 0
,
,
,
,
,
, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) +
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
Φ
N
n
t x
L
y
L
I
n
n
I
n
n
I
n
z
y
x
I
n
n
x y
d
u
d
v
d
T
z
v
u
D
v
c
u
c
t
e
z
s
a
n
L
L
L
y
x
t
e
y
s
n
1 0
,
,
, τ
π
( ) ( ) ( ) ×
∫ ∫ ∫
+
∫ ∫ ∫
+ Φ
x
L
y
L
z
L
I
x
L
y
L
z
L
I
I
z
y
x x y z
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
,
,
,
,
,
,
,
, 2
, τ
( ) ( )
∫ ∫ ∫
−
×
x
L
y
L
z
L
I
z
y
x
z
y
x x y z
u
d
v
d
w
d
w
v
u
I
T
w
v
u
k
L
L
L
z
y
x
L
L
L
z
y
x
τ
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
=
∑
−
=
Φ
=
Φ
N
n
t y
L
z
L
n
n
nV
n
V
n
z
y
x
N
n
nV
n
n
n
V
n
y z
w
c
v
c
t
e
x
s
a
n
L
L
L
z
y
t
e
z
s
y
s
x
s
n
a
z
y
x
1 0
1
3
3
π
π
( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
N
n
t x
L
z
L
V
n
n
z
y
x
V
x z
d
u
d
w
d
T
w
v
u
D
w
c
u
c
n
L
L
L
z
x
d
v
d
w
d
T
w
v
x
D
1 0
,
,
,
,
,
, τ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
×
=
Φ
Φ
Φ
Φ
N
n
t x
L
y
L
V
n
n
V
n
n
z
y
x
V
n
n
V
n
x y
d
u
d
v
d
T
z
v
u
D
v
c
u
c
t
e
z
s
n
L
L
L
y
x
t
e
y
s
a
1 0
,
,
, τ
π
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
12
( ) ( ) ( ) ×
∫ ∫ ∫
+
∫ ∫ ∫
+
× Φ
Φ
x
L
y
L
z
L
V
x
L
y
L
z
L
V
V
z
y
x
V
n
x y z
x y z
u
d
v
d
w
d
w
v
u
f
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
a ,
,
,
,
,
,
,
, 2
,
τ
( ) ( )
∫ ∫ ∫
−
×
x
L
y
L
z
L
V
z
y
x
z
y
x x y z
u
d
v
d
w
d
w
v
u
V
T
w
v
u
k
L
L
L
z
y
x
L
L
L
z
y
x
τ
,
,
,
,
,
, .
We used orthogonality condition of functions of the considered series framework the heterostruc-
ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of
terms N. In the common case equations for the required coefficients could be written as
( ) ( )
[ ] ( ) ( )
[ ] ×
∑∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
Φ
Φ
N
n
t L L
n
y
n
y
n
x
N
n
I
n
I
n
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
L
t
e
n
a
L
L
L
1 0 0 0
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑∫ ∫ +
−
∫






−
+
×
=
Φ
Φ
Φ
N
n
t L
n
L
I
n
n
z
n
I
I
n
x
z
x
s
x
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
n
a
1 0 0
0
2
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
−



−
+
+ Φ
y z
L L
n
z
n
I
n
n
x
x x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
y
c
x
c
n
L
L
0 0
1
2
,
,
,
2
1
1
2
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ]
∑ ∫ ∫ ∫



+
−
+






−
+
−
×
=
Φ
Φ
Φ
N
n
t L L
n
y
n
n
x
n
I
n
x
y
I
n
I
n
x y
y
c
n
L
y
s
y
x
c
n
L
x
s
x
n
a
L
d
L
n
e
a
1 0 0 0
2
2
1
2
2
2
1
2
2
1
π
π
π
τ
τ
} ( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫ ∫



+
−
+
∫ −
+
=
Φ
Φ
Φ
Φ
N
n
t L
n
x
I
n
I
n
L
I
n
I
n
y
x
z
x
c
n
L
e
n
a
d
e
x
d
y
d
z
d
T
z
y
x
D
y
c
L
1 0 0
3
3
0
1
2
1
,
,
,
2
1
π
τ
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫



+
−
∫






−
+
+
z
y L
n
z
I
I
L
n
y
n
n z
c
n
L
T
z
y
x
k
t
z
y
x
I
y
c
n
L
y
s
y
x
s
x
0
,
2
0
1
2
,
,
,
,
,
,
1
2 π
π
( )} ( ) ( ) ( )
[ ] ( )
[ ]
∑ ∫ ∫ ∫



+
−






−
+
−
+
=
Φ
Φ
N
n
t L L
n
y
n
x
n
I
n
I
n
n
x y
y
c
n
L
x
c
n
L
x
s
x
e
n
a
x
d
y
d
z
d
z
s
z
1 0 0 0
3
3
1
2
1
2
1
π
π
τ
π
( )} ( ) ( )
[ ] ( ) ( ) ×
∑
+
∫






−
+
+
=
Φ
N
n
I
n
L
I
n
z
n
n
n
a
x
d
y
d
z
d
t
z
y
x
I
T
z
y
x
k
z
c
n
L
z
s
z
y
s
y
z
1
3
3
0
1
,
,
,
,
,
,
1
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ ∫ ∫ ∫



+
−






−
+






−
+
× Φ
t L L L
n
z
n
y
n
n
x
n
I
n
x y z
z
c
n
L
y
c
n
L
y
s
y
x
c
n
L
x
s
x
e
0 0 0 0
1
2
1
2
1
2 π
π
π
τ
( )} ( ) x
d
y
d
z
d
z
y
x
f
z
s
z I
n
,
,
Φ
+
( ) ( )
[ ] ( ) ( )
[ ] ×
∑∫ ∫ ∫






−
+
+
−
−
=
∑
−
=
=
Φ
Φ
N
n
t L L
n
y
n
y
n
x
N
n
V
n
V
n
z
y
x
x y
y
c
n
L
y
s
y
L
x
c
L
t
e
n
a
L
L
L
1 0 0 0
1
6
5
2
2
2
1
2
2
2
2
1
2
1
π
π
π
( ) ( ) ( )
[ ] ( ) ( )
{
∑∫ ∫ +
−
∫






−
+
×
=
Φ
Φ
Φ
N
n
t L
n
L
V
n
n
z
n
V
V
n
x
z
x
s
x
d
e
x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
n
a
1 0 0
0
2
2
2
1
1
2
,
,
,
π
τ
τ
π
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
∫ ∫






−
+
−



−
+
+ Φ
y z
L L
n
z
n
V
n
n
x
x x
d
y
d
z
d
z
c
n
L
z
s
z
T
z
y
x
D
y
c
x
c
n
L
L
0 0
1
2
,
,
,
2
1
1
2
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ]
∑ ∫ ∫ ∫



+
−
+






−
+
−
×
=
Φ
Φ
Φ
N
n
t L L
n
y
n
n
x
n
V
n
x
y
V
n
V
n
x y
y
c
n
L
y
s
y
x
c
n
L
x
s
x
n
a
L
d
L
n
e
a
1 0 0 0
2
2
1
2
2
2
1
2
2
1
π
π
π
τ
τ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
13
} ( )
[ ] ( ) ( ) ( ) ( )
[ ]
∑ ∫ ∫



+
−
+
∫ −
+
=
Φ
Φ
Φ
Φ
N
n
t L
n
x
V
n
V
n
L
V
n
V
n
y
x
z
x
c
n
L
e
n
a
d
e
x
d
y
d
z
d
T
z
y
x
D
y
c
L
1 0 0
3
3
0
1
2
1
,
,
,
2
1
π
τ
π
τ
τ
( )} ( ) ( )
[ ] ( ) ( ) ( )
[ ]
∫



+
−
∫






−
+
+
z
y L
n
z
V
V
L
n
y
n
n z
c
n
L
T
z
y
x
k
t
z
y
x
V
y
c
n
L
y
s
y
x
s
x
0
,
2
0
1
2
,
,
,
,
,
,
1
2 π
π
( )} ( ) ( ) ( )
[ ] ( )
[ ]
∑ ∫ ∫ ∫



+
−






−
+
−
+
=
Φ
Φ
N
n
t L L
n
y
n
x
n
V
n
V
n
n
x y
y
c
n
L
x
c
n
L
x
s
x
e
n
a
x
d
y
d
z
d
z
s
z
1 0 0 0
3
3
1
2
1
2
1
π
π
τ
π
( )} ( ) ( )
[ ] ( ) ( ) ×
∑
+
∫






−
+
+
=
Φ
N
n
V
n
L
V
n
z
n
n
n
a
x
d
y
d
z
d
t
z
y
x
V
T
z
y
x
k
z
c
n
L
z
s
z
y
s
y
z
1
3
3
0
1
,
,
,
,
,
,
1
2 π
π
( ) ( ) ( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ ∫ ∫ ∫



+
−






−
+






−
+
× Φ
t L L L
n
z
n
y
n
n
x
n
V
n
x y z
z
c
n
L
y
c
n
L
y
s
y
x
c
n
L
x
s
x
e
0 0 0 0
1
2
1
2
1
2 π
π
π
τ
( )} ( ) x
d
y
d
z
d
z
y
x
f
z
s
z V
n
,
,
Φ
+ .
3. DISCUSSION
In this section we compare spatial distributions of concentrations of dopant in a heterostructure
with overlayer and without the overlayer. Fig. 2 shows result of the above comparison. One can
find from the figure, that using the overlayer gives a possibility to manufacture more shallow p-n-
junction in comparison with p-n-junction in the heterostructure without the overlayer. At the same
time analysis of redistribution of radiation defects shows, that implantation of ions of dopant
through the overlayer gives a possibility to decrease quantity of radiation defects in the epitaxial
layer.
Fig.2. Distributions of concentration of implanted dopant in the considered heterostructure.
Curves 1 and 3 describe distributions of concentration of implanted dopant in the heterostructure
with overlayer. Curve 1 describes distribution of concentration of implanted dopant for the case,
when dopant diffusion coefficient in the overlayer is larger, than in the epitaxial layer. Curve 2
describes distribution of concentration of implanted dopant for the case, when dopant diffusion
coefficient in the overlayer is smaller, than in the epitaxial layer. Curve 2 describes distribution of
concentration of implanted dopant in the heterostructure without overlayer.
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
14
It should be noted, that manufacturing the considered implanted-junction rectifier near interface
between layers of heterostructure gives a possibility to increase sharpness of the p-n-junction and
at the same time to increase homogeneity of concentration of the dopant in the enriched area [15-
19]. In this situation it is practicably to choose appropriate thickness of epitaxial layer.
4. CONCLUSIONS
In this paper we analyzed distributions of concentration of implanted dopant in heterostructure
with overlayer and without overlayer during manufacture an implanted -heterojunction rectifier.
We determine conditions, which correspond to decrease depth of the p-n-junction.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russia, educa-
tional fellowship for scientific research of Government of Nizhny Novgorod region of Russia and
educational fellowship for scientific research of Nizhny Novgorod State University of Architec-
ture and Civil Engineering.
REFERENCES
[1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[2] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4
(3). P. 171-176 (2009).
[3] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale
technologies. Nano. Vol. 4 (4). P. 233-238 (2009).
[4] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS
0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014).
[5] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs
pnp δ-doped heterojunction bipolar transistor Semiconductors. Vol. 43 (7). P. 971-974 (2009).
[6] J.Y. Choi, Ch. Park. A Thyristor-Only Input ESD Protection Scheme for CMOS RF ICs. Circuits and
Systems. Vol. 2 (3). P. 170-182 (2011).
[7] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int.
J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008).
[8] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,
R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-
sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).
[9] R. Laajimi, M. Masmoudi. High-Performance CMOS Current Mirrors: Application to Linear Volt-
age-to-Current Converter Used for Two-Stage Operational Amplifier. Circuits and Systems. Vol. 3
(4). P. 311-316 (2012).
[10] A. Ghorbani, A. Ghanaatian. A Novel High CMRR, Low Power and Low Voltage COS with QFG.
Circuits and Systems. Vol. 3 (3). P. 263-268 (2012).
[11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[12] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[13] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicin. Rev. Mod.
Phys. Vol. 61 (2). P. 289-388 (1989).
[14] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976).
[15] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[16] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016
15
[17] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. J. Comp. Theor. Nanoscience. Vol. 12 (6). P. 976-990 (2014).
[18] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[19] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors without
p-n-junctions. Int. J. Mod. Phys. B. Vol. 28 (27). P. 1450190-1-1450190-17 (2014).
AUTHORS
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical
Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of
Nizhny Novgorod State University. He has 135 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)”
in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny
Novgorod State University. She has 90 published papers in area of her researches.

More Related Content

PDF
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
PDF
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
PDF
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
PDF
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
PDF
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
PDF
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
PDF
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
PDF
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES

Similar to Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers (20)

PDF
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
PDF
Optimization of technological process to decrease dimensions of circuits xor ...
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
PDF
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
PDF
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
PDF
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
PDF
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
PDF
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
PDF
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
PDF
Decreasing of quantity of radiation de fects in
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
PDF
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
PDF
02_AJMS_196_19_RA.pdf
PDF
02_AJMS_196_19_RA.pdf
PDF
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
Optimization of technological process to decrease dimensions of circuits xor ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
Decreasing of quantity of radiation de fects in
On Increasing of Integration Rate of Elements of an Operational Transresistan...
On Increasing of Integration Rate of Elements of an Operational Transresistan...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
Ad

Recently uploaded (20)

PDF
PPT on Performance Review to get promotions
PDF
Well-logging-methods_new................
PDF
Digital Logic Computer Design lecture notes
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Welding lecture in detail for understanding
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPT on Performance Review to get promotions
Well-logging-methods_new................
Digital Logic Computer Design lecture notes
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Mechanical Engineering MATERIALS Selection
CH1 Production IntroductoryConcepts.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Welding lecture in detail for understanding
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
R24 SURVEYING LAB MANUAL for civil enggi
Embodied AI: Ushering in the Next Era of Intelligent Systems
Ad

Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers

  • 1. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 DOI : 10.5121/ijitmc.2016.4101 1 INFLUENCE OF OVERLAYERS ON DEPTH OF IM- PLANTED-HETEROJUNCTION RECTIFIERS E.L. Pankratov1 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we compare distributions of concentrations of dopants in an implanted-junction rectifiers in a heterostructures with an overlayer and without the overlayer. Conditions for decreasing of depth of the considered p-n-junction have been formulated. KEYWORDS Heterostructures; implanted-junction rectifiers: overlayers. 1. INTRODUCTION In the present time integration rate of elements of integrated circuits intensively increasing. At the same time dimensions of the above elements decreases. To increase integration rate of elements of integrated circuits and to increase dimensions of the same elements are have been elaborated different approaches [1-10]. In the present paper we consider a heterostructure with two layers: a substrate and an epitaxial layer. The heterostructure could include into itself a third layer: an overlayer (see Figs. 1). We assume, that type of conductivity of the substrate (n or p) is known. The epitaxial layer has been doped by ion implantation to manufacture required type of conduc- tivity (p or n). Farther we consider annealing of radiation defects. Main aim of the present paper is comparison two ways of ion doping of the epitaxial layer: ion doping of epitaxial layer and ion doping of epitaxial layer through the overlayer. Fig. 1a. Heterostructure, which consist of a substrate and an epitaxial layer with initial distribution of implanted dopant
  • 2. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 2 x D(x) D1 D2 0 L a fC(x) D0 Substrate Epitaxial layer b Overlayer Fig. 1b. Heterostructure, which consist of a substrate, an epitaxial layer and an overlayer with initial distri- bution of implanted dopant 2. METHOD OF SOLUTION To solve our aim we determine spatio-temporal distributions of concentrations of dopants. We calculate the required distributions by solving the second Fick's law in the following form [1] ( ) ( ) ( ) ( )       +       +       = z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C C C C ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , . (1) Boundary and initial conditions for the equations are ( ) 0 , , , 0 = ∂ ∂ = x x t z y x C , ( ) 0 , , , = ∂ ∂ = x L x x t z y x C , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x C , ( ) 0 , , , = ∂ ∂ = y L x y t z y x C , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x C , ( ) 0 , , , = ∂ ∂ = z L x z t z y x C , C(x,y,z,0)=f (x,y,z). (2) Here the function C(x,y,z,t) describes the distribution of concentration of dopant in space and time. DС describes distribution the dopant diffusion coefficient in space and as a function of tem- perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinate in heterostructure, temperature of annealing and concentrations of dopant and radiation defects could be written as [11-13] ( ) ( ) ( ) ( ) ( ) ( )         + +       + = 2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D L C ς ς ξ γ γ . (3) Here function DL (x,y,z,T) describes dependences of dopant diffusion coefficient on coordinate and temperature of annealing T. Function P (x,y,z,T) describes the same dependences of the limit of solubility of dopant. The parameter γ is integer and usually could be varying in the following
  • 3. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 3 interval γ ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver- age) with each atom of dopant. Ref.[11] describes more detailed information about dependence of dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen- tration of radiation vacancies described by the function V (x,y,z,t). The equilibrium distribution of concentration of vacancies has been denoted as V* . It is known, that doping of materials by diffu- sion did not leads to radiation damage of materials. In this situation ζ1=ζ2=0. We determine spa- tio-temporal distributions of concentrations of radiation defects by solving the following system of equations [12,13] ( ) ( ) ( ) ( ) ( ) ( ) × −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ T z y x k y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I I I , , , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V t z y x I T z y x k z t z y x I T z y x D z t z y x I V I I , , , , , , , , , , , , , , , , , , , 2 −       ∂ ∂ ∂ ∂ + × (4) ( ) ( ) ( ) ( ) ( ) ( )× −       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ T z y x k y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V V V , , , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V t z y x I T z y x k z t z y x V T z y x D z t z y x V V I V , , , , , , , , , , , , , , , , , , , 2 −       ∂ ∂ ∂ ∂ + × . Boundary and initial conditions for these equations are ( ) 0 , , , 0 = ∂ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ ∂ = z L z z t z y x ρ , ρ (x,y,z,0)=fρ (x,y,z). (5) Here ρ =I,V. We denote spatio-temporal distribution of concentration of radiation interstitials as I (x,y,z,t). Dependences of the diffusion coefficients of point radiation defects on coordinate and temperature have been denoted as Dρ(x,y,z,T). The quadric on concentrations terms of Eqs. (4) describes generation divacancies and diinterstitials. Parameter of recombination of point radiation defects and parameters of generation of simplest complexes of point radiation defects have been denoted as the following functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T), respectively. Now let us calculate distributions of concentrations of divacancies ΦV(x,y,z,t) and diinterstitials ΦI(x,y,z,t) in space and time by solving the following system of equations [12,13] ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z I I I I I , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z V V V V V , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ . Boundary and initial conditions for these equations are
  • 4. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 4 ( ) 0 , , , 0 = ∂ Φ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = z L z z t z y x ρ , ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z). (7) The functions DΦρ(x,y,z,T) describe dependences of the diffusion coefficients of the above com- plexes of radiation defects on coordinate and temperature. The functions kI(x,y,z,T) and kV(x,y,z, T) describe the parameters of decay of these complexes on coordinate and temperature. To determine spatio-temporal distribution of concentration of dopant we transform the Eq.(1) to the following integro-differential form ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫       + + = ∫ ∫ ∫ t y L z L L x L y L z L z y x y z x y z V w v x V V w v x V T w v x D u d v d w d t w v u C L L L z y x 0 2 * 2 2 * 1 , , , , , , 1 , , , , , , τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫       + +       + × t x L z L L z y x z T z y x P w y u C T w y u D L L z y d x w v x C T w v x P w v x C 0 , , , , , , 1 , , , , , , , , , , , , 1 γ γ γ γ τ ξ τ ∂ τ ∂ τ ξ ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ +       + + × t x L y L L z x x y T z v u D L L z x d y w y u C V w y u V V w y u V 0 2 * 2 2 * 1 , , , , , , , , , , , , 1 τ ∂ τ ∂ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) +       +       + + × y x L L y x d z z v u C T z y x P z v u C V z v u V V z v u V τ ∂ τ ∂ τ ξ τ ς τ ς γ γ , , , , , , , , , 1 , , , , , , 1 2 * 2 2 * 1 ( ) ∫ ∫ ∫ + x L y L z L z y x x y z u d v d w d w v u f L L L z y x , , . (1a) Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [14]. To use the ap- proach we consider solution of the Eq.(1a) as the following series ( ) ( ) ( ) ( ) ( ) ∑ = = N n nC n n n nC t e z c y c x c a t z y x C 0 0 , , , . Here ( ) ( ) [ ] 2 2 2 0 2 2 exp − − − + + − = z y x C nC L L L t D n t e π , cn(χ)=cos(π nχ/Lχ). Number of terms N in the series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ=0) and averaged dopant diffusion coefficient D0. Substitution of the series into Eq.(1a) leads to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫    ×      ∑ + − = ∑ = = t y L z L N n nC n n n nC z y N n nC n n n C y z e w c v c x c a L L z y t e z s y s x s n a z y x 0 1 1 3 2 1 γ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑       + +    × = N n n n nC L v c x s a T w v x D V w v x V V w v x V T w v x P 1 2 * 2 2 * 1 , , , , , , , , , 1 , , , τ ς τ ς ξ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×            ∑ + − × = t x L z L N m mC m m m mC z x nC n x z T w y u P e w c y c u c a L L z x d e w c n 0 1 , , , 1 γ γ ξ τ τ τ
  • 5. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑       + + × = τ τ τ ς τ ς d e w c y s u c n V w y u V V w y u V T w y u D N n nC n n n L 1 2 * 2 2 * 1 , , , , , , 1 , , , ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫            ∑ + − × = t x L y L N n nC n n n nC L y x nC x y e z c v c u c a T z v u P T z v u D L L y x a 0 1 , , , 1 , , , γ γ τ ξ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × + ∑       + + × = z y x N n nC n n n nC L L L z y x d e z s v c u c a n V z v u V V z v u V τ τ τ ς τ ς 1 2 * 2 2 * 1 , , , , , , 1 ( ) ∫ ∫ ∫ × x L y L z L x y z u d v d w d w v u f , , , where sn(χ)=sin(πnχ/Lχ). We used condition of orthogonality to determine coefficients an in the considered series. The coefficients an could be calculated for any quantity of terms N. In the common case the relations could be written as ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫    ×      ∑ + − = ∑ − = = t L L L N n nC n n n nC L z y N n nC nC z y x x y z e z c y c x c a T z y x D L L t e n a L L L 0 0 0 0 1 2 1 6 5 2 2 2 1 , , , 2 γ τ π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑       + +    × = N n nC n n n nC e z c y c x s n a V z y x V V z y x V T z y x P 1 2 * 2 2 * 1 2 , , , , , , 1 , , , τ τ ς τ ς ξ γ ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∫ ∫ ∫ ∫ −       − +       − + × t L L L L n z n n y n x y z T z y x D d x d y d z d z c n L z s z y c n L y s y 0 0 0 0 , , , 1 1 τ π π ( ) ( ) ( ) ( ) ( ) ( ) ( )    + +            ∑ + × = * 1 1 , , , 1 , , , 1 , , , V z y x V T z y x P e z c y c x c a T z y x D N n nC n n n nC L τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ∑ ×       − +       + +    + = N n nC n x n n a x c n L x s x V z y x V V z y x V V z y x V 1 2 * 2 2 * 1 2 * 2 2 1 , , , , , , 1 , , , π τ ς τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) [ ] × −       − + × 2 2 2 1 2 2 π τ π τ π y x n z n nC n n n z x L L d x d y d z d z c n L z s z e z c y s x c L L ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫    + +            ∑ + × = t L L L N n nC n n n nC x y z V z y x V T z y x P e z c y c x c a 0 0 0 0 2 * 2 2 1 , , , 1 , , , 1 τ ς ξ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] × ∑       − +    + = N n n x n n n n nC L x c n L x s x z s y c x c n a T z y x D V z y x V 1 * 1 1 , , , , , , π τ ς ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∑ ∫ ×       − + +       − + × = N n L n x n nC n y n x x c n L x s x d x d y d z d e y c n L y s y 1 0 1 1 π τ τ π ( ) ( ) [ ] ( ) ( ) [ ] ( ) ∫ ∫       − +       − + × y z L L n z n n y n x d y d z d z y x f z c n L z s z y c n L y s y 0 0 , , 1 1 π π . As an example for γ=0 we obtain ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) { ∫ ∫ ∫ +       − +       − + = x y z L L L n n y n n y n nC x s x y d z d z y x f z c n L z s z y c n L y s y a 0 0 0 , , 1 1 π π
  • 6. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 6 ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( )        ∫ ∫ ∫ ∫ ×       − +    − × t L L L L n y n n n x n x y z T z y x D y c n L y s y y c x s n x d n L x c 0 0 0 0 , , , 1 2 2 1 π π ( ) ( ) [ ] ( ) ( ) ( ) ( ) ×       +       + +       − + × T z y x P V z y x V V z y x V z c n L z s z n y n , , , 1 , , , , , , 1 1 2 * 2 2 * 1 γ ξ τ ς τ ς π ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )× ∫ ∫ ∫ ∫       − + + × t L L L n n n y n n nC nC n x y z z c y s x c n L x s x x c e d e x d y d z d z c 0 0 0 0 2 1 π τ τ τ ( ) ( ) [ ] ( ) ( ) ( ) ( ) ×       + +       +       − + × 2 * 2 2 * 1 , , , , , , 1 , , , 1 1 V z y x V V z y x V T z y x P z c n L z s z n y n τ ς τ ς ξ π γ ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) { ∫ ∫ ∫ ×       − + + × t L L n n n x n n nC L x y y s y c x c n L x s x x c e d x d y d z d T z y x D 0 0 0 1 , , , π τ τ ( ) [ ] ( ) ( ) ( ) ( ) ( ) ∫    + +       +    − + × z L L n n y V z y x V T z y x P T z y x D z s y c n L y 0 2 * 2 2 , , , 1 , , , 1 , , , 2 1 τ ς ξ π γ ( ) ( ) 1 6 5 2 2 2 * 1 , , , −     −       + t e n L L L d x d y d z d V z y x V nC z z z π τ τ ς . For γ=1 one can obtain the following relation to determine required parameters ( ) ( ) ( ) ( ) ∫ ∫ ∫ + ± − = x y z L L L n n n n n n n nC x d y d z d z y x f z c y c x c a 0 0 0 2 , , 4 2 α β α β , where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ×       + + = t L L L n n n nC z y n x y z V z y x V V z y x V z c y c x s e n L L 0 0 0 0 2 * 2 2 * 1 2 , , , , , , 1 2 2 τ ς τ ς τ π ξ α ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] × +       − +       − + × n L L d x d y d z d z c n L z s z y c n L y s y T z y x P T z y x D z x n z n n y n L 2 2 1 1 , , , , , , π ξ τ π π ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] × ∫ ∫ ∫ ∫       − −       − + × t L L L n z n L n n x n n nC x y z z c n L z s z T z y x P T z y x D z c x c n L x s x x c e 0 0 0 0 1 , , , , , , 1 π π τ ( ) ( ) ( ) ( ) ( ) ( ) × +       + + × n L L d x d y d y s z d V z y x V V z y x V T z y x P T z y x D y x n L 2 2 * 2 2 * 1 2 2 , , , , , , 1 , , , , , , π ξ τ τ ς τ ς ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ ∫       + + × t L L L L n n n nC x y z V z y x V V z y x V T z y x P T z y x D z s y c x c e 0 0 0 0 2 * 2 2 * 1 , , , , , , 1 , , , , , , 2 τ ς τ ς τ ( ) ( ) [ ] ( ) ( ) [ ] τ π π d x d y d z d y c n L y s y x c n L x s x n y n n x n       − +       − + × 1 1 , ( )× ∫ = t nC z y n e n L L 0 2 2 τ π β
  • 7. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 7 ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ∫ ∫ ∫ ×       + +       − + × x y z L L L n n y n n n V z y x V V z y x V z c y c n L y s y y c x s 0 0 0 2 * 2 2 * 1 , , , , , , 1 1 2 τ ς τ ς π ( ) ( ) ( ) [ ] ( ) ( ) ( )× ∫ ∫ ∫ +       − + × t L L n n nC z x n z n L x y y s x c e n L L d x d y d z d z c n L z s z T z y x D 0 0 0 2 2 2 1 , , , τ π τ π ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) × ∫       + +       − + × z L n L n x n V z y x V V z y x V z c T z y x D x c n L x s x 0 2 * 2 2 * 1 , , , , , , 1 , , , 1 τ ς τ ς π ( ) ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + +       − + × t L n x n nC y x n z n x x c n L x s x e n L L d x d y d z d z c n L z s z 0 0 2 1 2 1 π τ π τ π ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ∫ ∫ ×       + +       − + × y z L L L n y n n V z y x V V z y x V T z y x D y c n L y s y x c 0 0 2 * 2 2 * 1 , , , , , , 1 , , , 1 τ ς τ ς π ( ) ( ) ( ) 6 5 2 2 2 2 n t e L L L d x d y d y c z d z s nC z y x n n π τ − × . The same approach could be used for calculation parameters an for different values of parameter γ. However the relations are bulky and will not be presented in the paper. Advantage of the ap- proach is absent of necessity to join dopant concentration on interfaces of heterostructure. The same Bubnov-Galerkin approach has been used for solution the Eqs.(4). Previously we trans- form the differential equations to the following integro- differential form ( ) ( ) ( ) + ∫ ∫ ∫ ∂ ∂ = ∫ ∫ ∫ t y L z L I z y x L y L z L z y x y z x y z d v d w d x w v x I T w v x D L L z y u d v d w d t w v u I L L L z y x 0 , , , , , , , , , τ τ ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∫ ∫ ∫ ∂ ∂ + x L y L z L V I z y x t x L z L I z x x y z x z t w v u I T w v u k L L L z y x d u d w d x w y u I T w y u D L L z x , , , , , , , , , , , , , 0 τ τ ( ) ( ) ( ) × − ∫ ∫ ∫ ∂ ∂ + × z y x t x L y L I y x L L L z y x d u d v d T z v u D z z v u I L L y x u d v d w d t w v u V x y 0 , , , , , , , , , τ τ ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ × x L y L z L I z y x x L y L z L I I x y z x y z u d v d w d w v u f L L L z y x u d v d w d t w v u I T w v u k , , , , , , , , 2 , (4a) ( ) ( ) ( ) + ∫ ∫ ∫ ∂ ∂ = ∫ ∫ ∫ t y L z L V z y x L y L z L z y x y z x y z d v d w d x w v x V T w v x D L L z y u d v d w d t w v u V L L L z y x 0 , , , , , , , , , τ τ ( ) ( ) ( ) × ∫ ∫ ∫ ∂ ∂ + ∫ ∫ ∫ ∂ ∂ + t x L y L y x t x L z L V z x x y x z z z v u V L L y x d u d w d x w y u V T w y u D L L z x 0 0 , , , , , , , , , τ τ τ ( ) ( ) ( ) ( ) − ∫ ∫ ∫ − × x L y L z L V I z y x V x y z u d v d w d t w v u V t w v u I T w v u k L L L z y x d u d v d T z v u D , , , , , , , , , , , , , τ ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − x L y L z L V z y x x L y L z L V V z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d t w v u V T w v u k L L L z y x , , , , , , , , 2 , . We determine spatio-temporal distributions of concentrations of point defects as the same series
  • 8. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 8 ( ) ( ) ( ) ( ) ( ) ∑ = = N n n n n n n t e z c y c x c a t z y x 1 0 , , , ρ ρ ρ . Parameters anρ should be determined in future. Substitution of the series into Eqs.(4a) leads to the following results ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − = ∑ = = N n t y L z L I n n nI z y x N n nI n n n nI y z v d w d T w v x D z c y c a L L L z y t e z s y s x s n a z y x 1 0 1 3 3 , , , π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∑ ∫ ∫ ∫ − × = N n t x L z L I n n nI n nI z y x n nI x z d u d w d T w y u D z c x c e y s a L L L z x x s d e 1 0 , , , τ τ π τ τ ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∑ ∫ ∫ ∫ − = x L y L z L I I N n t x L y L I n n nI n nI z y x x y z x y T v v u k d u d v d T z v u D y c x c e z s a L L L y x , , , , , , , 1 0 τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ ∑ −      ∑ × = = x L y L z L N n n n n nI z y x z y x N n nI n n n nI x y z w c v c u c a L L L z y x L L L z y x u d v d w d t e w c v c u c a 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ + ∑ × = x L y L z L I N n V I nV n n n nV nI x y z u d v d w d w v u f u d v d w d T v v u k t e w c v c u c a t e , , , , , 1 , z y x L L L z y x × ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − = ∑ = = N n t y L z L V n n nV z y x N n nV n n n nV y z v d w d T w v x D z c y c a L L L z y t e z s y s x s n a z y x 1 0 1 3 3 , , , π π ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∑ ∫ ∫ ∫ − × = N n t x L z L V n n nV n nV z y x n nV x z d u d w d T w y u D z c x c e y s a L L L z x x s d e 1 0 , , , τ τ π τ τ ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ − ∑ ∫ ∫ ∫ − = x L y L z L V V N n t x L y L V n n nV n nV z y x x y z x y T v v u k d u d v d T z v u D y c x c e z s a L L L y x , , , , , , , 1 0 τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∫ ∫ ∫ ∑ −      ∑ × = = x L y L z L N n n n n nI z y x z y x N n nI n n n nV x y z w c v c u c a L L L z y x L L L z y x u d v d w d t e w c v c u c a 1 2 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ + ∑ × = x L y L z L V N n V I nV n n n nV nI x y z u d v d w d w v u f u d v d w d T v v u k t e w c v c u c a t e , , , , , 1 , z y x L L L z y x × . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anρ. The coefficients an could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + + − − = ∑ − = = N n t L L n y n y n nI x N n nI nI z y x x y y c n L y s y L x c n a L t e n a L L L 1 0 0 0 2 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑ ∫ ∫ + − ∫       − + × = N n t L n nI y L nI n z n I x z x s x n a L d e x d y d z d z c n L z s z T z y x D 1 0 0 2 0 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ]× ∫ ∫ −       − + +    − + + y z L L n n z n z I n x x y c z d z c n L z s z L T z y x D x c n L L 0 0 2 1 1 2 2 2 , , , 1 2 π π ( ) ( ) ( ) ( ) [ ] ( ) − ∫       − + + × z L nI n z n z I nI d e x d y d z d z c n L z s z L T z y x D d e x d y d 0 1 2 2 2 , , , τ τ π τ τ
  • 9. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 9 ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + +       − + + − = N n t L L n y n y n x n x nI z x y y c n L y s y L x c n L x s x L n a L 1 0 0 0 2 1 2 2 2 1 2 2 2 2 1 π π π ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫    + − + − ∫ − × = N n L n x x nI nI L nI I n x z x c n L L t e a d e x d y d z d T z y x D z c 1 0 2 0 1 2 2 2 , , , 2 1 π τ τ ( )} ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫    + − +       − + + + y z L L n z z I I n y n y n z c n L L T z y x k y c n L y s y L x s x 0 0 , 1 2 2 , , , 1 2 2 2 2 π π ( )} ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ +       − + + − + = N n L L y n x n x nV nI nV nI n x y L x c n L x s x L t e t e a a x d y d z d z s z 1 0 0 1 2 2 2 2 π ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫ ×       − + +    − + + z L n z n z V I n y n z d z c n L z s z L T z y x k y c n L y s y 0 , 1 2 2 2 , , , 1 2 2 2 π π ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∑ ∫ ∫ ∫       − +       − + + × = N n L L L I n y n n x n x y z T z y x f y c n L y s y x c n L x s x x d y d 1 0 0 0 , , , 1 1 π π ( ) ( ) [ ] x d y d z d z c n L z s z L n z n z       − + + × 1 2 2 2 π ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + + − − = ∑ − = = N n t L L n y n y n nV x N n nV nV z y x x y y c n L y s y L x c n a L t e n a L L L 1 0 0 0 2 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑ ∫ ∫ + − ∫       − + × = N n t L n nV y L nV n z n V x z x s x n a L d e x d y d z d z c n L z s z T z y x D 1 0 0 2 0 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) ( ) ( ) [ ] ( ) [ ]× ∫ ∫ −       − + +    − + + y z L L n n z n z V n x x y c z d z c n L z s z L T z y x D x c n L L 0 0 2 1 1 2 2 2 , , , 1 2 π π ( ) ( ) ( ) ( ) [ ] ( ) − ∫       − + + × z L nV n z n z V nV d e x d y d z d z c n L z s z L T z y x D d e x d y d 0 1 2 2 2 , , , τ τ π τ τ ( ) ( ) [ ] ( ) ( ) [ ] × ∑ ∫ ∫ ∫       − + +       − + + − = N n t L L n y n y n x n x nV z x y y c n L y s y L x c n L x s x L n a L 1 0 0 0 2 1 2 2 2 1 2 2 2 2 1 π π π ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫    + − + − ∫ − × = N n L n x x nV nV L nV V n x z x c n L L t e a d e x d y d z d T z y x D z c 1 0 2 0 1 2 2 2 , , , 2 1 π τ τ ( )} ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫    + − +       − + + + y z L L n z z V V n y n y n z c n L L T z y x k y c n L y s y L x s x 0 0 , 1 2 2 , , , 1 2 2 2 2 π π ( )} ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ +       − + + − + = N n L L y n x n x nV nI nV nI n x y L x c n L x s x L t e t e a a x d y d z d z s z 1 0 0 1 2 2 2 2 π ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫ ×       − + +    − + + z L n z n z V I n y n z d z c n L z s z L T z y x k y c n L y s y 0 , 1 2 2 2 , , , 1 2 2 2 π π ( ) ( ) [ ] ( ) ( ) [ ] ( )× ∑ ∫ ∫ ∫       − +       − + + × = N n L L L V n y n n x n x y z T z y x f y c n L y s y x c n L x s x x d y d 1 0 0 0 , , , 1 1 π π
  • 10. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 10 ( ) ( ) [ ] x d y d z d z c n L z s z L n z n z       − + + × 1 2 2 2 π . In the final form relations for required parameters could be written as ( )         − + − + ± + − = A y b y b A b b A b a nI nV nI 2 3 4 2 3 4 3 4 4 4 λ γ , nI nI nI nI nI nI nI nV a a a a χ λ δ γ + + − = 2 , where ( ) ( ) ( ) ( ) [ ] ( ) { ∫ ∫ ∫ + +       − + + = x y z L L L y n n x n x n n L y s y x c n L x s x L T z y x k t e 0 0 0 , 2 1 2 2 2 , , , 2 π γ ρ ρ ρ ρ ( ) [ ] ( ) ( ) [ ] x d y d z d z c n L z s z L y c n L n z n z n y       − + +    − + 1 2 2 2 1 2 2 π π , ( )× ∫ = t n x n e n L 0 2 2 1 τ π δ ρ ρ ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ∫ ∫ ∫ −       − +       − + × x y z L L L n z n n y n y d z d T z y x D z c n L z s z y c n L y s y 0 0 0 1 , , , 1 2 1 2 ρ π π ( )] ( ) ( ) ( ) [ ] ( ) [ ] { ∫ ∫ ∫ ∫ + −       − + + + − t L L L z n n x n x n y n x y z L y c x c n L x s x L e n L d x d x c 0 0 0 0 2 2 1 1 2 2 2 1 2 π τ π τ ρ ( ) ( ) [ ] ( ) ( ) ( ) { ∫ ∫ + +    − + + t L n n z n z n x x s x e n L d x d y d z d T z y x D z c n L z s z 0 0 2 2 2 1 , , , 1 2 2 2 τ π τ π ρ ρ ( ) [ ] ( ) ( ) [ ] ( ) [ ] ( ) × ∫ ∫ −       − + +    − + + y z L L n n y n y n x x z d T z y x D z c y c n L y s y L x c n L L 0 0 , , , 2 1 1 2 1 2 ρ π π ( ) t e n L L L d x d y d n z y x ρ π τ 6 5 2 2 2 − × , ( ) ( ) [ ] ( ) [ ] ∫ ∫    + − +       − + = x y L L n y y n x n nIV y c n L L x c n L x s x 0 0 1 2 2 1 π π χ ( )} ( ) ( ) ( ) [ ] ( ) ( ) t e t e x d y d z d z c n L z s z L T z y x k y s y nV nI L n z n z V I n z ∫       − + + + 0 , 1 2 2 2 , , , 2 π , ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ∫ ∫ ∫ ×       − +       − +       − + = x y z L L L n z n n y n n x n n z c n L z s z y c n L y s y x c n L x s x 0 0 0 1 1 1 π π π λ ρ ( ) x d y d z d T z y x f , , , ρ × , 2 2 4 nI nI nI nV b χ γ γ γ − = , nI nI nV nI nI nI nI nV b γ χ δ χ δ δ γ γ − − = 2 3 2 , 2 2 3 4 8 b b y A − + = , ( ) 2 2 2 2 nI nI nV nI nI nV nI nV nI nI nV b χ λ λ δ χ δ γ γ λ δ γ − + − + = , × = nI b λ 2 1 nI nI nV nI nV λ χ δ δ γ − × , 4 3 3 3 2 3 3 2 3b b q p q q p q y − + + − − + = , 2 4 2 3 4 2 9 3 b b b b p − = , ( ) 3 4 2 4 1 3 2 3 3 54 27 9 2 b b b b b b q + − = . We determine distributions of concentrations of simplest complexes of radiation defects in space and time as the following functional series ( ) ( ) ( ) ( ) ( ) ∑ = Φ = Φ N n n n n n n t e z c y c x c a t z y x 1 0 , , , ρ ρ ρ .
  • 11. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 11 Here anΦρ are the coefficients, which should be determined. Let us previously transform the Eqs. (6) to the following integro-differential form ( ) ( ) ( ) × ∫ ∫ ∫ Φ = ∫ ∫ ∫Φ Φ t y L z L I I x L y L z L I z y x y z x y z d v d w d x w v x T w v x D u d v d w d t w v u L L L z y x 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) ∫ ∫ ∫ × + ∫ ∫ ∫ Φ + × Φ Φ t x L y L I y x t x L z L I I z x z y x y x z T z v u D L L y x d u d w d y w y u T w y u D L L z x L L z y 0 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) − ∫ ∫ ∫ + Φ × x L y L z L I I z y x I x y z u d v d w d w v u I T w v u k L L L z y x d u d v d z z v u τ τ ∂ τ ∂ , , , , , , , , , 2 , (6a) ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − Φ x L y L z L I z y x x L y L z L I z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d w v u I T w v u k L L L z y x , , , , , , , , τ ( ) ( ) ( ) × ∫ ∫ ∫ Φ = ∫ ∫ ∫Φ Φ t y L z L V V x L y L z L V z y x y z x y z d v d w d x w v x T w v x D u d v d w d t w v u L L L z y x 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) ∫ ∫ ∫ × + ∫ ∫ ∫ Φ + × Φ Φ t x L y L V y x t x L z L V V z x z y x y x z T z v u D L L y x d u d w d y w y u T w y u D L L z x L L z y 0 0 , , , , , , , , , τ ∂ τ ∂ ( ) ( ) ( ) − ∫ ∫ ∫ + Φ × x L y L z L V V z y x V x y z u d v d w d w v u V T w v u k L L L z y x d u d v d z z v u τ τ ∂ τ ∂ , , , , , , , , , 2 , ( ) ( ) ( ) ∫ ∫ ∫ + ∫ ∫ ∫ − Φ x L y L z L V z y x x L y L z L V z y x x y z x y z u d v d w d w v u f L L L z y x u d v d w d w v u V T w v u k L L L z y x , , , , , , , , τ . Substitution of the previously considered series in the Eqs.(6a) leads to the following form ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − = ∑ − = Φ = Φ N n t y L z L n n nI n I n z y x N n nI n n n I n y z w c v c t e x s a n L L L z y t e z s y s x s n a z y x 1 0 1 3 3 π π ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ Φ N n t x L z L I n n I n z y x I x z d u d w d T w v u D w c u c a L L L z x d v d w d T w v x D 1 0 , , , , , , τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) + ∑ ∫ ∫ ∫ − × = Φ Φ Φ Φ N n t x L y L I n n I n n I n z y x I n n x y d u d v d T z v u D v c u c t e z s a n L L L y x t e y s n 1 0 , , , τ π ( ) ( ) ( ) × ∫ ∫ ∫ + ∫ ∫ ∫ + Φ x L y L z L I x L y L z L I I z y x x y z x y z u d v d w d w v u f u d v d w d w v u I T w v u k L L L z y x , , , , , , , , 2 , τ ( ) ( ) ∫ ∫ ∫ − × x L y L z L I z y x z y x x y z u d v d w d w v u I T w v u k L L L z y x L L L z y x τ , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − = ∑ − = Φ = Φ N n t y L z L n n nV n V n z y x N n nV n n n V n y z w c v c t e x s a n L L L z y t e z s y s x s n a z y x 1 0 1 3 3 π π ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ N n t x L z L V n n z y x V x z d u d w d T w v u D w c u c n L L L z x d v d w d T w v x D 1 0 , , , , , , τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − × = Φ Φ Φ Φ N n t x L y L V n n V n n z y x V n n V n x y d u d v d T z v u D v c u c t e z s n L L L y x t e y s a 1 0 , , , τ π
  • 12. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 12 ( ) ( ) ( ) × ∫ ∫ ∫ + ∫ ∫ ∫ + × Φ Φ x L y L z L V x L y L z L V V z y x V n x y z x y z u d v d w d w v u f u d v d w d w v u V T w v u k L L L z y x a , , , , , , , , 2 , τ ( ) ( ) ∫ ∫ ∫ − × x L y L z L V z y x z y x x y z u d v d w d w v u V T w v u k L L L z y x L L L z y x τ , , , , , , . We used orthogonality condition of functions of the considered series framework the heterostruc- ture to calculate coefficients anΦρ. The coefficients anΦρ could be calculated for any quantity of terms N. In the common case equations for the required coefficients could be written as ( ) ( ) [ ] ( ) ( ) [ ] × ∑∫ ∫ ∫       − + + − − = ∑ − = = Φ Φ N n t L L n y n y n x N n I n I n z y x x y y c n L y s y L x c L t e n a L L L 1 0 0 0 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑∫ ∫ + − ∫       − + × = Φ Φ Φ N n t L n L I n n z n I I n x z x s x d e x d y d z d z c n L z s z T z y x D n a 1 0 0 0 2 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + −    − + + Φ y z L L n z n I n n x x x d y d z d z c n L z s z T z y x D y c x c n L L 0 0 1 2 , , , 2 1 1 2 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ∑ ∫ ∫ ∫    + − +       − + − × = Φ Φ Φ N n t L L n y n n x n I n x y I n I n x y y c n L y s y x c n L x s x n a L d L n e a 1 0 0 0 2 2 1 2 2 2 1 2 2 1 π π π τ τ } ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫ ∫    + − + ∫ − + = Φ Φ Φ Φ N n t L n x I n I n L I n I n y x z x c n L e n a d e x d y d z d T z y x D y c L 1 0 0 3 3 0 1 2 1 , , , 2 1 π τ π τ τ ( )} ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫    + − ∫       − + + z y L n z I I L n y n n z c n L T z y x k t z y x I y c n L y s y x s x 0 , 2 0 1 2 , , , , , , 1 2 π π ( )} ( ) ( ) ( ) [ ] ( ) [ ] ∑ ∫ ∫ ∫    + −       − + − + = Φ Φ N n t L L n y n x n I n I n n x y y c n L x c n L x s x e n a x d y d z d z s z 1 0 0 0 3 3 1 2 1 2 1 π π τ π ( )} ( ) ( ) [ ] ( ) ( ) × ∑ + ∫       − + + = Φ N n I n L I n z n n n a x d y d z d t z y x I T z y x k z c n L z s z y s y z 1 3 3 0 1 , , , , , , 1 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ ∫ ∫ ∫    + −       − +       − + × Φ t L L L n z n y n n x n I n x y z z c n L y c n L y s y x c n L x s x e 0 0 0 0 1 2 1 2 1 2 π π π τ ( )} ( ) x d y d z d z y x f z s z I n , , Φ + ( ) ( ) [ ] ( ) ( ) [ ] × ∑∫ ∫ ∫       − + + − − = ∑ − = = Φ Φ N n t L L n y n y n x N n V n V n z y x x y y c n L y s y L x c L t e n a L L L 1 0 0 0 1 6 5 2 2 2 1 2 2 2 2 1 2 1 π π π ( ) ( ) ( ) [ ] ( ) ( ) { ∑∫ ∫ + − ∫       − + × = Φ Φ Φ N n t L n L V n n z n V V n x z x s x d e x d y d z d z c n L z s z T z y x D n a 1 0 0 0 2 2 2 1 1 2 , , , π τ τ π ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × ∫ ∫       − + −    − + + Φ y z L L n z n V n n x x x d y d z d z c n L z s z T z y x D y c x c n L L 0 0 1 2 , , , 2 1 1 2 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ∑ ∫ ∫ ∫    + − +       − + − × = Φ Φ Φ N n t L L n y n n x n V n x y V n V n x y y c n L y s y x c n L x s x n a L d L n e a 1 0 0 0 2 2 1 2 2 2 1 2 2 1 π π π τ τ
  • 13. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 13 } ( ) [ ] ( ) ( ) ( ) ( ) [ ] ∑ ∫ ∫    + − + ∫ − + = Φ Φ Φ Φ N n t L n x V n V n L V n V n y x z x c n L e n a d e x d y d z d T z y x D y c L 1 0 0 3 3 0 1 2 1 , , , 2 1 π τ π τ τ ( )} ( ) ( ) [ ] ( ) ( ) ( ) [ ] ∫    + − ∫       − + + z y L n z V V L n y n n z c n L T z y x k t z y x V y c n L y s y x s x 0 , 2 0 1 2 , , , , , , 1 2 π π ( )} ( ) ( ) ( ) [ ] ( ) [ ] ∑ ∫ ∫ ∫    + −       − + − + = Φ Φ N n t L L n y n x n V n V n n x y y c n L x c n L x s x e n a x d y d z d z s z 1 0 0 0 3 3 1 2 1 2 1 π π τ π ( )} ( ) ( ) [ ] ( ) ( ) × ∑ + ∫       − + + = Φ N n V n L V n z n n n a x d y d z d t z y x V T z y x k z c n L z s z y s y z 1 3 3 0 1 , , , , , , 1 2 π π ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ ∫ ∫ ∫    + −       − +       − + × Φ t L L L n z n y n n x n V n x y z z c n L y c n L y s y x c n L x s x e 0 0 0 0 1 2 1 2 1 2 π π π τ ( )} ( ) x d y d z d z y x f z s z V n , , Φ + . 3. DISCUSSION In this section we compare spatial distributions of concentrations of dopant in a heterostructure with overlayer and without the overlayer. Fig. 2 shows result of the above comparison. One can find from the figure, that using the overlayer gives a possibility to manufacture more shallow p-n- junction in comparison with p-n-junction in the heterostructure without the overlayer. At the same time analysis of redistribution of radiation defects shows, that implantation of ions of dopant through the overlayer gives a possibility to decrease quantity of radiation defects in the epitaxial layer. Fig.2. Distributions of concentration of implanted dopant in the considered heterostructure. Curves 1 and 3 describe distributions of concentration of implanted dopant in the heterostructure with overlayer. Curve 1 describes distribution of concentration of implanted dopant for the case, when dopant diffusion coefficient in the overlayer is larger, than in the epitaxial layer. Curve 2 describes distribution of concentration of implanted dopant for the case, when dopant diffusion coefficient in the overlayer is smaller, than in the epitaxial layer. Curve 2 describes distribution of concentration of implanted dopant in the heterostructure without overlayer.
  • 14. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 14 It should be noted, that manufacturing the considered implanted-junction rectifier near interface between layers of heterostructure gives a possibility to increase sharpness of the p-n-junction and at the same time to increase homogeneity of concentration of the dopant in the enriched area [15- 19]. In this situation it is practicably to choose appropriate thickness of epitaxial layer. 4. CONCLUSIONS In this paper we analyzed distributions of concentration of implanted dopant in heterostructure with overlayer and without overlayer during manufacture an implanted -heterojunction rectifier. We determine conditions, which correspond to decrease depth of the p-n-junction. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russia, educa- tional fellowship for scientific research of Government of Nizhny Novgorod region of Russia and educational fellowship for scientific research of Nizhny Novgorod State University of Architec- ture and Civil Engineering. REFERENCES [1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [2] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3). P. 171-176 (2009). [3] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. Vol. 4 (4). P. 233-238 (2009). [4] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS 0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014). [5] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor Semiconductors. Vol. 43 (7). P. 971-974 (2009). [6] J.Y. Choi, Ch. Park. A Thyristor-Only Input ESD Protection Scheme for CMOS RF ICs. Circuits and Systems. Vol. 2 (3). P. 170-182 (2011). [7] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int. J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008). [8] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy- sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013). [9] R. Laajimi, M. Masmoudi. High-Performance CMOS Current Mirrors: Application to Linear Volt- age-to-Current Converter Used for Two-Stage Operational Amplifier. Circuits and Systems. Vol. 3 (4). P. 311-316 (2012). [10] A. Ghorbani, A. Ghanaatian. A Novel High CMRR, Low Power and Low Voltage COS with QFG. Circuits and Systems. Vol. 3 (3). P. 263-268 (2012). [11] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [12] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [13] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicin. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989). [14] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations ("Science", Moscow, 1976). [15] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [16] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
  • 15. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.1, February 2016 15 [17] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. J. Comp. Theor. Nanoscience. Vol. 12 (6). P. 976-990 (2014). [18] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [19] E.L. Pankratov, E.A. Bulaeva. An approach to decrease dimensions of field-effect transistors without p-n-junctions. Int. J. Mod. Phys. B. Vol. 28 (27). P. 1450190-1-1450190-17 (2014). AUTHORS Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny Novgorod State University. She has 90 published papers in area of her researches.