SlideShare a Scribd company logo
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
DOI : 10.14810/ijrap.2014.3205 55
AN APPROACH TO OPTIMIZE REGIMES OF
MANUFACTURING OF COMPLEMENTARY
HORIZONTAL FIELD-EFFECT TRANSISTOR
E.L. Pankratov1
and E.A. Bulaeva 2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we consider nonlinear model to describe manufacturing complementary horizontal field-effect
heterotransistor. Based on analytical solution of the considered boundary problems some recommendations
have been formulated to optimize technological processes.
KEYWORDS
Horizontal field-effect transistor, modelling of manufacturing of transistor, recommendations for
optimisation of manufacturing of transistor
1. INTRODUCTION
In the present time it is intensively increasing degree of integration of elements of integrated
circuits [1-8]. At the same time it is obtaining decreasing of dimensions of the elements. To
decrease dimensions of elements of integrated circuits it is traditionally using some approaches.
Two of them are laser and microwave types of annealing of dopants and/or radiation defects
during manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors [9-15]. Another
way to increase degree of integration of elements of integrated circuits is using of inhomogeneity
of heterostructures on the basis of which integrated circuits are manufactured [13-19]. However
in this case it is practicably to optimize annealing of dopant and/or radiation defects. It is known,
that distribution of concentrations of dopants in elements of integrated circuits and their discrete
analogs will be changed under influence of radiation processing (for example, during ion
implantation) [20]. Because of this to decrease dimensions of elements of integrated circuits and
their discrete it is attracted an interest radiation processing of materials [21,22].
In this paper we consider manufacturing of complementary field-effect heterotransistor. Structure
of the heterotransistor is presented on the Fig. 1. The heterostructure consist of a substrate and
epitaxial layer. The epitaxial layer has several sections, which have been manufactured by using
another materials. Some dopants have been infused or implanted in the sections to manufacture
required types of conductivity (p or n). Farther we consider annealing of dopant (for doping by
diffusion) and/or radiation defects (during ion doping). Main aim of the present paper we
analyzed dynamics of redistribution of dopant and radiation defects to formulate conditions,
which correspond to manufacture more thin heterotransistor with smaller dimensions into another
dimensions.
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
56
Substrate
Drain Source
Source Drain
Gate Gate
p p n n
Fig.1. Heterostructure with a substrate and epitaxial layer with several sections
2. METHOD OF SOLUTION
To solve our aims we determine spatio-temporal distribution of concentration of dopant. We
determine the distributions by solving the second Fick’s law [1,3-5]
( ) ( ) ( ) ( )






+






+






=
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C
C
C
C
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
(1)
with boundary and initial conditions
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= y
L
x
y
t
z
y
x
C
, (2)
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= z
L
x
z
t
z
y
x
C
, C(x,y,z,0)=f(x,y,z).
Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; T is the temperature
of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends
on properties of materials in layers of heterostructure, speed of heating and cooling of hetero-
structure (with account Arrhenius law). Dependences of dopant diffusion coefficient on
parameters could be approximated by the following relation [23-25]
( ) ( )
( )
( ) ( )
( ) 







+
+






+
= 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D L
C ς
ς
ξ γ
γ
, (3)
where DL (x,y,z,T) is the spatial (due to inhomogeneity of heterostructure) and temperature (due to
Arrhenius law) dependences of dopant diffusion coefficient; P (x,y,z, T) is the limit of solubility
of dopant; parameter γ depends on properties of materials and could be integer in the following
interval γ ∈[1,3] [23]; V(x,y,z,t) is the spatio-temporal distribution of concentration of vacancies;
V*
is the equilibrium distribution of concentration of vacancies. Concentrational depen-dence of
dopant diffusion coefficient has been discussed in details in the Ref. [23]. It should be noted that
doping of heterostructure by diffusion did not leads to generation of radiation damage and ζ1=ζ2=
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
57
0. Spatio-temporal distributions of concentrations of point radiation defects we determine by
solving the following system equations [24,25]
( ) ( ) ( ) ( ) ( ) +






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
(4)
( ) ( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
I
I
V
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
, −
−






∂
∂
∂
∂
+
( ) ( ) ( ) ( ) ( ) +






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
V
V
V
I
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
, −
−






∂
∂
∂
∂
+
with initial
ρ(x,y,z,0)=fρ (x,y,z) (5a)
and boundary conditions
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= y
L
y
y
t
z
y
x
ρ
,
( ) 0
,
,
,
0
=
∂
∂
=
z
z
t
z
y
x
ρ
,
( ) 0
,
,
,
=
∂
∂
= z
L
z
z
t
z
y
x
ρ
. (5b)
Here ρ =I,V; I (x,y,z,t) are the spatio-temporal distributions of concentrations of radiation
interstitials and radiation vacancies; Dρ(x,y,z,T) are the diffusion coefficients of the interstitials
and vacancies; terms V2
(x,y,z,t) and I2
(x,y,z,t) correspond to generation of divacancies and
diinterstitials, respectively; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) are parameters of
recombination of point defects and generation of their complexes, respectively.
Spatio-temporal distributions of concentrations of divacansies ΦV (x,y,z,t) and diinterstitials ΦI
(x,y,z,t) we determine by solution the following system of equations [24,25]
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
(6)
( ) ( ) ( ) ( ) ( ) +





 Φ
+





 Φ
=
Φ
Φ
Φ
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
z
t
z
y
x
T
z
y
x
D
z
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+





 Φ
+ Φ
∂
∂
∂
∂
with boundary and initial conditions
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
58
( )
0
,
,
,
0
=
∂
Φ
∂
=
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= x
L
x
x
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= y
L
y
y
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
z
z
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= z
L
z
z
t
z
y
x
ρ
, ΦI(x,y,z,0)=fΦI (x,y,z), ΦV(x,y,z,0)=fΦV (x,y,z). (7)
Here DΦI(x,y,z,T) and DΦV(x,y,z,T) are diffusion coefficients of complexes of point radiation
defects; kI(x,y,z,T) and kV (x,y,z,T) are parameters of decay of complexes of point radiation
defects.
To determine spatio-temporal distributions of concentrations of point radiation defects we used
recently elaborated approach [16,19,22]. Framework the approach we transform approximations
of diffusion coefficients of point radiation defects to the following form:
Dρ(x,y,z,T)=D0ρ[1+ερgρ(x,y,z,T)], where D0ρ are the average values of the diffusion coefficients,
0≤ερ< 1, |gρ(x,y,z,T)|≤1, ρ =I,V. We used the same transformation for approximations of
parameters of recombination of point radiation defects and generation of their complexes:
kI,V(x,y,z,T)=k0I,V[1+εI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)= k0I,I[1+εI,I gI,I(x,y,z,T)] и kV,V(x,y,z,T) = k0V,V [1+
εV,V gV,V(x,y,z,T)], where k0ρ1,ρ2 are the appropriate average values, 0≤εI,V< 1, 0≤εI,I < 1, 0≤εV,V<1, |
gI,V(x,y,z,T)|≤1, | gI,I(x,y,z,T)| ≤1, |gV,V(x,y,z,T)|≤1. Let us introduce the following dimensionless
variables: χ = x/Lx, η = y/Ly, φ = z/Lz, ( ) ( ) *
,
,
,
,
,
,
~
I
t
z
y
x
I
t
z
y
x
I = , ( ) ( ) *
,
,
,
,
,
,
~
V
t
z
y
x
V
t
z
y
x
V = ,
2
0
0 L
t
D
D V
I
=
ϑ , V
I
V
I D
D
k
L 0
0
,
0
2
=
ω , V
I D
D
k
L 0
0
,
0
2
ρ
ρ
ρ =
Ω . The introduction leads to
modification of Eqs.(4) and conditions (5)
( ) ( )
[ ] ( ) ( )
[ ]





×
+
∂
∂
+






∂
∂
+
∂
∂
=
∂
∂
T
g
I
T
g
D
D
D
I
I
I
I
I
V
I
I
,
,
,
1
,
,
,
~
,
,
,
1
,
,
,
~
0
0
0
φ
η
χ
ε
η
χ
ϑ
φ
η
χ
φ
η
χ
ε
χ
ϑ
ϑ
φ
η
χ
( ) ( )
[ ] ( ) ( ) ×
−






∂
∂
+
∂
∂
+



∂
∂
× ϑ
φ
η
χ
η
ϑ
φ
η
χ
φ
η
χ
ε
φ
φ
ϑ
φ
η
χ
,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
0
0
0
0
0
0
I
I
T
g
D
D
D
D
D
D
I
I
I
V
I
I
V
I
I
( )
[ ] ( ) ( ) ( )
[ ]
T
g
I
V
T
g I
I
I
I
I
V
I
V
I ,
,
,
1
,
,
,
~
,
,
,
~
,
,
,
1 ,
,
2
,
, φ
η
χ
ε
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε
ω +
Ω
−
+
× (8)
( )
( )
[ ] ( )
( )
[ ]





×
+
∂
∂
+










∂
∂
+
∂
∂
=
∂
∂
T
g
V
T
g
D
D
D
V
V
V
V
V
V
I
V
,
,
,
1
,
,
,
~
,
,
,
1
,
,
,
~
0
0
0
φ
η
χ
ε
η
χ
ϑ
φ
η
χ
φ
η
χ
ε
χ
ϑ
ϑ
φ
η
χ
( ) ( )
[ ] ( ) ( ) ×
−










∂
∂
+
∂
∂
+





∂
∂
× ϑ
φ
η
χ
η
ϑ
φ
η
χ
φ
η
χ
ε
φ
φ
ϑ
φ
η
χ
,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
0
0
0
0
0
0
I
V
T
g
D
D
D
D
D
D
V
V
V
V
I
V
V
I
V
( )
[ ] ( ) ( ) ( )
[ ]
T
g
V
V
T
g V
V
V
V
V
V
I
V
I ,
,
,
1
,
,
,
~
,
,
,
~
,
,
,
1 ,
,
2
,
, φ
η
χ
ε
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε
ω +
Ω
−
+
×
( ) 0
,
,
,
~
0
=
∂
∂
=
χ
χ
ϑ
φ
η
χ
ρ
,
( ) 0
,
,
,
~
1
=
∂
∂
=
χ
χ
ϑ
φ
η
χ
ρ
,
( ) 0
,
,
,
~
0
=
∂
∂
=
η
η
ϑ
φ
η
χ
ρ
,
( ) 0
,
,
,
~
1
=
∂
∂
=
η
η
ϑ
φ
η
χ
ρ
,
( ) 0
,
,
,
~
0
=
∂
∂
=
φ
φ
ϑ
φ
η
χ
ρ
,
( ) 0
,
,
,
~
1
=
∂
∂
=
φ
φ
ϑ
φ
η
χ
ρ
, ( )
( )
*
,
,
,
,
,
,
~
ρ
ϑ
φ
η
χ
ϑ
φ
η
χ
ρ ρ
f
= . (9)
We determine solution of Eqs.(8) and conditions (9) by approach from Refs. [16,19,22], i.e. as the
following power series
( ) ( )
∑ ∑ ∑Ω
=
∞
=
∞
=
∞
=
0 0 0
,
,
,
~
,
,
,
~
i j k
ijk
k
j
i
ϑ
φ
η
χ
ρ
ω
ε
ϑ
φ
η
χ
ρ ρ
ρ . (10)
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
59
Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain
equations for initial-order approximations of concentrations of point radiation defects
( )
ϑ
φ
η
χ ,
,
,
~
000
I and ( )
ϑ
φ
η
χ ,
,
,
~
000
V and corrections for them ( )
ϑ
φ
η
χ ,
,
,
~
ijk
I and ( )
ϑ
φ
η
χ ,
,
,
~
ijk
V , i ≥1,
j ≥1, k ≥1. The equations and conditions for them are presented in the Appendix. Solutions of
them have been obtained by standard approaches (see, for example, [26,27]). The solutions have
been obtained in the Appendix.
Farther we determine spatio-temporal distributions of concentrations of complexes of point
radiation defects. To obtain the concentrations we transform approximations of diffusion
coefficients to the following form: DΦρ(x,y,z,T)=D0Φρ[1+εΦρgΦρ(x,y,z,T)], where D0Φρ are the
average values of diffusion coefficients. After this transformation the Eqs.(6) takes the form
( ) ( )
[ ] ( )
( )
[ ] ( ) ( )
[ ]
( ) ( ) ( ) ( ) ( )
( ) ( )
[ ] ( )
( )
[ ] ( ) ( )
[ ]
( ) ( ) ( ) ( ) ( )





















−
+



Φ
×



×
+
+





 Φ
+
×
×
+





 Φ
+
=
Φ
−
+



Φ
×



×
+
+





 Φ
+
×
×
+





 Φ
+
=
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
Φ
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
D
z
t
z
y
x
T
z
y
x
g
z
y
t
z
y
x
T
z
y
x
g
y
D
x
t
z
y
x
T
z
y
x
g
x
D
t
t
z
y
x
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
D
z
t
z
y
x
T
z
y
x
g
z
y
t
z
y
x
T
z
y
x
g
y
D
x
t
z
y
x
T
z
y
x
g
x
D
t
t
z
y
x
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
2
,
0
0
0
2
,
0
0
0
∂
∂
ε
∂
∂
∂
∂
ε
∂
∂
∂
∂
ε
∂
∂
∂
∂
∂
∂
ε
∂
∂
∂
∂
ε
∂
∂
∂
∂
ε
∂
∂
∂
∂
We determine solutions of the above equations as the following power series
( ) ( )
∑ Φ
=
Φ
∞
=
Φ
0
,
,
,
,
,
,
i
i
i
t
z
y
x
t
z
y
x ρ
ρ
ρ ε . (11)
Substitution of the series (11) into Eqs.(6) and appropriate boundary and initial conditions gives
us possibility to obtain equations for initial-order approximations of concentrations of complexes
of point of radiation defects Φρ0(x,y,z,t), corrections for them Φρi(x,y,z,t), i ≥1, boundary and
initial conditions for all functions Φρi(x,y, z,t), i≥0. The equations and conditions are presented in
the Appendix. Solutions of the equations have been solved by standard approaches [26,27] and
presented in the Appendix.
Spatio-temporal distribution of dopant concentration we determine framework the same approach
as for determination of concentrations of radiation defects. Framework the approach we transform
approximation of dopant diffusion coefficient in the following form: DL(x,y,z,T)=
D0L[1+εLgL(x,y,z,T)], D0L is the average value of dopant diffusion coefficient, 0≤εL< 1, |gL(x,y,z,
T)|≤1. We determine solution of Eq.(1) as the following power series
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
60
( ) ( )
∑ ∑
=
∞
=
∞
=
0 1
,
,
,
,
,
,
i j
ij
j
i
L
t
z
y
x
C
t
z
y
x
C ξ
ε .
Substitution of the series into Eq.(1) and conditions (2) gives us possibility to obtain equations for
initial-order approximation of concentration of dopant C00(x,y,z,t), corrections for the
approximation Cij(x,y,z,t) (i≥1, j≥1), boundary and initial conditions for all functions Cij(x,y,z,t) (i
≥0, j ≥0). All these equations and conditions for them are presented in the Appendix. The above
equations have been solved by standard approaches (see, for example, [26,27]). The solutions are
presented in the Appendix.
Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects have
been done analytically by using the second-order approximation by all parameters, which have
been used in considered power series. The second-order approximation is usually enough good
approximation to make qualitative analysis and to obtain some quantitative results. All analytical
results have been checked by numerical simulation.
3. DISCUSSION
In this section based on relations, which have been calculated in previous section, we analyzed
dynamics of redistribution of dopant and radiation defects during the annealing. Figs. 2 and 3
shows distributions of concentrations of dopants (for diffusive and ion types of doping) in
neighborhood of interface between layers of heterostructure under condition, when dopant
diffusion coefficient in the epitaxial layer is larger, than in the substrate. The figure shows, that
the interface gives us possibility to manufacture more thin field- effect transistors. Similar
choosing of properties of sections in the epitaxial layer gives us possibility to manufacture more
compact transistors in other directions.
Fig.2. Distributions of concentration of infused dopant in heterostructure from Figs. 1 and 2 in
direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of
number of curve corresponds to increasing of difference between values of dopant diffusion
coefficient in layers of heterostructure under condition, when value of dopant diffusion
coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
61
x
0.0
0.5
1.0
1.5
2.0
C(x,
Θ
)
2
3
4
1
0 L/4 L/2 3L/4 L
Epitaxial layer Substrate
Fig.3. Distributions of concentration of implanted dopant in heterostructure from Figs. 1 and 2 in
direction, which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3
corresponds to annealing time Θ = 0.0048(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 2 and 4 corresponds to
annealing time Θ= 0.0057(Lx
2
+Ly
2
+Lz
2
)/D0. Curves 1 and 2 corresponds to homogenous sample.
Curves 3 and 4 corresponds to heterostructure under condition, when value of dopant diffusion
coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate
It should be noted, that interface between layers of heterostructure leads to influence on
distribution of concentration of dopant at appropriate value of annealing time: annealing time of
dopant should be neither much, no small. In this situation it should be done optimization of
annealing. The optimization of annealing has been done framework recently introduce criterion
[13-19,21,22]. By using the optimization we obtain values of optimal annealing time.
Dependences of the values are presented on the Figs. 4 and 5. It should be noted, that after ion
implantation one shall make annealing of radiation defects. One can find spreading of distribution
of concentration of dopant during the annealing. In the ideal case parameters of technological
process should be chosen so, that after finishing the annealing dopant should achieve interface
between layers of heterostructure. If after finishing of the annealing dopant did not achieved the
interface, it is attracted an interest additional annealing of dopant. In this situation additional
optimal annealing time of dopant decreases in the case of ion doping.
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.0
0.1
0.2
0.3
0.4
0.5
Θ
D
0
L
-2
3
2
4
1
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
62
Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which have
been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the
dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ =0 for equal to
each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the
dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ =
γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ
for a/L=1/2 and ε =γ =0. Curve 4 is the dependence of dimensionless optimal annealing time on
value of parameter γ for a/L=1/2 and ε=ξ=0
0.0 0.1 0.2 0.3 0.4 0.5
a/L, ξ, ε, γ
0.00
0.04
0.08
0.12
Θ
D
0
L
-2
3
2
4
1
Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation,
which have been obtained by minimization of mean-squared error, on several parameters. Curve 1
is the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for
equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is
the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and
ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of
parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal
annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0
4. CONCLUSION
In this paper we introduce an approach to manufacture thinner field-effect heterotransistor with
decreasing of their dimensions into another directions.
ACKNOWLEDGEMENTS
This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government,
Scientific School of Russia SSR-339.2014.2 and educational fellowship for scientific research.
REFERENCES
[1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980).
[2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990).
[3] V.G. Gusev, Yu.M. Gusev. Electronics (Moscow: Vysshaya shkola, 1991, in Russian).
[4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Moscow, 1991).
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
63
[5] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[6] A. Kerentsev, V. Lanin. "Constructive-technological features of MOSFET-transistors" Power
Electronics. Issue 1. P. 34-38 (2008).
[7] A.N. Andronov, N.T. Bagraev, L.E. Klyachkin, S.V. Robozerov. "Ultrashallow p+−n junctions in
silicon (100): electron-beam diagnostics of sub-surface region" Semiconductors. Vol.32 (2). P. 137-
144 (1998).
[8] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. "Shallow p−n junctions in Si prepared by pulse
photon annealing" Semiconductors. Vol.36 (5). P. 611-617 (2002).
[9] V.I. Mazhukin, V.V. Nosov, U. Semmler. "Study of heat and thermoelastic fields in semiconductors
at pulsed processing" Mathematical modelling. Vol. 12 (2), 75 (2000).
[10] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. "Dopant distribution in the
recrystallization transient at the maximum melt depth induced by laser annealing" Appl. Phys. Lett.
Vol. 89 (17), 172111 (2006).
[11] J. A. Sharp, N. E. B. Cowern, R. P. Webb, K. J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M. A.
Foad, F. Cristiano, P. F. Fazzini. "Deactivation of ultrashallow boron implants in preamorphized
silicon after nonmelt laser annealing with multiple scans" Appl.Phys. Lett. Vol. 89, 192105 (2006).
[12] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. "Diffusion processes in semiconductor structures during microwave
annealing" Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003).
[13] E.L. Pankratov. "Redistribution of dopant during microwave annealing of a multilayer structure for
production p-n-junction" J. Appl. Phys. Vol. 103 (6). P. 064320-064330 (2008).
[14] E.L. Pankratov. "Optimization of near-surficial annealing for decreasing of depth of p-n-junction in
semiconductor heterostructure" Proc. of SPIE. Vol. 7521, 75211D (2010).
[15] E.L. Pankratov. "Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure
by optimized laser annealing" J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).
[16] E.L. Pankratov. "Influence of mechanical stress in semiconductor heterostructure on density of p-n-
junctions" Applied Nanoscience. Vol. 2 (1). P. 71-89 (2012).
[17] E.L. Pankratov, E.A. Bulaeva. "Application of native inhomogeneities to increase compactness of
vertical field -effect transistors" J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).
[18] E.L. Pankratov, E.A. Bulaeva. "An approach to decrease dimensions of field-effect transistors"
Universal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013).
[19] E.L. Pankratov, E.A. Bulaeva. "Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of
distributions of dopants" Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
[20] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in
Russian).
[21] E.L. Pankratov. "Decreasing of depth of p-n-junction in a semiconductor heterostructure by serial
radiation processing and microwave annealing" J. Comp. Theor. Nanoscience. Vol. 9 (1). P. 41-49
(2012).
[22] E.L. Pankratov, E.A. Bulaeva. "Increasing of sharpness of diffusion-junction heterorectifier by using
radiation processing" Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1--1250028-8 (2012).
[23] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[24] P.M. Fahey, P.B. Griffin, J.D. Plummer. "Point defects and dopant diffusion in silicon" Rev. Mod.
Phys. 1989. V. 61. № 2. P. 289-388.
[25] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[26] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in
Russian).
[27] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964).
APPENDIX
Equations for the functions ( )
ϑ
φ
η
χ ,
,
,
~
ijk
I and ( )
ϑ
φ
η
χ ,
,
,
~
ijk
V , i ≥0, j ≥0, k ≥0 and conditions for
them are
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
64
( ) ( ) ( ) ( )
2
000
2
0
0
2
000
2
0
0
2
000
2
0
0
000 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
( ) ( ) ( ) ( )
2
000
2
0
0
2
000
2
0
0
2
000
2
0
0
000 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V
;
( ) ( ) ( ) ( )
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
00
2
0
0
2
00
2
0
0
2
00
2
0
0
00 ,
,
,
~
,
,
,
~
,
,
,
~
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
χ i
V
I
i
V
I
i
V
I
i I
D
D
I
D
D
I
D
D
I
( )
( )
( )
( )
+








∂
∂
∂
∂
+








∂
∂
∂
∂
+ −
−
η
ϑ
φ
η
χ
φ
η
χ
η
χ
ϑ
φ
η
χ
φ
η
χ
χ
,
,
,
~
,
,
,
,
,
,
~
,
,
, 100
0
0
100
0
0 i
I
V
I
i
I
V
I I
T
g
D
D
I
T
g
D
D
( )
( )








∂
∂
∂
∂
+ −
φ
ϑ
φ
η
χ
φ
η
χ
φ
,
,
,
~
,
,
, 100
0
0 i
I
V
I I
T
g
D
D
( ) ( ) ( ) ( )
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
00
2
0
0
2
00
2
0
0
2
00
2
0
0
00 ,
,
,
~
,
,
,
~
,
,
,
~
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
χ i
I
V
i
I
V
i
I
V
i V
D
D
V
D
D
V
D
D
V
( )
( )
( )
( )
+








∂
∂
∂
∂
+








∂
∂
∂
∂
+ −
−
η
ϑ
φ
η
χ
φ
η
χ
η
χ
ϑ
φ
η
χ
φ
η
χ
χ
,
,
,
~
,
,
,
,
,
,
~
,
,
, 100
0
0
100
0
0 i
V
I
V
i
V
I
V V
T
g
D
D
V
T
g
D
D
( )
( )








∂
∂
∂
∂
+ −
φ
ϑ
φ
η
χ
φ
η
χ
φ
,
,
,
~
,
,
, 100
0
0 i
V
I
V V
T
g
D
D , i≥1;
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
010
2
2
010
2
2
010
2
0
0
010 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ I
I
I
D
D
I
V
I
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 000
000
,
, V
I
T
g V
I
V
I
+
−
( ) ( ) ( ) ( )
+








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
010
2
2
010
2
2
010
2
0
0
010 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ V
V
V
D
D
V
I
V
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 000
000
,
, V
I
T
g V
I
V
I
+
− ;
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
020
2
2
020
2
2
020
2
0
0
020 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ I
I
I
D
D
I
V
I
( )
[ ] ( ) ( ) ( ) ( )
[ ]
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
1 010
000
000
010
,
, V
I
V
I
T
g V
I
V
I +
+
−
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
020
2
2
020
2
2
020
2
0
0
020 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ V
V
V
D
D
V
V
I
( )
[ ] ( ) ( ) ( ) ( )
[ ]
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
1 010
000
000
010
,
, V
I
V
I
T
g V
I
V
I +
+
− ;
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
001
2
2
001
2
2
001
2
0
0
001 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ I
I
I
D
D
I
V
I
( )
[ ] ( )
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
1 2
000
,
, I
T
g I
I
I
I
+
−
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
65
( ) ( ) ( ) ( )
−








∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
001
2
2
001
2
2
001
2
0
0
001 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ V
V
V
D
D
V
I
V
( )
[ ] ( )
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
1 2
000
,
, V
T
g I
I
I
I
+
− ;
( ) ( ) ( ) ( )
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
110
2
0
0
2
110
2
0
0
2
110
2
0
0
110 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
( )
( )
( )
( )
+








∂
∂
∂
∂
+








∂
∂
∂
∂
+
η
ϑ
φ
η
χ
φ
η
χ
η
χ
ϑ
φ
η
χ
φ
η
χ
χ
,
,
,
~
,
,
,
,
,
,
~
,
,
, 010
0
0
010
0
0 I
T
g
D
D
I
T
g
D
D
I
V
I
I
V
I
( )
( )
( )
[ ]×
+
−








∂
∂
∂
∂
+ T
g
I
T
g
D
D
I
I
I
I
I
V
I
,
,
,
1
,
,
,
~
,
,
, ,
,
010
0
0
φ
η
χ
ε
φ
ϑ
φ
η
χ
φ
η
χ
φ
( ) ( ) ( ) ( )
[ ]
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
100
000
000
100 V
I
V
I +
×
( ) ( ) ( ) ( )
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
110
2
0
0
2
110
2
0
0
2
110
2
0
0
110 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V
( )
( )
( )
( )
+








∂
∂
∂
∂
+








∂
∂
∂
∂
+
η
ϑ
φ
η
χ
φ
η
χ
η
χ
ϑ
φ
η
χ
φ
η
χ
χ
,
,
,
~
,
,
,
,
,
,
~
,
,
, 010
0
0
010
0
0 V
T
g
D
D
V
T
g
D
D
V
I
V
V
I
V
( )
( )
( )
[ ]×
+
−








∂
∂
∂
∂
+ T
g
V
T
g
D
D
V
V
V
V
V
I
V
,
,
,
1
,
,
,
~
,
,
, ,
,
010
0
0
φ
η
χ
ε
φ
ϑ
φ
η
χ
φ
η
χ
φ
( ) ( ) ( ) ( )
[ ]
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ
ϑ
φ
η
χ ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
100
000
000
100 I
V
I
V +
× ;
( ) ( ) ( ) ( )
−
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
002
2
0
0
2
002
2
0
0
2
002
2
0
0
002 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
, I
I
T
g I
I
I
I
+
−
( ) ( ) ( ) ( )
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
002
2
0
0
2
002
2
0
0
2
002
2
0
0
002 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
, V
V
Е
g V
V
V
V
+
− ;
( ) ( ) ( ) ( )
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
101
2
0
0
2
101
2
0
0
2
101
2
0
0
101 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
( )
( )
( )
( )
+








∂
∂
∂
∂
+








∂
∂
∂
∂
+
η
ϑ
φ
η
χ
φ
η
χ
η
χ
ϑ
φ
η
χ
φ
η
χ
χ
,
,
,
~
,
,
,
,
,
,
~
,
,
, 001
0
0
001
0
0 I
T
g
D
D
I
T
g
D
D
I
V
I
I
V
I
( )
( )
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε
φ
ϑ
φ
η
χ
φ
η
χ
φ
,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
, 000
100
001
0
0
V
I
T
g
I
T
g
D
D
I
I
I
V
I
+
−








∂
∂
∂
∂
+
( ) ( ) ( ) ( )
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
101
2
0
0
2
101
2
0
0
2
101
2
0
0
101 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
66
( )
( )
( )
( )
+








∂
∂
∂
∂
+








∂
∂
∂
∂
+
η
ϑ
φ
η
χ
φ
η
χ
η
χ
ϑ
φ
η
χ
φ
η
χ
χ
,
,
,
~
,
,
,
,
,
,
~
,
,
, 001
0
0
001
0
0 V
T
g
D
D
V
T
g
D
D
V
I
V
V
I
V
( )
( )
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε
φ
ϑ
φ
η
χ
φ
η
χ
φ
,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
, 100
000
001
0
0
V
I
T
g
V
T
g
D
D
V
V
V
I
V
+
−








∂
∂
∂
∂
+ ;
( ) ( ) ( ) ( )
−
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
011
2
0
0
2
011
2
0
0
2
011
2
0
0
011 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ I
D
D
I
D
D
I
D
D
I
V
I
V
I
V
I
( )
[ ] ( ) ( )−
+
− ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 010
000
,
, I
I
T
g I
I
I
I
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
, V
I
T
g V
I
V
I
+
−
( ) ( ) ( ) ( )
−
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
011
2
0
0
2
011
2
0
0
2
011
2
0
0
011 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
φ
ϑ
φ
η
χ
η
ϑ
φ
η
χ
χ
ϑ
φ
η
χ
ϑ
ϑ
φ
η
χ V
D
D
V
D
D
V
D
D
V
I
V
I
V
I
V
( )
[ ] ( ) ( )−
+
− ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 010
000
,
, V
V
T
g V
V
V
V
( )
[ ] ( ) ( )
ϑ
φ
η
χ
ϑ
φ
η
χ
φ
η
χ
ε ,
,
,
~
,
,
,
~
,
,
,
1 001
000
,
, V
I
t
g V
I
V
I
+
− ;
( )
0
,
,
,
~
0
=
∂
∂
=
x
ijk
χ
ϑ
φ
η
χ
ρ
,
( )
0
,
,
,
~
1
=
∂
∂
=
x
ijk
χ
ϑ
φ
η
χ
ρ
,
( )
0
,
,
,
~
0
=
∂
∂
=
η
η
ϑ
φ
η
χ
ρijk
,
( )
0
,
,
,
~
1
=
∂
∂
=
η
η
ϑ
φ
η
χ
ρijk
,
( )
0
,
,
,
~
0
=
∂
∂
=
φ
φ
ϑ
φ
η
χ
ρijk
,
( )
0
,
,
,
~
1
=
∂
∂
=
φ
φ
ϑ
φ
η
χ
ρijk
(i≥0, j≥0, k≥0);
( ) ( ) *
000 ,
,
0
,
,
,
~ ρ
φ
η
χ
φ
η
χ
ρ ρ
f
= , ( ) 0
0
,
,
,
~ =
φ
η
χ
ρijk (i≥1, j≥1, k≥1).
Solutions of these equations with account boundary and initial conditions could be written as
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
000
2
1
,
,
,
~
n
n
n e
c
c
c
F
L
L
ϑ
φ
η
χ
ϑ
φ
η
χ
ρ ρ
ρ ,
where ( ) ( ) ( ) ( )
∫ ∫ ∫
=
1
0
1
0
1
0
*
,
,
cos
cos
cos
1
u
d
v
d
w
d
w
v
u
f
w
n
v
n
u
n
F n
n ρ
ρ π
π
π
ρ
, cn(χ) = cos (π n χ), ( )=
ϑ
nI
e
( )
I
V D
D
n 0
0
2
2
exp ϑ
π
−
= , ( ) ( )
V
I
nV D
D
n
e 0
0
2
2
exp ϑ
π
ϑ −
= ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
∂
∂
−
−
=
∞
=
−
1 0
1
0
1
0
1
0
100
0
0
00
,
,
,
~
2
,
,
,
~
n
i
n
n
nI
nI
n
V
I
i
u
w
v
u
I
v
c
u
s
e
e
c
c
c
n
D
D
I
ϑ τ
τ
ϑ
φ
η
χ
π
ϑ
φ
η
χ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
−
×
∞
=1 0
1
0
1
0
0
0
2
,
,
,
n
n
n
nI
nI
n
V
I
I
n v
s
u
c
e
e
c
c
c
D
D
d
u
d
v
d
w
d
T
w
v
u
g
w
c
ϑ
τ
ϑ
φ
η
χ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑
−
∫
∂
∂
×
∞
=
−
1
0
0
1
0
100
2
,
,
,
~
,
,
,
n
nI
n
V
I
i
I
n e
c
c
c
n
D
D
d
u
d
v
d
w
d
v
w
v
u
I
T
w
v
u
g
w
c
n ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )
∫ ∫ ∫ ∫
∂
∂
−
× −
ϑ
τ
τ
τ
0
1
0
1
0
1
0
100 ,
,
,
~
,
,
, d
u
d
v
d
w
d
w
w
v
u
I
T
w
v
u
g
w
s
v
c
u
c
e i
I
n
n
n
nI
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
67
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∑ ×
∫ ∫ ∫ ∫
∂
∂
−
−
=
∞
=
−
1 0
1
0
1
0
1
0
100
0
0
00
,
~
2
,
,
,
~
n
i
n
n
n
nI
nV
n
I
V
i
u
u
V
w
c
v
c
u
s
e
e
c
c
c
n
D
D
V
ϑ τ
τ
ϑ
φ
η
χ
π
ϑ
φ
η
χ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∑ ×
∫ ∫ ∫ ∫
−
−
×
∞
=1 0
1
0
1
0
1
0
0
0
2
,
,
,
n
n
n
n
nI
nV
n
I
V
V w
c
v
s
u
c
e
e
c
c
c
D
D
d
u
d
v
d
w
d
T
w
v
u
g
ϑ
τ
ϑ
φ
η
χ
π
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫
−
−
∂
∂
×
∞
=
−
1 0
1
0
0
0
100
2
,
~
,
,
,
n
n
nI
nV
n
I
V
i
V u
c
e
e
c
c
c
D
D
d
u
d
v
d
w
d
v
u
V
T
w
v
u
g
n
ϑ
τ
ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( )
( )
∫ ∫
∂
∂
× −
1
0
1
0
100 ,
~
,
,
, τ
τ
d
u
d
v
d
w
d
w
u
V
T
w
v
u
g
w
s
v
c
n i
V
n
n , i ≥1,
where sn(χ)=sin(πnχ);
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∑ ∫ ∫ ∫ ∫ ×
−
−
=
∞
=1 0
1
0
1
0
1
0
010 2
,
,
,
~
n
n
n
n
n
n
n
n
n w
c
v
c
u
c
e
e
c
c
c
ϑ
ρ
ρ τ
ϑ
φ
η
χ
ϑ
φ
η
χ
ρ
( )
[ ] ( ) ( ) τ
τ
τ
ε d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
T
w
v
u
g V
I
V
I ,
,
,
~
,
,
,
~
,
,
,
1 000
000
,
,
+
× ;
( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]×
∑ ∫ ∫ ∫ ∫ +
−
−
=
∞
=1 0
1
0
1
0
1
0
,
,
0
0
020 ,
,
,
1
2
,
,
,
~
n
V
I
V
I
n
n
n
n
n
V
I
T
w
v
u
g
e
e
c
c
c
D
D ϑ
ρ
ρ ε
τ
ϑ
φ
η
χ
ϑ
φ
η
χ
ρ
( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ] τ
τ
τ
τ
τ d
u
d
v
d
w
d
w
v
u
V
w
v
u
I
w
v
u
V
w
v
u
I
w
c
v
c
u
c n
n
n ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
010
000
000
010 +
× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0
1
0
1
0
1
0
001 2
,
,
,
~
n
n
n
n
n
n
n
n
n w
c
v
c
u
c
e
e
c
c
c
ϑ
ρ
ρ τ
ϑ
φ
η
χ
ϑ
φ
η
χ
ρ
( )
[ ] ( ) τ
τ
ρ
ε ρ
ρ
ρ
ρ d
u
d
v
d
w
d
w
v
u
T
w
v
u
g ,
,
,
~
,
,
,
1 2
000
,
,
+
× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
∑ ∫ ∫ ×
∫ ∫
−
−
=
∞
=1 0
1
0
1
0
1
0
002 2
,
,
,
~
n
n
n
n
n
n
n
n
n w
c
v
c
u
c
e
e
c
c
c
ϑ
ρ
ρ τ
ϑ
φ
η
χ
ϑ
φ
η
χ
ρ
( )
[ ] ( ) ( ) τ
τ
ρ
τ
ρ
ε ρ
ρ
ρ
ρ d
u
d
v
d
w
d
w
v
u
w
v
u
T
w
v
u
g ,
,
,
~
,
,
,
~
,
,
,
1 000
001
,
,
+
× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0
1
0
1
0
1
0
0
0
110 ,
,
,
2
,
,
,
~
n
I
n
n
n
nI
nI
n
n
n
V
I
T
w
v
u
g
u
c
v
c
u
s
e
e
c
c
c
D
D
I
ϑ
τ
ϑ
φ
η
χ
π
ϑ
φ
η
χ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫
−
−
∂
∂
×
∞
=
−
1 0
1
0
1
0
0
0
100
2
,
,
,
~
n
n
n
nI
nI
n
n
n
V
I
i
v
s
u
c
e
e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
I
n
ϑ
τ
ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑
×
−
∫
∂
∂
×
∞
=
−
1
0
0
1
0
100
2
,
,
,
~
,
,
,
n
nI
n
n
n
V
I
i
I
n e
c
c
c
n
D
D
d
u
d
v
d
w
d
v
w
v
u
I
T
w
v
u
g
u
c ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑
−
∫ ∫ ∫ ∫
∂
∂
−
×
∞
=
−
1
0
1
0
1
0
1
0
100
2
,
,
,
~
,
,
,
n
n
n
n
i
I
n
n
n
nI c
c
c
d
u
d
v
d
w
d
w
w
v
u
I
T
w
v
u
g
u
s
v
c
u
c
e φ
η
χ
τ
τ
τ
ϑ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]
∫ ∫ ∫ ∫ ×
+
−
×
ϑ
τ
τ
τ
τ
τ
ϑ
0
1
0
1
0
1
0
100
000
000
100 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
w
v
u
V
w
v
u
I
w
v
u
V
w
v
u
I
v
c
u
c
e
e n
n
nI
nI
( )
[ ] ( ) τ
ε d
u
d
v
d
w
d
w
c
T
w
v
u
g n
V
I
V
I ,
,
,
1 ,
,
+
×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0
1
0
1
0
1
0
0
0
110 ,
,
,
2
,
,
,
~
n
V
n
n
nV
nV
n
n
n
I
V
T
w
v
u
g
v
c
u
s
e
e
c
c
c
n
D
D
V
ϑ
τ
ϑ
φ
η
χ
π
ϑ
φ
η
χ
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
68
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫
−
−
∂
∂
×
∞
=
−
1 0
1
0
0
0
100
2
,
,
,
~
n
n
nV
nV
n
n
n
I
V
i
n u
c
e
e
c
c
c
D
D
d
u
d
v
d
w
d
u
w
v
u
V
u
c
ϑ
τ
ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ −
−
∫ ∫
∂
∂
×
∞
=
−
1 0
0
0
1
0
1
0
100
2
,
,
,
~
,
,
,
n
nV
nV
I
V
i
V
n
n e
e
D
D
d
u
d
v
d
w
d
v
w
v
u
V
T
w
v
u
g
u
c
v
s
n
ϑ
τ
ϑ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
∑ ×
−
∫ ∫ ∫
∂
∂
×
∞
=
−
1
1
0
1
0
1
0
100
2
,
,
,
~
,
,
,
n
n
i
V
n
n
n
n
n
n c
d
u
d
v
d
w
d
w
w
v
u
V
T
w
v
u
g
u
s
v
c
u
c
c
c
c
n χ
τ
τ
φ
η
χ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]
∫ ∫ ∫ ∫ ×
+
−
×
ϑ
τ
τ
τ
τ
τ
ϑ
φ
η
0
1
0
1
0
1
0
100
000
000
100 ,
,
,
~
,
,
,
~
,
,
,
~
,
,
,
~
w
v
u
V
w
v
u
I
w
v
u
V
w
v
u
I
u
c
e
e
c
c n
nV
nI
n
n
( ) ( ) τ
d
u
d
v
d
v
c
w
d
w
c n
n
× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0
1
0
1
0
1
0
0
0
101 ,
,
,
2
,
,
,
~
n
I
n
n
n
nI
nI
n
n
n
V
I
T
w
v
u
g
w
c
v
c
u
s
e
e
c
c
c
n
D
D
I
ϑ
τ
ϑ
φ
η
χ
π
ϑ
φ
η
χ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
−
∂
∂
×
∞
=1 0
1
0
1
0
0
0
001
2
,
,
,
~
n
n
n
nI
nI
n
n
n
V
I
v
s
u
c
e
e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
I ϑ
τ
ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑
−
∫
∂
∂
×
∞
=1
0
0
1
0
001
2
,
,
,
~
,
,
,
n
nI
n
n
n
V
I
I
n e
c
c
c
n
D
D
d
u
d
v
d
w
d
v
w
v
u
I
T
w
v
u
g
w
c ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑
−
∫ ∫ ∫ ∫
∂
∂
−
×
∞
=1
0
1
0
1
0
1
0
001
2
,
,
,
~
,
,
,
n
n
n
I
n
n
n
nI c
c
d
u
d
v
d
w
d
w
w
v
u
I
T
w
v
u
g
w
s
v
c
u
c
e η
χ
τ
τ
τ
ϑ
( ) ( ) ( ) ( ) ( ) ( )
[ ] ( ) ( ) ×
∫ ∫ ∫ ∫ +
−
×
ϑ
τ
τ
ε
τ
ϑ
φ
0
1
0
1
0
1
0
000
100
,
, ,
,
,
~
,
,
,
~
,
,
,
1 w
v
u
V
w
v
u
I
T
w
v
u
g
v
c
u
c
e
e
c V
I
V
I
n
n
nI
nI
n
( ) τ
d
u
d
v
d
w
d
w
cn
×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0
1
0
1
0
1
0
0
0
101 ,
,
,
2
,
,
,
~
n
V
n
n
nV
nV
n
n
n
I
V
T
w
v
u
g
v
c
u
s
e
e
c
c
c
n
D
D
V
ϑ
τ
ϑ
φ
η
χ
π
ϑ
φ
η
χ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫
−
−
∂
∂
×
∞
=1 0
1
0
0
0
001
2
,
,
,
~
n
n
nV
nV
n
n
n
I
V
u
c
e
e
c
c
c
n
D
D
d
u
d
v
d
w
d
u
w
v
u
V
w
c
ϑ
τ
ϑ
φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑
−
∫ ∫
∂
∂
×
∞
=1
0
0
1
0
1
0
001
2
,
,
,
~
,
,
,
n
n
n
n
I
V
V
n
n c
c
c
n
D
D
d
u
d
v
d
w
d
v
w
v
u
V
T
w
v
u
g
w
c
v
s φ
η
χ
π
τ
τ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑
−
∫ ∫ ∫ ∫
∂
∂
−
×
∞
=1
0
1
0
1
0
1
0
001
2
,
,
,
~
,
,
,
n
n
V
n
n
n
nV
nV c
d
u
d
v
d
w
d
w
w
v
u
V
T
w
v
u
g
w
s
v
c
u
c
e
e χ
τ
τ
τ
ϑ
ϑ
( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ] ( ) ( ) ×
∫ ∫ ∫ ∫ +
−
×
ϑ
τ
τ
ε
τ
ϑ
φ
η
0
1
0
1
0
1
0
100
000
,
, ,
,
,
~
,
,
,
~
,
,
,
1 w
v
u
V
w
v
u
I
T
w
v
u
g
v
c
u
c
e
e
c
c V
I
V
I
n
n
nV
nV
n
n
( ) τ
d
u
d
v
d
w
d
w
cn
× ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]
{
∑ ∫ ∫ ∫ ∫ ×
+
−
−
=
∞
=1 0
1
0
1
0
1
0
,
,
011 ,
,
,
1
2
,
,
,
~
n
I
I
I
I
n
n
nI
nI
n
n
n T
w
v
u
g
v
c
u
c
e
e
c
c
c
I
ϑ
ε
τ
ϑ
φ
η
χ
ϑ
φ
η
χ
( ) ( ) ( )
[ ] ( ) ( )}×
+
+
× τ
τ
ε
τ
τ ,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
,
~
000
001
,
,
010
000 w
v
u
V
w
v
u
I
T
w
v
u
g
w
v
u
I
w
v
u
I V
I
V
I
( ) τ
d
u
d
v
d
w
d
w
cn
×
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]
{
∑ ∫ ∫ ∫ ∫ ×
+
−
−
=
∞
=1 0
1
0
1
0
1
0
,
,
011 ,
,
,
1
2
,
,
,
~
n
V
V
V
V
n
n
nV
nV
n
n
n T
w
v
u
g
v
c
u
c
e
e
c
c
c
V
ϑ
ε
τ
ϑ
φ
η
χ
ϑ
φ
η
χ
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
69
( ) ( ) ( )
[ ] ( ) ( )}×
+
+
× τ
τ
ε
τ
τ ,
,
,
~
,
,
,
~
,
,
,
1
,
,
,
~
,
,
,
~
001
000
,
,
010
000 w
v
u
V
w
v
u
I
T
w
v
u
g
w
v
u
V
w
v
u
V V
I
V
I
( ) τ
d
u
d
v
d
w
d
w
cn
× .
Inutial-order approximations of distributions of concentrations of complexes of radiation defects
Φρ0(x,y,z,t), corrections for the approximations Φρi(x,y,z,t) i≥1, boundary and initial conditions for
them
( ) ( ) ( ) ( )+
Φ
+
Φ
+
Φ
=
Φ
Φ
Φ
Φ 2
0
2
0
2
0
2
0
2
0
2
0
0 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x I
I
I
I
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k I
I
I ,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+
( ) ( ) ( ) ( )+
Φ
+
Φ
+
Φ
=
Φ
Φ
Φ
Φ 2
0
2
0
2
0
2
0
2
0
2
0
0 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x V
V
V
V
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k V
V
V ,
,
,
,
,
,
,
,
,
,
,
, 2
, −
+ ;
( ) ( ) ( ) ( )
+
Φ
+
Φ
+
Φ
=
Φ
Φ
Φ
Φ 2
2
0
2
2
0
2
2
0
,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x i
I
I
i
I
I
i
I
I
i
I
∂
∂
∂
∂
∂
∂
∂
∂
( )
( )
( )
( )
+





 Φ
+





 Φ
+
−
Φ
Φ
−
Φ
Φ
y
t
z
y
x
T
z
y
x
g
y
D
x
t
z
y
x
T
z
y
x
g
x
D
i
I
I
I
i
I
I
I
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
1
0
1
0
( )
( )





 Φ
+
−
Φ
Φ
z
t
z
y
x
T
z
y
x
g
z
D
i
I
I
I
∂
∂
∂
∂ ,
,
,
,
,
,
1
0
( ) ( ) ( ) ( )
+
Φ
+
Φ
+
Φ
=
Φ
Φ
Φ
Φ 2
2
0
2
2
0
2
2
0
,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
D
y
t
z
y
x
D
x
t
z
y
x
D
t
t
z
y
x i
V
V
i
V
V
i
V
V
i
V
∂
∂
∂
∂
∂
∂
∂
∂
( )
( )
( )
( )
+





 Φ
+





 Φ
+
−
Φ
Φ
−
Φ
Φ
y
t
z
y
x
T
z
y
x
g
y
D
x
t
z
y
x
T
z
y
x
g
x
D
i
V
V
V
i
V
V
V
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
1
0
1
0
( )
( )





 Φ
+
−
Φ
Φ
z
t
z
y
x
T
z
y
x
g
z
D
i
V
V
V
∂
∂
∂
∂ ,
,
,
,
,
,
1
0 , i≥1;
( )
0
,
,
,
0
=
∂
Φ
∂
=
x
i
x
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= x
L
x
i
x
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
y
i
y
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= y
L
y
i
y
t
z
y
x
ρ
,
( )
0
,
,
,
0
=
∂
Φ
∂
=
z
i
z
t
z
y
x
ρ
,
( )
0
,
,
,
=
∂
Φ
∂
= z
L
z
i
z
t
z
y
x
ρ
, i≥0; Φρ0(x,y,z,0)=fΦρ (x,y,z), Φρi(x,y,z,0)=0, i≥1.
Solutions of the above equations could be written as
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑
+
∑
+
=
Φ
∞
=
∞
=
Φ
Φ
1
1
0
2
2
1
,
,
,
n
n
n
n
n
n
n
n
n
n
z
y
x
z
y
x
z
c
y
c
x
c
n
L
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x ρ
ρ
ρ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]
∫ ∫ ∫ ∫ ×
−
−
× Φ
Φ
t L L L
I
I
I
n
n
n
n
x y z
w
v
u
I
T
w
v
u
k
w
v
u
I
T
w
v
u
k
v
c
u
c
e
t
e
0 0 0 0
2
, ,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
ρ
ρ
( ) τ
d
u
d
v
d
w
d
w
cn
× ,
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
70
where ( ) ( ) ( ) ( )
∫ ∫ ∫
= Φ
Φ
x y z
L L L
n
n
n
n u
d
v
d
w
d
w
v
u
f
w
c
v
c
u
c
F
0 0 0
,
,
ρ
ρ
, ( )
















+
+
−
= Φ
Φ 2
2
2
0
2
2 1
1
1
exp
z
y
x
n
L
L
L
t
D
n
t
e ρ
ρ
π ,
cn(x)=cos(πnx/Lx);
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×
∑ ∫ ∫ ∫ ∫
−
−
=
Φ
∞
=
Φ
Φ
Φ
1 0 0 0 0
2
,
,
,
2
,
,
,
n
t L L L
n
n
n
n
n
n
n
z
y
x
i
x y z
T
w
v
u
g
v
c
u
s
e
t
e
z
c
y
c
x
c
n
L
L
L
t
z
y
x ρ
ρ
ρ
τ
π
ρ
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫
−
−
Φ
×
∞
=
Φ
Φ
−
1 0 0
2
1 2
,
,
,
n
t L
n
n
n
n
n
n
z
y
x
i
I
n
x
u
c
e
t
e
z
c
y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
w
c τ
π
τ
∂
τ
∂
ρ
ρ
ρ
( ) ( ) ( )
( )
( ) ( ) ( ) ×
∑
−
∫ ∫
Φ
×
∞
=
−
Φ
1
2
0 0
1 2
,
,
,
,
,
,
n
n
n
n
z
y
x
L L
i
I
n
n z
c
y
c
x
c
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
T
w
v
u
g
w
c
v
s
y z π
τ
∂
τ
∂ ρ
ρ
( ) ( ) ( ) ( ) ( )
( )
( )
∫ ∫ ∫ ∫
Φ
−
× Φ
−
Φ
Φ
t L L L
i
I
n
n
n
n
n
x y z
d
u
d
v
d
w
d
T
w
v
u
g
w
w
v
u
w
s
v
c
u
c
e
t
e
0 0 0 0
1
,
,
,
,
,
,
τ
∂
τ
∂
τ ρ
ρ
ρ
ρ
, i≥1,
where sn(x)=sin(πnx/Lx).
Equation for initial-order approximation of dopant concentration C00(x,t), corrections for the
approximation Cij(x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions of the above functions are
( ) ( ) ( ) ( )
2
00
2
0
2
00
2
0
2
00
2
0
00 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
C
D
y
t
z
y
x
C
D
x
t
z
y
x
C
D
t
t
z
y
x
C
L
L
L
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
;
( ) ( ) ( ) ( )
+






∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
2
0
2
2
0
2
2
0
2
0
0 ,
,
,
,
,
,
,
,
,
,
,
,
z
t
z
y
x
C
y
t
z
y
x
C
x
t
z
y
x
C
D
t
t
z
y
x
C i
i
i
L
i
( ) ( ) ( ) ( ) +






∂
∂
∂
∂
+






∂
∂
∂
∂
+ −
−
y
t
z
y
x
C
T
z
y
x
g
y
D
x
t
z
y
x
C
T
z
y
x
g
x
D i
L
L
i
L
L
,
,
,
,
,
,
,
,
,
,
,
, 10
0
10
0
( ) ( )






∂
∂
∂
∂
+ −
z
t
z
y
x
C
T
z
y
x
g
z
D i
L
L
,
,
,
,
,
, 10
0 , i≥1;
( ) ( ) ( ) ( ) ( )
( )






×
∂
∂
+






∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
T
z
y
x
P
t
z
y
x
C
x
z
t
z
y
x
C
y
t
z
y
x
C
x
t
z
y
x
C
D
t
t
z
y
x
C
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 00
2
01
2
2
01
2
2
01
2
0
01
γ
γ
( ) ( )
( )
( ) ( )
( )
( )
L
D
z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
z
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
y
x
t
z
y
x
C
0
00
00
00
00
00 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,











∂
∂
∂
∂
+






∂
∂
∂
∂
+



∂
∂
× γ
γ
γ
γ
;
( ) ( ) ( ) ( ) ( )
( )



×
+






∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ −
T
z
y
x
P
t
z
y
x
C
z
t
z
y
x
C
y
t
z
y
x
C
x
t
z
y
x
C
D
t
t
z
y
x
C
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 1
00
2
02
2
2
02
2
2
02
2
0
02
γ
γ
( ) ( ) ( ) ( )
( )
( ) +






∂
∂
∂
∂
+



∂
∂
×
−
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
y
x
t
z
y
x
C
t
z
y
x
C
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 00
1
00
01
00
01 γ
γ
( ) ( )
( )
( ) ( )
( )
( )





×






∂
∂
∂
∂
+











∂
∂
∂
∂
+
−
x
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
x
D
z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
z
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 01
00
0
00
1
00
01 γ
γ
γ
γ
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
71
( )
( )
( ) ( )
( )
( )
L
D
z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
z
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
y
0
01
00
01
00 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,











∂
∂
∂
∂
+






∂
∂
∂
∂
+ γ
γ
γ
γ
;
( ) ( ) ( ) ( ) ( )
( )








×
∂
∂
+






∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ −
T
z
y
x
P
t
z
y
x
C
x
z
t
z
y
x
C
y
t
z
y
x
C
x
t
z
y
x
C
D
t
t
z
y
x
C
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 1
00
2
11
2
2
11
2
2
11
2
0
11
γ
γ
( )
( )
( )
( )
( )
( )
+






∂
∂
∂
∂
+



∂
∂
×
−
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
y
x
t
z
y
x
C
t
z
y
x
C
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 00
1
00
10
00
10 γ
γ
( )
( )
( )
( ) ( )








×
∂
∂
∂
∂
+











∂
∂
∂
∂
+
−
x
t
z
y
x
C
x
D
D
z
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
t
z
y
x
C
z
L
L
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 10
0
0
00
1
00
10 γ
γ
( )
( )
( )
( )
( ) ( )
( )
( )
+











∂
∂
∂
∂
+






∂
∂
∂
∂
+



×
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
z
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
y
T
z
y
x
P
t
z
y
x
C ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 10
00
10
00
00
γ
γ
γ
γ
γ
γ
( )
( )
( )
( )
+











∂
∂
∂
∂
+






∂
∂
∂
∂
+
y
t
z
y
x
C
T
z
y
x
g
y
x
t
z
y
x
C
T
z
y
x
g
x
D L
L
L
,
,
,
,
,
,
,
,
,
,
,
, 01
01
0
( )
( )











∂
∂
∂
∂
+
z
t
z
y
x
C
T
z
y
x
g
z
L
,
,
,
,
,
, 01
;
( )
0
,
,
,
0
=
=
x
ij
x
t
z
y
x
C
∂
∂
,
( )
0
,
,
,
=
= x
L
x
ij
x
t
z
y
x
C
∂
∂
,
( )
0
,
,
,
0
=
=
y
ij
y
t
z
y
x
C
∂
∂
,
( )
0
,
,
,
=
= y
L
y
ij
y
t
z
y
x
C
∂
∂
,
( )
0
,
,
,
0
=
=
z
ij
z
t
z
y
x
C
∂
∂
,
( )
0
,
,
,
=
= z
L
z
ij
z
t
z
y
x
C
∂
∂
, i≥0, j≥0;
C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i≥1, j≥1.
Solutions of the above equations with account boundary and initial conditions could be written as
( ) ( ) ( ) ( ) ( )
∑
+
=
∞
=1
00
2
1
,
,
,
n
nC
n
n
n
nC
z
y
x
z
y
x
t
e
z
c
y
c
x
c
F
L
L
L
L
L
L
t
z
y
x
C ,
where ( )
















+
+
−
= 2
2
2
0
2
2 1
1
1
exp
z
y
x
C
nC
L
L
L
t
D
n
t
e π , ( ) ( ) ( ) ( )
∫ ∫ ∫
=
x y z
L L L
C
n
n
n
nC u
d
v
d
w
d
w
v
u
f
w
c
v
c
u
c
F
0 0 0
,
, ;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0 0 0 0
2
0 ,
,
,
2
,
,
,
n
t L L L
L
n
n
nC
nC
n
n
n
nC
z
y
x
i
x y z
T
w
v
u
g
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C τ
π
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫
−
−
∂
∂
×
∞
=
−
1 0 0
2
10 2
,
,
,
n
t L
n
nC
nC
n
n
n
nC
z
y
x
i
n
x
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
w
c τ
π
τ
τ
( ) ( ) ( )
( )
( ) ( ) ( ) ×
∑
−
∫ ∫
∂
∂
×
∞
=
−
1
2
0 0
10 2
,
,
,
,
,
,
n
n
n
n
nC
z
y
x
L L
i
L
n
n z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
g
v
c
v
s
y z π
τ
τ
( ) ( ) ( ) ( ) ( ) ( )
( )
∫ ∫ ∫ ∫
∂
∂
−
× −
t L L L
i
L
n
n
n
nC
nC
x y z
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
g
v
s
v
c
u
c
e
t
e
0 0 0 0
10 ,
,
,
,
,
, τ
τ
τ , i≥1;
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
72
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0 0 0 0
00
2
01
,
,
,
,
,
,
2
,
,
,
n
t L L L
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
T
w
v
u
P
w
v
u
C
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C γ
γ
τ
τ
π
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫
−
−
∂
∂
×
∞
=1 0 0
2
00 2
,
,
,
n
t L
n
nC
nC
n
n
n
nC
z
y
x
n
x
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
w
c τ
π
τ
τ
( ) ( )
( )
( )
( )
( ) ( ) ( ) ×
∑
−
∫ ∫
∂
∂
×
∞
=1
2
0 0
00
00 2
,
,
,
,
,
,
,
,
,
n
n
n
n
nC
z
y
x
L L
n
n z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
s
y z π
τ
τ
τ
γ
γ
( ) ( ) ( ) ( ) ( )
( )
( )
( )
∫ ∫ ∫ ∫
∂
∂
−
×
t L L L
n
n
n
nC
nC
x y z
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
s
v
c
u
c
e
t
e
0 0 0 0
00
00 ,
,
,
,
,
,
,
,
,
τ
τ
τ
τ γ
γ
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0 0 0 0
01
2
02 ,
,
,
2
,
,
,
n
t L L L
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
w
v
u
C
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C τ
τ
π
( )
( )
( )
( )
( ) ( ) ( ) ( ) ×
∑
−
∂
∂
×
∞
=
−
1
2
00
1
00 2
,
,
,
,
,
,
,
,
,
n
nC
n
n
n
nC
z
y
x
n t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
π
τ
τ
τ
γ
γ
( ) ( ) ( ) ( ) ( )
( )
( )
( )
−
∫ ∫ ∫ ∫
∂
∂
−
×
−
t L L L
n
n
n
nC
x y z
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
w
c
v
s
u
c
e
0 0 0 0
00
1
00
01
,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
τ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
×
∑ ∫ ∫ ∫ ∫
∂
∂
−
−
∞
=1 0 0 0 0
00
2
,
,
,
2
n
t L L L
n
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
w
w
v
u
C
w
s
v
c
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
τ
τ
π
( )
( )
( )
( ) ( ) ( ) ( ) ( )×
∑ ∫ −
−
×
∞
=
−
1 0
2
1
00
01
2
,
,
,
,
,
,
,
,
,
n
t
nC
nC
n
n
n
nC
z
y
x
e
t
e
z
c
y
c
x
c
F
L
L
L
d
u
d
v
d
w
d
T
w
v
u
P
w
v
u
C
w
v
u
C τ
π
τ
τ
τ γ
γ
( ) ( ) ( )
( )
( )
( )
×
∑
−
∫ ∫ ∫
∂
∂
×
∞
=
−
1
2
0 0 0
00
1
00
01
2
,
,
,
,
,
,
,
,
,
,
,
,
n
nC
z
y
x
L L L
n
n F
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
v
c
u
s
n
x y z π
τ
τ
τ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
×
∫ ∫ ∫ ∫
∂
∂
−
×
−
t L L L
n
n
nC
nC
n
n
n
x y z
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
v
c
u
c
e
t
e
z
c
y
c
x
c
n
0 0 0 0
00
1
00
01
,
,
,
,
,
,
,
,
,
,
,
,
τ
τ
τ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
−
−
×
∞
=1 0 0 0 0
2
2
n
t L L L
n
n
n
nC
nC
n
n
n
nC
z
y
x
n
x y z
w
c
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
w
s τ
π
τ
( )
( )
( )
( ) ( ) ( ) ( ) ( ) ×
∑ ∫ −
−
∂
∂
×
∞
=1 0
2
01
00 2
,
,
,
,
,
,
,
,
,
n
t
nC
nC
n
n
n
nC
z
y
x
e
t
e
z
c
y
c
x
c
F
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
τ
π
τ
τ
τ
γ
γ
( ) ( ) ( )
( )
( )
( )
( ) ×
∑
−
∫ ∫ ∫
∂
∂
×
∞
=1
2
0 0 0
01
00 2
,
,
,
,
,
,
,
,
,
n
n
nC
z
y
x
L L L
n
n
n x
c
F
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
s
u
c
n
x y z π
τ
τ
τ
γ
γ
| ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
∫ ∫ ∫ ∫
∂
∂
−
×
t L L L
n
n
n
nC
nC
n
n
x y z
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
s
v
c
u
c
e
t
e
z
c
y
c
0 0 0 0
01
00 ,
,
,
,
,
,
,
,
,
τ
τ
τ
τ γ
γ
;
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫ ∫
−
−
=
∞
=1 0 0 0 0
2
11 ,
,
,
2
,
,
,
n
t L L L
L
n
n
nC
nC
n
n
n
nC
z
y
x
x y z
T
w
v
u
g
v
c
u
s
e
t
e
z
c
y
c
x
c
F
n
L
L
L
t
z
y
x
C τ
π
( )
( )
( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫
−
−
∂
∂
×
∞
=1 0 0
2
01 2
,
,
,
n
t L
n
nC
nC
n
n
n
nC
z
y
x
n
x
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
u
w
v
u
C
w
c τ
π
τ
τ
( ) ( ) ( )
( )
( ) ( ) ( ) ×
∑
−
∫ ∫
∂
∂
×
∞
=1
2
0 0
01 2
,
,
,
,
,
,
n
n
n
n
nC
z
y
x
L L
L
n
n z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
T
w
v
u
g
w
c
v
s
y z π
τ
τ
International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014
73
( ) ( ) ( ) ( ) ( ) ( )
( )
×
−
∫ ∫ ∫ ∫
∂
∂
−
×
z
y
x
t L L L
L
n
n
n
nC
nC
L
L
L
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
g
w
s
v
c
u
c
e
t
e
x y z
2
0 0 0 0
01 2
,
,
,
,
,
,
π
τ
τ
τ
( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
×
∑ ∫ ∫ ∫ ∫
∂
∂
−
×
∞
=1 0 0 0 0
10
00 ,
,
,
,
,
,
,
,
,
n
t L L L
n
n
n
nC
nC
n
nC
x y z
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
c
u
s
e
t
e
x
c
F
n τ
τ
τ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
×
∑ ∫ ∫ ∫ ∫
−
−
×
∞
=1 0 0 0 0
00
2
,
,
,
,
,
,
2
n
t L L L
n
n
n
nC
nC
n
n
n
z
y
x
n
n
x y z
T
w
v
u
P
w
v
u
C
w
c
v
s
u
c
e
t
e
z
c
y
c
x
c
n
L
L
L
z
c
y
c γ
γ
τ
τ
π
( )
( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫
−
−
∂
∂
×
∞
=1 0 0
2
10 2
,
,
,
n
t L
n
nC
nC
n
n
n
nC
z
y
x
nC
x
u
c
e
t
e
z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
v
w
v
u
C
F τ
π
τ
τ
( ) ( )
( )
( )
( )
( ) ( ) ( ) ×
∑
−
∫ ∫
∂
∂
×
∞
=1
2
0 0
10
00 2
,
,
,
,
,
,
,
,
,
n
n
n
n
nC
z
y
x
L L
n
n z
c
y
c
x
c
F
n
L
L
L
d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
s
v
c
y z π
τ
τ
τ
γ
γ
( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
−
∫ ∫ ∫ ∫
∂
∂
−
×
−
t L L L
n
n
n
nC
nC
x y z
d
u
d
v
d
w
d
u
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
w
c
v
c
u
s
e
t
e
0 0 0 0
00
1
00
10
,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
τ
τ γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )
( )
( )
×
∑ ∫ ∫ ∫ ∫
∂
∂
−
−
∞
=
−
1 0 0 0 0
00
1
00
2
,
,
,
,
,
,
,
,
,
2
n
t L L L
n
n
n
nC
nC
n
n
n
z
y
x
x y z
v
w
v
u
C
T
w
v
u
P
w
v
u
C
w
c
v
s
u
c
e
t
e
z
c
y
c
x
c
L
L
L
τ
τ
τ
π
γ
γ
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×
∑ ∫ ∫ ∫
−
−
×
∞
=1 0 0 0
2
10
2
,
,
,
n
t L L
n
n
nC
nC
n
n
n
z
y
x
nC
x y
v
c
u
c
e
t
e
z
c
y
c
x
c
n
L
L
L
F
d
u
d
v
d
w
d
w
v
u
C
n τ
π
τ
τ
( ) ( )
( )
( )
( )
∫
∂
∂
×
−
z
L
n
nC d
u
d
v
d
w
d
w
w
v
u
C
T
w
v
u
P
w
v
u
C
w
v
u
C
w
s
F
0
00
1
00
10
,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
τ γ
γ
.
Short Biographies:
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in
Radiophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in
Radiophysics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of
Microstructures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny
Novgorod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor
course in Radiophysical Department of Nizhny Novgorod State University. He has 96 published papers in
area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school
of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of
Architecture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same
time she is a student of courses “Translator in the field of professional communication” and “Design
(interior art)” in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant №
MK-548.2010.2). She has 29 published papers in area of her researches.

More Related Content

PDF
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
PDF
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
PDF
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
PDF
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
PDF
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
PDF
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
PDF
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
PDF
Optimization of technological process to decrease dimensions of circuits xor ...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
ANALYSIS OF MANUFACTURING OF VOLTAGE RESTORE TO INCREASE DENSITY OF ELEMENTS ...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
Optimization of technological process to decrease dimensions of circuits xor ...

What's hot (16)

PDF
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
PDF
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
PDF
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
PDF
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
PDF
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
PDF
Modeling of manufacturing of a field effect transistor to determine condition...
PDF
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
PDF
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
PDF
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
PDF
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
PDF
On prognozisys of manufacturing double base
PDF
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
PDF
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
PDF
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
AN APPROACH TO OPTIMIZE OF MANUFACTURING OF A VOLTAGE REFERENCE BASED ON HETE...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
Modeling of manufacturing of a field effect transistor to determine condition...
AN APPROACH TO OPTIMIZE MANUFACTURE OF AN ACTIVE QUADRATURE SIGNAL GENERATOR ...
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On prognozisys of manufacturing double base
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
Ad

Similar to An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal Field-Effect Transistor (20)

PDF
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
PDF
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
PDF
01_AJMS_195_19_RA.pdf
PDF
01_AJMS_195_19_RA.pdf
PDF
02_AJMS_196_19_RA.pdf
PDF
02_AJMS_196_19_RA.pdf
PDF
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
PDF
On prognozisys of manufacturing doublebase
PDF
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
PDF
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
PDF
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
PDF
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
PDF
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
PDF
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
PDF
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
PDF
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
PDF
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
PDF
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOL...
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
On prognozisys of manufacturing doublebase
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON OPTIMIZATION OF MANUFACTURING OF ELEMENTS OF AN BINARY-ROM CIRCUIT TO INCR...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
On Increasing of Integration Rate of Elements of an Operational Transresistan...
On Increasing of Integration Rate of Elements of an Operational Transresistan...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETERO TRANSISTORS A THREE S...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
ON DECREASING OF DIMENSIONS OF FIELDEFFECT TRANSISTORS WITH SEVERAL SOURCES
Ad

More from ijrap (20)

PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
UNIFIED GEOMETRIC DYNAMICS AS A GEOMETRIC SOLUTION TO COSMOLOGICAL CONUNDRUMS
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
DOCX
International Journal of Mobile Network Communications & Telematics(IJMNCT)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
5th International Conference on Software Engineering and Managing Information...
DOCX
10th International Conference on Emerging Trends in Electrical, Electronics &...
DOCX
5th International Conference on Software Engineering and Managing Information...
PDF
International Journal of Recent advances in Physics (IJRAP)
PDF
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
UNIFIED GEOMETRIC DYNAMICS AS A GEOMETRIC SOLUTION TO COSMOLOGICAL CONUNDRUMS
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Mobile Network Communications & Telematics(IJMNCT)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)
5th International Conference on Software Engineering and Managing Information...
10th International Conference on Emerging Trends in Electrical, Electronics &...
5th International Conference on Software Engineering and Managing Information...
International Journal of Recent advances in Physics (IJRAP)
International Journal of Recent advances in Physics (IJRAP)

Recently uploaded (20)

PDF
Sciences of Europe No 170 (2025)
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
ECG_Course_Presentation د.محمد صقران ppt
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
Placing the Near-Earth Object Impact Probability in Context
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Microbiology with diagram medical studies .pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
. Radiology Case Scenariosssssssssssssss
Sciences of Europe No 170 (2025)
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
ECG_Course_Presentation د.محمد صقران ppt
Viruses (History, structure and composition, classification, Bacteriophage Re...
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Introduction to Cardiovascular system_structure and functions-1
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
Phytochemical Investigation of Miliusa longipes.pdf
Placing the Near-Earth Object Impact Probability in Context
bbec55_b34400a7914c42429908233dbd381773.pdf
POSITIONING IN OPERATION THEATRE ROOM.ppt
INTRODUCTION TO EVS | Concept of sustainability
Microbiology with diagram medical studies .pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
2. Earth - The Living Planet Module 2ELS
. Radiology Case Scenariosssssssssssssss

An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal Field-Effect Transistor

  • 1. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 DOI : 10.14810/ijrap.2014.3205 55 AN APPROACH TO OPTIMIZE REGIMES OF MANUFACTURING OF COMPLEMENTARY HORIZONTAL FIELD-EFFECT TRANSISTOR E.L. Pankratov1 and E.A. Bulaeva 2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we consider nonlinear model to describe manufacturing complementary horizontal field-effect heterotransistor. Based on analytical solution of the considered boundary problems some recommendations have been formulated to optimize technological processes. KEYWORDS Horizontal field-effect transistor, modelling of manufacturing of transistor, recommendations for optimisation of manufacturing of transistor 1. INTRODUCTION In the present time it is intensively increasing degree of integration of elements of integrated circuits [1-8]. At the same time it is obtaining decreasing of dimensions of the elements. To decrease dimensions of elements of integrated circuits it is traditionally using some approaches. Two of them are laser and microwave types of annealing of dopants and/or radiation defects during manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors [9-15]. Another way to increase degree of integration of elements of integrated circuits is using of inhomogeneity of heterostructures on the basis of which integrated circuits are manufactured [13-19]. However in this case it is practicably to optimize annealing of dopant and/or radiation defects. It is known, that distribution of concentrations of dopants in elements of integrated circuits and their discrete analogs will be changed under influence of radiation processing (for example, during ion implantation) [20]. Because of this to decrease dimensions of elements of integrated circuits and their discrete it is attracted an interest radiation processing of materials [21,22]. In this paper we consider manufacturing of complementary field-effect heterotransistor. Structure of the heterotransistor is presented on the Fig. 1. The heterostructure consist of a substrate and epitaxial layer. The epitaxial layer has several sections, which have been manufactured by using another materials. Some dopants have been infused or implanted in the sections to manufacture required types of conductivity (p or n). Farther we consider annealing of dopant (for doping by diffusion) and/or radiation defects (during ion doping). Main aim of the present paper we analyzed dynamics of redistribution of dopant and radiation defects to formulate conditions, which correspond to manufacture more thin heterotransistor with smaller dimensions into another dimensions.
  • 2. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 56 Substrate Drain Source Source Drain Gate Gate p p n n Fig.1. Heterostructure with a substrate and epitaxial layer with several sections 2. METHOD OF SOLUTION To solve our aims we determine spatio-temporal distribution of concentration of dopant. We determine the distributions by solving the second Fick’s law [1,3-5] ( ) ( ) ( ) ( )       +       +       = z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C C C C ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , (1) with boundary and initial conditions ( ) 0 , , , 0 = ∂ ∂ = x x t z y x C , ( ) 0 , , , = ∂ ∂ = x L x x t z y x C , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x C , ( ) 0 , , , = ∂ ∂ = y L x y t z y x C , (2) ( ) 0 , , , 0 = ∂ ∂ = z z t z y x C , ( ) 0 , , , = ∂ ∂ = z L x z t z y x C , C(x,y,z,0)=f(x,y,z). Here C(x,y,z,t) is the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient depends on properties of materials in layers of heterostructure, speed of heating and cooling of hetero- structure (with account Arrhenius law). Dependences of dopant diffusion coefficient on parameters could be approximated by the following relation [23-25] ( ) ( ) ( ) ( ) ( ) ( )         + +       + = 2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D L C ς ς ξ γ γ , (3) where DL (x,y,z,T) is the spatial (due to inhomogeneity of heterostructure) and temperature (due to Arrhenius law) dependences of dopant diffusion coefficient; P (x,y,z, T) is the limit of solubility of dopant; parameter γ depends on properties of materials and could be integer in the following interval γ ∈[1,3] [23]; V(x,y,z,t) is the spatio-temporal distribution of concentration of vacancies; V* is the equilibrium distribution of concentration of vacancies. Concentrational depen-dence of dopant diffusion coefficient has been discussed in details in the Ref. [23]. It should be noted that doping of heterostructure by diffusion did not leads to generation of radiation damage and ζ1=ζ2=
  • 3. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 57 0. Spatio-temporal distributions of concentrations of point radiation defects we determine by solving the following system equations [24,25] ( ) ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I , , , , , , , , , , , , , , , (4) ( ) ( ) ( ) ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x V t z y x I T z y x k z t z y x I T z y x D z I I V I I , , , , , , , , , , , , , , , , , , , , , 2 , , − −       ∂ ∂ ∂ ∂ + ( ) ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V t z y x I T z y x k z t z y x V T z y x D z V V V I V , , , , , , , , , , , , , , , , , , , , , 2 , , − −       ∂ ∂ ∂ ∂ + with initial ρ(x,y,z,0)=fρ (x,y,z) (5a) and boundary conditions ( ) 0 , , , 0 = ∂ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ ∂ = z L z z t z y x ρ . (5b) Here ρ =I,V; I (x,y,z,t) are the spatio-temporal distributions of concentrations of radiation interstitials and radiation vacancies; Dρ(x,y,z,T) are the diffusion coefficients of the interstitials and vacancies; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation of divacancies and diinterstitials, respectively; kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) are parameters of recombination of point defects and generation of their complexes, respectively. Spatio-temporal distributions of concentrations of divacansies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t) we determine by solution the following system of equations [24,25] ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x I T z y x k z t z y x T z y x D z I I I I I , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ (6) ( ) ( ) ( ) ( ) ( ) +       Φ +       Φ = Φ Φ Φ y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V T z y x k z t z y x T z y x D z V V V V V , , , , , , , , , , , , , , , , , , 2 , − +       Φ + Φ ∂ ∂ ∂ ∂ with boundary and initial conditions
  • 4. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 58 ( ) 0 , , , 0 = ∂ Φ ∂ = x x t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = x L x x t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = y y t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = y L y y t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = z z t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = z L z z t z y x ρ , ΦI(x,y,z,0)=fΦI (x,y,z), ΦV(x,y,z,0)=fΦV (x,y,z). (7) Here DΦI(x,y,z,T) and DΦV(x,y,z,T) are diffusion coefficients of complexes of point radiation defects; kI(x,y,z,T) and kV (x,y,z,T) are parameters of decay of complexes of point radiation defects. To determine spatio-temporal distributions of concentrations of point radiation defects we used recently elaborated approach [16,19,22]. Framework the approach we transform approximations of diffusion coefficients of point radiation defects to the following form: Dρ(x,y,z,T)=D0ρ[1+ερgρ(x,y,z,T)], where D0ρ are the average values of the diffusion coefficients, 0≤ερ< 1, |gρ(x,y,z,T)|≤1, ρ =I,V. We used the same transformation for approximations of parameters of recombination of point radiation defects and generation of their complexes: kI,V(x,y,z,T)=k0I,V[1+εI,V gI,V(x,y,z,T)], kI,I(x,y,z,T)= k0I,I[1+εI,I gI,I(x,y,z,T)] и kV,V(x,y,z,T) = k0V,V [1+ εV,V gV,V(x,y,z,T)], where k0ρ1,ρ2 are the appropriate average values, 0≤εI,V< 1, 0≤εI,I < 1, 0≤εV,V<1, | gI,V(x,y,z,T)|≤1, | gI,I(x,y,z,T)| ≤1, |gV,V(x,y,z,T)|≤1. Let us introduce the following dimensionless variables: χ = x/Lx, η = y/Ly, φ = z/Lz, ( ) ( ) * , , , , , , ~ I t z y x I t z y x I = , ( ) ( ) * , , , , , , ~ V t z y x V t z y x V = , 2 0 0 L t D D V I = ϑ , V I V I D D k L 0 0 , 0 2 = ω , V I D D k L 0 0 , 0 2 ρ ρ ρ = Ω . The introduction leads to modification of Eqs.(4) and conditions (5) ( ) ( ) [ ] ( ) ( ) [ ]      × + ∂ ∂ +       ∂ ∂ + ∂ ∂ = ∂ ∂ T g I T g D D D I I I I I V I I , , , 1 , , , ~ , , , 1 , , , ~ 0 0 0 φ η χ ε η χ ϑ φ η χ φ η χ ε χ ϑ ϑ φ η χ ( ) ( ) [ ] ( ) ( ) × −       ∂ ∂ + ∂ ∂ +    ∂ ∂ × ϑ φ η χ η ϑ φ η χ φ η χ ε φ φ ϑ φ η χ , , , ~ , , , ~ , , , 1 , , , ~ 0 0 0 0 0 0 I I T g D D D D D D I I I V I I V I I ( ) [ ] ( ) ( ) ( ) [ ] T g I V T g I I I I I V I V I , , , 1 , , , ~ , , , ~ , , , 1 , , 2 , , φ η χ ε ϑ φ η χ ϑ φ η χ φ η χ ε ω + Ω − + × (8) ( ) ( ) [ ] ( ) ( ) [ ]      × + ∂ ∂ +           ∂ ∂ + ∂ ∂ = ∂ ∂ T g V T g D D D V V V V V V I V , , , 1 , , , ~ , , , 1 , , , ~ 0 0 0 φ η χ ε η χ ϑ φ η χ φ η χ ε χ ϑ ϑ φ η χ ( ) ( ) [ ] ( ) ( ) × −           ∂ ∂ + ∂ ∂ +      ∂ ∂ × ϑ φ η χ η ϑ φ η χ φ η χ ε φ φ ϑ φ η χ , , , ~ , , , ~ , , , 1 , , , ~ 0 0 0 0 0 0 I V T g D D D D D D V V V V I V V I V ( ) [ ] ( ) ( ) ( ) [ ] T g V V T g V V V V V V I V I , , , 1 , , , ~ , , , ~ , , , 1 , , 2 , , φ η χ ε ϑ φ η χ ϑ φ η χ φ η χ ε ω + Ω − + × ( ) 0 , , , ~ 0 = ∂ ∂ = χ χ ϑ φ η χ ρ , ( ) 0 , , , ~ 1 = ∂ ∂ = χ χ ϑ φ η χ ρ , ( ) 0 , , , ~ 0 = ∂ ∂ = η η ϑ φ η χ ρ , ( ) 0 , , , ~ 1 = ∂ ∂ = η η ϑ φ η χ ρ , ( ) 0 , , , ~ 0 = ∂ ∂ = φ φ ϑ φ η χ ρ , ( ) 0 , , , ~ 1 = ∂ ∂ = φ φ ϑ φ η χ ρ , ( ) ( ) * , , , , , , ~ ρ ϑ φ η χ ϑ φ η χ ρ ρ f = . (9) We determine solution of Eqs.(8) and conditions (9) by approach from Refs. [16,19,22], i.e. as the following power series ( ) ( ) ∑ ∑ ∑Ω = ∞ = ∞ = ∞ = 0 0 0 , , , ~ , , , ~ i j k ijk k j i ϑ φ η χ ρ ω ε ϑ φ η χ ρ ρ ρ . (10)
  • 5. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 59 Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equations for initial-order approximations of concentrations of point radiation defects ( ) ϑ φ η χ , , , ~ 000 I and ( ) ϑ φ η χ , , , ~ 000 V and corrections for them ( ) ϑ φ η χ , , , ~ ijk I and ( ) ϑ φ η χ , , , ~ ijk V , i ≥1, j ≥1, k ≥1. The equations and conditions for them are presented in the Appendix. Solutions of them have been obtained by standard approaches (see, for example, [26,27]). The solutions have been obtained in the Appendix. Farther we determine spatio-temporal distributions of concentrations of complexes of point radiation defects. To obtain the concentrations we transform approximations of diffusion coefficients to the following form: DΦρ(x,y,z,T)=D0Φρ[1+εΦρgΦρ(x,y,z,T)], where D0Φρ are the average values of diffusion coefficients. After this transformation the Eqs.(6) takes the form ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )                      − +    Φ ×    × + +       Φ + × × +       Φ + = Φ − +    Φ ×    × + +       Φ + × × +       Φ + = Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ t z y x V T z y x k t z y x V T z y x k D z t z y x T z y x g z y t z y x T z y x g y D x t z y x T z y x g x D t t z y x t z y x I T z y x k t z y x I T z y x k D z t z y x T z y x g z y t z y x T z y x g y D x t z y x T z y x g x D t t z y x V V V V V V V V V V V V V V V V I I I I I I I I I I I I I I I I , , , , , , , , , , , , , , , , , , 1 , , , , , , 1 , , , , , , 1 , , , , , , , , , , , , , , , , , , , , , 1 , , , , , , 1 , , , , , , 1 , , , 2 , 0 0 0 2 , 0 0 0 ∂ ∂ ε ∂ ∂ ∂ ∂ ε ∂ ∂ ∂ ∂ ε ∂ ∂ ∂ ∂ ∂ ∂ ε ∂ ∂ ∂ ∂ ε ∂ ∂ ∂ ∂ ε ∂ ∂ ∂ ∂ We determine solutions of the above equations as the following power series ( ) ( ) ∑ Φ = Φ ∞ = Φ 0 , , , , , , i i i t z y x t z y x ρ ρ ρ ε . (11) Substitution of the series (11) into Eqs.(6) and appropriate boundary and initial conditions gives us possibility to obtain equations for initial-order approximations of concentrations of complexes of point of radiation defects Φρ0(x,y,z,t), corrections for them Φρi(x,y,z,t), i ≥1, boundary and initial conditions for all functions Φρi(x,y, z,t), i≥0. The equations and conditions are presented in the Appendix. Solutions of the equations have been solved by standard approaches [26,27] and presented in the Appendix. Spatio-temporal distribution of dopant concentration we determine framework the same approach as for determination of concentrations of radiation defects. Framework the approach we transform approximation of dopant diffusion coefficient in the following form: DL(x,y,z,T)= D0L[1+εLgL(x,y,z,T)], D0L is the average value of dopant diffusion coefficient, 0≤εL< 1, |gL(x,y,z, T)|≤1. We determine solution of Eq.(1) as the following power series
  • 6. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 60 ( ) ( ) ∑ ∑ = ∞ = ∞ = 0 1 , , , , , , i j ij j i L t z y x C t z y x C ξ ε . Substitution of the series into Eq.(1) and conditions (2) gives us possibility to obtain equations for initial-order approximation of concentration of dopant C00(x,y,z,t), corrections for the approximation Cij(x,y,z,t) (i≥1, j≥1), boundary and initial conditions for all functions Cij(x,y,z,t) (i ≥0, j ≥0). All these equations and conditions for them are presented in the Appendix. The above equations have been solved by standard approaches (see, for example, [26,27]). The solutions are presented in the Appendix. Analysis of spatio-temporal distributions of concentrations of dopant and radiation defects have been done analytically by using the second-order approximation by all parameters, which have been used in considered power series. The second-order approximation is usually enough good approximation to make qualitative analysis and to obtain some quantitative results. All analytical results have been checked by numerical simulation. 3. DISCUSSION In this section based on relations, which have been calculated in previous section, we analyzed dynamics of redistribution of dopant and radiation defects during the annealing. Figs. 2 and 3 shows distributions of concentrations of dopants (for diffusive and ion types of doping) in neighborhood of interface between layers of heterostructure under condition, when dopant diffusion coefficient in the epitaxial layer is larger, than in the substrate. The figure shows, that the interface gives us possibility to manufacture more thin field- effect transistors. Similar choosing of properties of sections in the epitaxial layer gives us possibility to manufacture more compact transistors in other directions. Fig.2. Distributions of concentration of infused dopant in heterostructure from Figs. 1 and 2 in direction, which is perpendicular to interface between epitaxial layer substrate. Increasing of number of curve corresponds to increasing of difference between values of dopant diffusion coefficient in layers of heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate
  • 7. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 61 x 0.0 0.5 1.0 1.5 2.0 C(x, Θ ) 2 3 4 1 0 L/4 L/2 3L/4 L Epitaxial layer Substrate Fig.3. Distributions of concentration of implanted dopant in heterostructure from Figs. 1 and 2 in direction, which is perpendicular to interface between epitaxial layer substrate. Curves 1 and 3 corresponds to annealing time Θ = 0.0048(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 2 and 4 corresponds to annealing time Θ= 0.0057(Lx 2 +Ly 2 +Lz 2 )/D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corresponds to heterostructure under condition, when value of dopant diffusion coefficient in epitaxial layer is larger, than value of dopant diffusion coefficient in substrate It should be noted, that interface between layers of heterostructure leads to influence on distribution of concentration of dopant at appropriate value of annealing time: annealing time of dopant should be neither much, no small. In this situation it should be done optimization of annealing. The optimization of annealing has been done framework recently introduce criterion [13-19,21,22]. By using the optimization we obtain values of optimal annealing time. Dependences of the values are presented on the Figs. 4 and 5. It should be noted, that after ion implantation one shall make annealing of radiation defects. One can find spreading of distribution of concentration of dopant during the annealing. In the ideal case parameters of technological process should be chosen so, that after finishing the annealing dopant should achieve interface between layers of heterostructure. If after finishing of the annealing dopant did not achieved the interface, it is attracted an interest additional annealing of dopant. In this situation additional optimal annealing time of dopant decreases in the case of ion doping. 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.0 0.1 0.2 0.3 0.4 0.5 Θ D 0 L -2 3 2 4 1
  • 8. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 62 Fig.4. Dependences of dimensionless optimal annealing time for doping by diffusion, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ=γ =0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε =γ =0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0 0.0 0.1 0.2 0.3 0.4 0.5 a/L, ξ, ε, γ 0.00 0.04 0.08 0.12 Θ D 0 L -2 3 2 4 1 Fig.5. Dependences of dimensionless optimal annealing time for doping by ion implantation, which have been obtained by minimization of mean-squared error, on several parameters. Curve 1 is the dependence of dimensionless optimal annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 is the dependence of dimensionless optimal annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 is the dependence of dimensionless optimal annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 is the dependence of dimensionless optimal annealing time on value of parameter γ for a/L=1/2 and ε=ξ=0 4. CONCLUSION In this paper we introduce an approach to manufacture thinner field-effect heterotransistor with decreasing of their dimensions into another directions. ACKNOWLEDGEMENTS This work is supported by the contract 11.G34.31.0066 of the Russian Federation Government, Scientific School of Russia SSR-339.2014.2 and educational fellowship for scientific research. REFERENCES [1] I.P. Stepanenko. Basis of Microelectronics (Soviet Radio, Moscow, 1980). [2] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990). [3] V.G. Gusev, Yu.M. Gusev. Electronics (Moscow: Vysshaya shkola, 1991, in Russian). [4] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991).
  • 9. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 63 [5] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [6] A. Kerentsev, V. Lanin. "Constructive-technological features of MOSFET-transistors" Power Electronics. Issue 1. P. 34-38 (2008). [7] A.N. Andronov, N.T. Bagraev, L.E. Klyachkin, S.V. Robozerov. "Ultrashallow p+−n junctions in silicon (100): electron-beam diagnostics of sub-surface region" Semiconductors. Vol.32 (2). P. 137- 144 (1998). [8] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. "Shallow p−n junctions in Si prepared by pulse photon annealing" Semiconductors. Vol.36 (5). P. 611-617 (2002). [9] V.I. Mazhukin, V.V. Nosov, U. Semmler. "Study of heat and thermoelastic fields in semiconductors at pulsed processing" Mathematical modelling. Vol. 12 (2), 75 (2000). [10] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. "Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing" Appl. Phys. Lett. Vol. 89 (17), 172111 (2006). [11] J. A. Sharp, N. E. B. Cowern, R. P. Webb, K. J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M. A. Foad, F. Cristiano, P. F. Fazzini. "Deactivation of ultrashallow boron implants in preamorphized silicon after nonmelt laser annealing with multiple scans" Appl.Phys. Lett. Vol. 89, 192105 (2006). [12] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. "Diffusion processes in semiconductor structures during microwave annealing" Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836-843 (2003). [13] E.L. Pankratov. "Redistribution of dopant during microwave annealing of a multilayer structure for production p-n-junction" J. Appl. Phys. Vol. 103 (6). P. 064320-064330 (2008). [14] E.L. Pankratov. "Optimization of near-surficial annealing for decreasing of depth of p-n-junction in semiconductor heterostructure" Proc. of SPIE. Vol. 7521, 75211D (2010). [15] E.L. Pankratov. "Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure by optimized laser annealing" J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010). [16] E.L. Pankratov. "Influence of mechanical stress in semiconductor heterostructure on density of p-n- junctions" Applied Nanoscience. Vol. 2 (1). P. 71-89 (2012). [17] E.L. Pankratov, E.A. Bulaeva. "Application of native inhomogeneities to increase compactness of vertical field -effect transistors" J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013). [18] E.L. Pankratov, E.A. Bulaeva. "An approach to decrease dimensions of field-effect transistors" Universal Journal of Materials Science. Vol. 1 (1). P.6-11 (2013). [19] E.L. Pankratov, E.A. Bulaeva. "Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants" Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). [20] V.V. Kozlivsky. Modification of semiconductors by proton beams (Nauka, Sant-Peterburg, 2003, in Russian). [21] E.L. Pankratov. "Decreasing of depth of p-n-junction in a semiconductor heterostructure by serial radiation processing and microwave annealing" J. Comp. Theor. Nanoscience. Vol. 9 (1). P. 41-49 (2012). [22] E.L. Pankratov, E.A. Bulaeva. "Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing" Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1--1250028-8 (2012). [23] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991). [24] P.M. Fahey, P.B. Griffin, J.D. Plummer. "Point defects and dopant diffusion in silicon" Rev. Mod. Phys. 1989. V. 61. № 2. P. 289-388. [25] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [26] A.N. Tikhonov, A.A. Samarskii. The mathematical physics equations (Moscow, Nauka 1972) (in Russian). [27] H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids (Oxford University Press, 1964). APPENDIX Equations for the functions ( ) ϑ φ η χ , , , ~ ijk I and ( ) ϑ φ η χ , , , ~ ijk V , i ≥0, j ≥0, k ≥0 and conditions for them are
  • 10. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 64 ( ) ( ) ( ) ( ) 2 000 2 0 0 2 000 2 0 0 2 000 2 0 0 000 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ I D D I D D I D D I V I V I V I ( ) ( ) ( ) ( ) 2 000 2 0 0 2 000 2 0 0 2 000 2 0 0 000 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ V D D V D D V D D V I V I V I V ; ( ) ( ) ( ) ( ) + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 00 2 0 0 2 00 2 0 0 2 00 2 0 0 00 , , , ~ , , , ~ , , , ~ , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ χ i V I i V I i V I i I D D I D D I D D I ( ) ( ) ( ) ( ) +         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ + − − η ϑ φ η χ φ η χ η χ ϑ φ η χ φ η χ χ , , , ~ , , , , , , ~ , , , 100 0 0 100 0 0 i I V I i I V I I T g D D I T g D D ( ) ( )         ∂ ∂ ∂ ∂ + − φ ϑ φ η χ φ η χ φ , , , ~ , , , 100 0 0 i I V I I T g D D ( ) ( ) ( ) ( ) + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 00 2 0 0 2 00 2 0 0 2 00 2 0 0 00 , , , ~ , , , ~ , , , ~ , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ χ i I V i I V i I V i V D D V D D V D D V ( ) ( ) ( ) ( ) +         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ + − − η ϑ φ η χ φ η χ η χ ϑ φ η χ φ η χ χ , , , ~ , , , , , , ~ , , , 100 0 0 100 0 0 i V I V i V I V V T g D D V T g D D ( ) ( )         ∂ ∂ ∂ ∂ + − φ ϑ φ η χ φ η χ φ , , , ~ , , , 100 0 0 i V I V V T g D D , i≥1; ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 010 2 2 010 2 2 010 2 0 0 010 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ I I I D D I V I ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 000 000 , , V I T g V I V I + − ( ) ( ) ( ) ( ) +         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 010 2 2 010 2 2 010 2 0 0 010 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ V V V D D V I V ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 000 000 , , V I T g V I V I + − ; ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 020 2 2 020 2 2 020 2 0 0 020 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ I I I D D I V I ( ) [ ] ( ) ( ) ( ) ( ) [ ] ϑ φ η χ ϑ φ η χ ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , ~ , , , ~ , , , 1 010 000 000 010 , , V I V I T g V I V I + + − ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 020 2 2 020 2 2 020 2 0 0 020 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ V V V D D V V I ( ) [ ] ( ) ( ) ( ) ( ) [ ] ϑ φ η χ ϑ φ η χ ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , ~ , , , ~ , , , 1 010 000 000 010 , , V I V I T g V I V I + + − ; ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 001 2 2 001 2 2 001 2 0 0 001 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ I I I D D I V I ( ) [ ] ( ) ϑ φ η χ φ η χ ε , , , ~ , , , 1 2 000 , , I T g I I I I + −
  • 11. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 65 ( ) ( ) ( ) ( ) −         ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 001 2 2 001 2 2 001 2 0 0 001 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ V V V D D V I V ( ) [ ] ( ) ϑ φ η χ φ η χ ε , , , ~ , , , 1 2 000 , , V T g I I I I + − ; ( ) ( ) ( ) ( ) + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 110 2 0 0 2 110 2 0 0 2 110 2 0 0 110 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ I D D I D D I D D I V I V I V I ( ) ( ) ( ) ( ) +         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ + η ϑ φ η χ φ η χ η χ ϑ φ η χ φ η χ χ , , , ~ , , , , , , ~ , , , 010 0 0 010 0 0 I T g D D I T g D D I V I I V I ( ) ( ) ( ) [ ]× + −         ∂ ∂ ∂ ∂ + T g I T g D D I I I I I V I , , , 1 , , , ~ , , , , , 010 0 0 φ η χ ε φ ϑ φ η χ φ η χ φ ( ) ( ) ( ) ( ) [ ] ϑ φ η χ ϑ φ η χ ϑ φ η χ ϑ φ η χ , , , ~ , , , ~ , , , ~ , , , ~ 100 000 000 100 V I V I + × ( ) ( ) ( ) ( ) + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 110 2 0 0 2 110 2 0 0 2 110 2 0 0 110 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ V D D V D D V D D V I V I V I V ( ) ( ) ( ) ( ) +         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ + η ϑ φ η χ φ η χ η χ ϑ φ η χ φ η χ χ , , , ~ , , , , , , ~ , , , 010 0 0 010 0 0 V T g D D V T g D D V I V V I V ( ) ( ) ( ) [ ]× + −         ∂ ∂ ∂ ∂ + T g V T g D D V V V V V I V , , , 1 , , , ~ , , , , , 010 0 0 φ η χ ε φ ϑ φ η χ φ η χ φ ( ) ( ) ( ) ( ) [ ] ϑ φ η χ ϑ φ η χ ϑ φ η χ ϑ φ η χ , , , ~ , , , ~ , , , ~ , , , ~ 100 000 000 100 I V I V + × ; ( ) ( ) ( ) ( ) − ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 002 2 0 0 2 002 2 0 0 2 002 2 0 0 002 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ I D D I D D I D D I V I V I V I ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 000 001 , , I I T g I I I I + − ( ) ( ) ( ) ( ) + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 002 2 0 0 2 002 2 0 0 2 002 2 0 0 002 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ V D D V D D V D D V I V I V I V ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 000 001 , , V V Е g V V V V + − ; ( ) ( ) ( ) ( ) + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 101 2 0 0 2 101 2 0 0 2 101 2 0 0 101 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ I D D I D D I D D I V I V I V I ( ) ( ) ( ) ( ) +         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ + η ϑ φ η χ φ η χ η χ ϑ φ η χ φ η χ χ , , , ~ , , , , , , ~ , , , 001 0 0 001 0 0 I T g D D I T g D D I V I I V I ( ) ( ) ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε φ ϑ φ η χ φ η χ φ , , , ~ , , , ~ , , , 1 , , , ~ , , , 000 100 001 0 0 V I T g I T g D D I I I V I + −         ∂ ∂ ∂ ∂ + ( ) ( ) ( ) ( ) + ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 101 2 0 0 2 101 2 0 0 2 101 2 0 0 101 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ V D D V D D V D D V I V I V I V
  • 12. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 66 ( ) ( ) ( ) ( ) +         ∂ ∂ ∂ ∂ +         ∂ ∂ ∂ ∂ + η ϑ φ η χ φ η χ η χ ϑ φ η χ φ η χ χ , , , ~ , , , , , , ~ , , , 001 0 0 001 0 0 V T g D D V T g D D V I V V I V ( ) ( ) ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε φ ϑ φ η χ φ η χ φ , , , ~ , , , ~ , , , 1 , , , ~ , , , 100 000 001 0 0 V I T g V T g D D V V V I V + −         ∂ ∂ ∂ ∂ + ; ( ) ( ) ( ) ( ) − ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 011 2 0 0 2 011 2 0 0 2 011 2 0 0 011 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ I D D I D D I D D I V I V I V I ( ) [ ] ( ) ( )− + − ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 010 000 , , I I T g I I I I ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 000 001 , , V I T g V I V I + − ( ) ( ) ( ) ( ) − ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 011 2 0 0 2 011 2 0 0 2 011 2 0 0 011 , , , ~ , , , ~ , , , ~ , , , ~ φ ϑ φ η χ η ϑ φ η χ χ ϑ φ η χ ϑ ϑ φ η χ V D D V D D V D D V I V I V I V ( ) [ ] ( ) ( )− + − ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 010 000 , , V V T g V V V V ( ) [ ] ( ) ( ) ϑ φ η χ ϑ φ η χ φ η χ ε , , , ~ , , , ~ , , , 1 001 000 , , V I t g V I V I + − ; ( ) 0 , , , ~ 0 = ∂ ∂ = x ijk χ ϑ φ η χ ρ , ( ) 0 , , , ~ 1 = ∂ ∂ = x ijk χ ϑ φ η χ ρ , ( ) 0 , , , ~ 0 = ∂ ∂ = η η ϑ φ η χ ρijk , ( ) 0 , , , ~ 1 = ∂ ∂ = η η ϑ φ η χ ρijk , ( ) 0 , , , ~ 0 = ∂ ∂ = φ φ ϑ φ η χ ρijk , ( ) 0 , , , ~ 1 = ∂ ∂ = φ φ ϑ φ η χ ρijk (i≥0, j≥0, k≥0); ( ) ( ) * 000 , , 0 , , , ~ ρ φ η χ φ η χ ρ ρ f = , ( ) 0 0 , , , ~ = φ η χ ρijk (i≥1, j≥1, k≥1). Solutions of these equations with account boundary and initial conditions could be written as ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 000 2 1 , , , ~ n n n e c c c F L L ϑ φ η χ ϑ φ η χ ρ ρ ρ , where ( ) ( ) ( ) ( ) ∫ ∫ ∫ = 1 0 1 0 1 0 * , , cos cos cos 1 u d v d w d w v u f w n v n u n F n n ρ ρ π π π ρ , cn(χ) = cos (π n χ), ( )= ϑ nI e ( ) I V D D n 0 0 2 2 exp ϑ π − = , ( ) ( ) V I nV D D n e 0 0 2 2 exp ϑ π ϑ − = ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ ∂ ∂ − − = ∞ = − 1 0 1 0 1 0 1 0 100 0 0 00 , , , ~ 2 , , , ~ n i n n nI nI n V I i u w v u I v c u s e e c c c n D D I ϑ τ τ ϑ φ η χ π ϑ φ η χ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − − × ∞ =1 0 1 0 1 0 0 0 2 , , , n n n nI nI n V I I n v s u c e e c c c D D d u d v d w d T w v u g w c ϑ τ ϑ φ η χ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ − ∫ ∂ ∂ × ∞ = − 1 0 0 1 0 100 2 , , , ~ , , , n nI n V I i I n e c c c n D D d u d v d w d v w v u I T w v u g w c n ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ − × − ϑ τ τ τ 0 1 0 1 0 1 0 100 , , , ~ , , , d u d v d w d w w v u I T w v u g w s v c u c e i I n n n nI
  • 13. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 67 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ × ∫ ∫ ∫ ∫ ∂ ∂ − − = ∞ = − 1 0 1 0 1 0 1 0 100 0 0 00 , ~ 2 , , , ~ n i n n n nI nV n I V i u u V w c v c u s e e c c c n D D V ϑ τ τ ϑ φ η χ π ϑ φ η χ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ × ∫ ∫ ∫ ∫ − − × ∞ =1 0 1 0 1 0 1 0 0 0 2 , , , n n n n nI nV n I V V w c v s u c e e c c c D D d u d v d w d T w v u g ϑ τ ϑ φ η χ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ − − ∂ ∂ × ∞ = − 1 0 1 0 0 0 100 2 , ~ , , , n n nI nV n I V i V u c e e c c c D D d u d v d w d v u V T w v u g n ϑ τ ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ∫ ∫ ∂ ∂ × − 1 0 1 0 100 , ~ , , , τ τ d u d v d w d w u V T w v u g w s v c n i V n n , i ≥1, where sn(χ)=sin(πnχ); ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ∫ ∫ ∫ ∫ × − − = ∞ =1 0 1 0 1 0 1 0 010 2 , , , ~ n n n n n n n n n w c v c u c e e c c c ϑ ρ ρ τ ϑ φ η χ ϑ φ η χ ρ ( ) [ ] ( ) ( ) τ τ τ ε d u d v d w d w v u V w v u I T w v u g V I V I , , , ~ , , , ~ , , , 1 000 000 , , + × ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]× ∑ ∫ ∫ ∫ ∫ + − − = ∞ =1 0 1 0 1 0 1 0 , , 0 0 020 , , , 1 2 , , , ~ n V I V I n n n n n V I T w v u g e e c c c D D ϑ ρ ρ ε τ ϑ φ η χ ϑ φ η χ ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] τ τ τ τ τ d u d v d w d w v u V w v u I w v u V w v u I w c v c u c n n n , , , ~ , , , ~ , , , ~ , , , ~ 010 000 000 010 + × ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 1 0 1 0 1 0 001 2 , , , ~ n n n n n n n n n w c v c u c e e c c c ϑ ρ ρ τ ϑ φ η χ ϑ φ η χ ρ ( ) [ ] ( ) τ τ ρ ε ρ ρ ρ ρ d u d v d w d w v u T w v u g , , , ~ , , , 1 2 000 , , + × ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ ∫ ∫ × ∫ ∫ − − = ∞ =1 0 1 0 1 0 1 0 002 2 , , , ~ n n n n n n n n n w c v c u c e e c c c ϑ ρ ρ τ ϑ φ η χ ϑ φ η χ ρ ( ) [ ] ( ) ( ) τ τ ρ τ ρ ε ρ ρ ρ ρ d u d v d w d w v u w v u T w v u g , , , ~ , , , ~ , , , 1 000 001 , , + × ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 1 0 1 0 1 0 0 0 110 , , , 2 , , , ~ n I n n n nI nI n n n V I T w v u g u c v c u s e e c c c D D I ϑ τ ϑ φ η χ π ϑ φ η χ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ − − ∂ ∂ × ∞ = − 1 0 1 0 1 0 0 0 100 2 , , , ~ n n n nI nI n n n V I i v s u c e e c c c n D D d u d v d w d u w v u I n ϑ τ ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ × − ∫ ∂ ∂ × ∞ = − 1 0 0 1 0 100 2 , , , ~ , , , n nI n n n V I i I n e c c c n D D d u d v d w d v w v u I T w v u g u c ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∫ ∫ ∂ ∂ − × ∞ = − 1 0 1 0 1 0 1 0 100 2 , , , ~ , , , n n n n i I n n n nI c c c d u d v d w d w w v u I T w v u g u s v c u c e φ η χ τ τ τ ϑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ∫ ∫ ∫ ∫ × + − × ϑ τ τ τ τ τ ϑ 0 1 0 1 0 1 0 100 000 000 100 , , , ~ , , , ~ , , , ~ , , , ~ w v u V w v u I w v u V w v u I v c u c e e n n nI nI ( ) [ ] ( ) τ ε d u d v d w d w c T w v u g n V I V I , , , 1 , , + × ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 1 0 1 0 1 0 0 0 110 , , , 2 , , , ~ n V n n nV nV n n n I V T w v u g v c u s e e c c c n D D V ϑ τ ϑ φ η χ π ϑ φ η χ
  • 14. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 68 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ − − ∂ ∂ × ∞ = − 1 0 1 0 0 0 100 2 , , , ~ n n nV nV n n n I V i n u c e e c c c D D d u d v d w d u w v u V u c ϑ τ ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ − − ∫ ∫ ∂ ∂ × ∞ = − 1 0 0 0 1 0 1 0 100 2 , , , ~ , , , n nV nV I V i V n n e e D D d u d v d w d v w v u V T w v u g u c v s n ϑ τ ϑ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∑ × − ∫ ∫ ∫ ∂ ∂ × ∞ = − 1 1 0 1 0 1 0 100 2 , , , ~ , , , n n i V n n n n n n c d u d v d w d w w v u V T w v u g u s v c u c c c c n χ τ τ φ η χ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ∫ ∫ ∫ ∫ × + − × ϑ τ τ τ τ τ ϑ φ η 0 1 0 1 0 1 0 100 000 000 100 , , , ~ , , , ~ , , , ~ , , , ~ w v u V w v u I w v u V w v u I u c e e c c n nV nI n n ( ) ( ) τ d u d v d v c w d w c n n × ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 1 0 1 0 1 0 0 0 101 , , , 2 , , , ~ n I n n n nI nI n n n V I T w v u g w c v c u s e e c c c n D D I ϑ τ ϑ φ η χ π ϑ φ η χ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − − ∂ ∂ × ∞ =1 0 1 0 1 0 0 0 001 2 , , , ~ n n n nI nI n n n V I v s u c e e c c c n D D d u d v d w d u w v u I ϑ τ ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∂ ∂ × ∞ =1 0 0 1 0 001 2 , , , ~ , , , n nI n n n V I I n e c c c n D D d u d v d w d v w v u I T w v u g w c ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∫ ∫ ∂ ∂ − × ∞ =1 0 1 0 1 0 1 0 001 2 , , , ~ , , , n n n I n n n nI c c d u d v d w d w w v u I T w v u g w s v c u c e η χ τ τ τ ϑ ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) × ∫ ∫ ∫ ∫ + − × ϑ τ τ ε τ ϑ φ 0 1 0 1 0 1 0 000 100 , , , , , ~ , , , ~ , , , 1 w v u V w v u I T w v u g v c u c e e c V I V I n n nI nI n ( ) τ d u d v d w d w cn × ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 1 0 1 0 1 0 0 0 101 , , , 2 , , , ~ n V n n nV nV n n n I V T w v u g v c u s e e c c c n D D V ϑ τ ϑ φ η χ π ϑ φ η χ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ − − ∂ ∂ × ∞ =1 0 1 0 0 0 001 2 , , , ~ n n nV nV n n n I V u c e e c c c n D D d u d v d w d u w v u V w c ϑ τ ϑ φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∂ ∂ × ∞ =1 0 0 1 0 1 0 001 2 , , , ~ , , , n n n n I V V n n c c c n D D d u d v d w d v w v u V T w v u g w c v s φ η χ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∫ ∫ ∂ ∂ − × ∞ =1 0 1 0 1 0 1 0 001 2 , , , ~ , , , n n V n n n nV nV c d u d v d w d w w v u V T w v u g w s v c u c e e χ τ τ τ ϑ ϑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) × ∫ ∫ ∫ ∫ + − × ϑ τ τ ε τ ϑ φ η 0 1 0 1 0 1 0 100 000 , , , , , ~ , , , ~ , , , 1 w v u V w v u I T w v u g v c u c e e c c V I V I n n nV nV n n ( ) τ d u d v d w d w cn × ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ ∫ ∫ × + − − = ∞ =1 0 1 0 1 0 1 0 , , 011 , , , 1 2 , , , ~ n I I I I n n nI nI n n n T w v u g v c u c e e c c c I ϑ ε τ ϑ φ η χ ϑ φ η χ ( ) ( ) ( ) [ ] ( ) ( )}× + + × τ τ ε τ τ , , , ~ , , , ~ , , , 1 , , , ~ , , , ~ 000 001 , , 010 000 w v u V w v u I T w v u g w v u I w v u I V I V I ( ) τ d u d v d w d w cn × ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] { ∑ ∫ ∫ ∫ ∫ × + − − = ∞ =1 0 1 0 1 0 1 0 , , 011 , , , 1 2 , , , ~ n V V V V n n nV nV n n n T w v u g v c u c e e c c c V ϑ ε τ ϑ φ η χ ϑ φ η χ
  • 15. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 69 ( ) ( ) ( ) [ ] ( ) ( )}× + + × τ τ ε τ τ , , , ~ , , , ~ , , , 1 , , , ~ , , , ~ 001 000 , , 010 000 w v u V w v u I T w v u g w v u V w v u V V I V I ( ) τ d u d v d w d w cn × . Inutial-order approximations of distributions of concentrations of complexes of radiation defects Φρ0(x,y,z,t), corrections for the approximations Φρi(x,y,z,t) i≥1, boundary and initial conditions for them ( ) ( ) ( ) ( )+ Φ + Φ + Φ = Φ Φ Φ Φ 2 0 2 0 2 0 2 0 2 0 2 0 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x I I I I I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x I T z y x k I I I , , , , , , , , , , , , 2 , − + ( ) ( ) ( ) ( )+ Φ + Φ + Φ = Φ Φ Φ Φ 2 0 2 0 2 0 2 0 2 0 2 0 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x V V V V V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V T z y x k V V V , , , , , , , , , , , , 2 , − + ; ( ) ( ) ( ) ( ) + Φ + Φ + Φ = Φ Φ Φ Φ 2 2 0 2 2 0 2 2 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x i I I i I I i I I i I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) +       Φ +       Φ + − Φ Φ − Φ Φ y t z y x T z y x g y D x t z y x T z y x g x D i I I I i I I I ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , 1 0 1 0 ( ) ( )       Φ + − Φ Φ z t z y x T z y x g z D i I I I ∂ ∂ ∂ ∂ , , , , , , 1 0 ( ) ( ) ( ) ( ) + Φ + Φ + Φ = Φ Φ Φ Φ 2 2 0 2 2 0 2 2 0 , , , , , , , , , , , , z t z y x D y t z y x D x t z y x D t t z y x i V V i V V i V V i V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) +       Φ +       Φ + − Φ Φ − Φ Φ y t z y x T z y x g y D x t z y x T z y x g x D i V V V i V V V ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , 1 0 1 0 ( ) ( )       Φ + − Φ Φ z t z y x T z y x g z D i V V V ∂ ∂ ∂ ∂ , , , , , , 1 0 , i≥1; ( ) 0 , , , 0 = ∂ Φ ∂ = x i x t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = x L x i x t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = y i y t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = y L y i y t z y x ρ , ( ) 0 , , , 0 = ∂ Φ ∂ = z i z t z y x ρ , ( ) 0 , , , = ∂ Φ ∂ = z L z i z t z y x ρ , i≥0; Φρ0(x,y,z,0)=fΦρ (x,y,z), Φρi(x,y,z,0)=0, i≥1. Solutions of the above equations could be written as ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ + ∑ + = Φ ∞ = ∞ = Φ Φ 1 1 0 2 2 1 , , , n n n n n n n n n n z y x z y x z c y c x c n L t e z c y c x c F L L L L L L t z y x ρ ρ ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ∫ ∫ ∫ ∫ × − − × Φ Φ t L L L I I I n n n n x y z w v u I T w v u k w v u I T w v u k v c u c e t e 0 0 0 0 2 , , , , , , , , , , , , , τ τ τ ρ ρ ( ) τ d u d v d w d w cn × ,
  • 16. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 70 where ( ) ( ) ( ) ( ) ∫ ∫ ∫ = Φ Φ x y z L L L n n n n u d v d w d w v u f w c v c u c F 0 0 0 , , ρ ρ , ( )                 + + − = Φ Φ 2 2 2 0 2 2 1 1 1 exp z y x n L L L t D n t e ρ ρ π , cn(x)=cos(πnx/Lx); ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ ∫ ∫ ∫ − − = Φ ∞ = Φ Φ Φ 1 0 0 0 0 2 , , , 2 , , , n t L L L n n n n n n n z y x i x y z T w v u g v c u s e t e z c y c x c n L L L t z y x ρ ρ ρ τ π ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ − − Φ × ∞ = Φ Φ − 1 0 0 2 1 2 , , , n t L n n n n n n z y x i I n x u c e t e z c y c x c n L L L d u d v d w d u w v u w c τ π τ ∂ τ ∂ ρ ρ ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ Φ × ∞ = − Φ 1 2 0 0 1 2 , , , , , , n n n n z y x L L i I n n z c y c x c n L L L d u d v d w d v w v u T w v u g w c v s y z π τ ∂ τ ∂ ρ ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ Φ − × Φ − Φ Φ t L L L i I n n n n n x y z d u d v d w d T w v u g w w v u w s v c u c e t e 0 0 0 0 1 , , , , , , τ ∂ τ ∂ τ ρ ρ ρ ρ , i≥1, where sn(x)=sin(πnx/Lx). Equation for initial-order approximation of dopant concentration C00(x,t), corrections for the approximation Cij(x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions of the above functions are ( ) ( ) ( ) ( ) 2 00 2 0 2 00 2 0 2 00 2 0 00 , , , , , , , , , , , , z t z y x C D y t z y x C D x t z y x C D t t z y x C L L L ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ ; ( ) ( ) ( ) ( ) +       ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ 2 0 2 2 0 2 2 0 2 0 0 , , , , , , , , , , , , z t z y x C y t z y x C x t z y x C D t t z y x C i i i L i ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ + − − y t z y x C T z y x g y D x t z y x C T z y x g x D i L L i L L , , , , , , , , , , , , 10 0 10 0 ( ) ( )       ∂ ∂ ∂ ∂ + − z t z y x C T z y x g z D i L L , , , , , , 10 0 , i≥1; ( ) ( ) ( ) ( ) ( ) ( )       × ∂ ∂ +       ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ T z y x P t z y x C x z t z y x C y t z y x C x t z y x C D t t z y x C L , , , , , , , , , , , , , , , , , , 00 2 01 2 2 01 2 2 01 2 0 01 γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) L D z t z y x C T z y x P t z y x C z y t z y x C T z y x P t z y x C y x t z y x C 0 00 00 00 00 00 , , , , , , , , , , , , , , , , , , , , ,            ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ +    ∂ ∂ × γ γ γ γ ; ( ) ( ) ( ) ( ) ( ) ( )    × +       ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ − T z y x P t z y x C z t z y x C y t z y x C x t z y x C D t t z y x C L , , , , , , , , , , , , , , , , , , 1 00 2 02 2 2 02 2 2 02 2 0 02 γ γ ( ) ( ) ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +    ∂ ∂ × − y t z y x C T z y x P t z y x C t z y x C y x t z y x C t z y x C , , , , , , , , , , , , , , , , , , 00 1 00 01 00 01 γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( )      ×       ∂ ∂ ∂ ∂ +            ∂ ∂ ∂ ∂ + − x t z y x C T z y x P t z y x C x D z t z y x C T z y x P t z y x C t z y x C z L , , , , , , , , , , , , , , , , , , , , , 01 00 0 00 1 00 01 γ γ γ γ
  • 17. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 71 ( ) ( ) ( ) ( ) ( ) ( ) L D z t z y x C T z y x P t z y x C z y t z y x C T z y x P t z y x C y 0 01 00 01 00 , , , , , , , , , , , , , , , , , ,            ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ + γ γ γ γ ; ( ) ( ) ( ) ( ) ( ) ( )         × ∂ ∂ +       ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ − T z y x P t z y x C x z t z y x C y t z y x C x t z y x C D t t z y x C L , , , , , , , , , , , , , , , , , , 1 00 2 11 2 2 11 2 2 11 2 0 11 γ γ ( ) ( ) ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +    ∂ ∂ × − y t z y x C T z y x P t z y x C t z y x C y x t z y x C t z y x C , , , , , , , , , , , , , , , , , , 00 1 00 10 00 10 γ γ ( ) ( ) ( ) ( ) ( )         × ∂ ∂ ∂ ∂ +            ∂ ∂ ∂ ∂ + − x t z y x C x D D z t z y x C T z y x P t z y x C t z y x C z L L , , , , , , , , , , , , , , , 10 0 0 00 1 00 10 γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) +            ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ +    × y t z y x C T z y x P t z y x C z y t z y x C T z y x P t z y x C y T z y x P t z y x C , , , , , , , , , , , , , , , , , , , , , , , , 10 00 10 00 00 γ γ γ γ γ γ ( ) ( ) ( ) ( ) +            ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ + y t z y x C T z y x g y x t z y x C T z y x g x D L L L , , , , , , , , , , , , 01 01 0 ( ) ( )            ∂ ∂ ∂ ∂ + z t z y x C T z y x g z L , , , , , , 01 ; ( ) 0 , , , 0 = = x ij x t z y x C ∂ ∂ , ( ) 0 , , , = = x L x ij x t z y x C ∂ ∂ , ( ) 0 , , , 0 = = y ij y t z y x C ∂ ∂ , ( ) 0 , , , = = y L y ij y t z y x C ∂ ∂ , ( ) 0 , , , 0 = = z ij z t z y x C ∂ ∂ , ( ) 0 , , , = = z L z ij z t z y x C ∂ ∂ , i≥0, j≥0; C00(x,y,z,0)=fC (x,y,z), Cij(x,y,z,0)=0, i≥1, j≥1. Solutions of the above equations with account boundary and initial conditions could be written as ( ) ( ) ( ) ( ) ( ) ∑ + = ∞ =1 00 2 1 , , , n nC n n n nC z y x z y x t e z c y c x c F L L L L L L t z y x C , where ( )                 + + − = 2 2 2 0 2 2 1 1 1 exp z y x C nC L L L t D n t e π , ( ) ( ) ( ) ( ) ∫ ∫ ∫ = x y z L L L C n n n nC u d v d w d w v u f w c v c u c F 0 0 0 , , ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 0 0 0 2 0 , , , 2 , , , n t L L L L n n nC nC n n n nC z y x i x y z T w v u g v c u s e t e z c y c x c F n L L L t z y x C τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ − − ∂ ∂ × ∞ = − 1 0 0 2 10 2 , , , n t L n nC nC n n n nC z y x i n x u c e t e z c y c x c F n L L L d u d v d w d u w v u C w c τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∂ ∂ × ∞ = − 1 2 0 0 10 2 , , , , , , n n n n nC z y x L L i L n n z c y c x c F n L L L d u d v d w d v w v u C T w v u g v c v s y z π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ − × − t L L L i L n n n nC nC x y z d u d v d w d w w v u C T w v u g v s v c u c e t e 0 0 0 0 10 , , , , , , τ τ τ , i≥1;
  • 18. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 72 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 0 0 0 00 2 01 , , , , , , 2 , , , n t L L L n n nC nC n n n nC z y x x y z T w v u P w v u C v c u s e t e z c y c x c F n L L L t z y x C γ γ τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ − − ∂ ∂ × ∞ =1 0 0 2 00 2 , , , n t L n nC nC n n n nC z y x n x u c e t e z c y c x c F n L L L d u d v d w d u w v u C w c τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 00 00 2 , , , , , , , , , n n n n nC z y x L L n n z c y c x c F n L L L d u d v d w d v w v u C T w v u P w v u C w c v s y z π τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ − × t L L L n n n nC nC x y z d u d v d w d w w v u C T w v u P w v u C w s v c u c e t e 0 0 0 0 00 00 , , , , , , , , , τ τ τ τ γ γ ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 0 0 0 01 2 02 , , , 2 , , , n t L L L n n nC nC n n n nC z y x x y z w v u C v c u s e t e z c y c x c F n L L L t z y x C τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∂ ∂ × ∞ = − 1 2 00 1 00 2 , , , , , , , , , n nC n n n nC z y x n t e z c y c x c F n L L L d u d v d w d u w v u C T w v u P w v u C w c π τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∫ ∫ ∫ ∫ ∂ ∂ − × − t L L L n n n nC x y z d u d v d w d v w v u C T w v u P w v u C w v u C w c v s u c e 0 0 0 0 00 1 00 01 , , , , , , , , , , , , τ τ τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ ∂ ∂ − − ∞ =1 0 0 0 0 00 2 , , , 2 n t L L L n n n nC nC n n n nC z y x x y z w w v u C w s v c u c e t e z c y c x c F n L L L τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )× ∑ ∫ − − × ∞ = − 1 0 2 1 00 01 2 , , , , , , , , , n t nC nC n n n nC z y x e t e z c y c x c F L L L d u d v d w d T w v u P w v u C w v u C τ π τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∫ ∂ ∂ × ∞ = − 1 2 0 0 0 00 1 00 01 2 , , , , , , , , , , , , n nC z y x L L L n n F L L L d u d v d w d u w v u C T w v u P w v u C w v u C v c u s n x y z π τ τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∂ ∂ − × − t L L L n n nC nC n n n x y z w w v u C T w v u P w v u C w v u C v c u c e t e z c y c x c n 0 0 0 0 00 1 00 01 , , , , , , , , , , , , τ τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − × ∞ =1 0 0 0 0 2 2 n t L L L n n n nC nC n n n nC z y x n x y z w c v c u s e t e z c y c x c F n L L L d u d v d w d w s τ π τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ − − ∂ ∂ × ∞ =1 0 2 01 00 2 , , , , , , , , , n t nC nC n n n nC z y x e t e z c y c x c F L L L d u d v d w d u w v u C T w v u P w v u C τ π τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 0 01 00 2 , , , , , , , , , n n nC z y x L L L n n n x c F n L L L d u d v d w d v w v u C T w v u P w v u C w c v s u c n x y z π τ τ τ γ γ | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ ∂ ∂ − × t L L L n n n nC nC n n x y z d u d v d w d w w v u C T w v u P w v u C w s v c u c e t e z c y c 0 0 0 0 01 00 , , , , , , , , , τ τ τ τ γ γ ; ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − = ∞ =1 0 0 0 0 2 11 , , , 2 , , , n t L L L L n n nC nC n n n nC z y x x y z T w v u g v c u s e t e z c y c x c F n L L L t z y x C τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ − − ∂ ∂ × ∞ =1 0 0 2 01 2 , , , n t L n nC nC n n n nC z y x n x u c e t e z c y c x c F n L L L d u d v d w d u w v u C w c τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 01 2 , , , , , , n n n n nC z y x L L L n n z c y c x c F n L L L d u d v d w d v w v u C T w v u g w c v s y z π τ τ
  • 19. International Journal of Recent advances in Physics (IJRAP) Vol.3, No.2, May 2014 73 ( ) ( ) ( ) ( ) ( ) ( ) ( ) × − ∫ ∫ ∫ ∫ ∂ ∂ − × z y x t L L L L n n n nC nC L L L d u d v d w d w w v u C T w v u g w s v c u c e t e x y z 2 0 0 0 0 01 2 , , , , , , π τ τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ ∂ ∂ − × ∞ =1 0 0 0 0 10 00 , , , , , , , , , n t L L L n n n nC nC n nC x y z d u d v d w d u w v u C T w v u P w v u C w c v c u s e t e x c F n τ τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ − − × ∞ =1 0 0 0 0 00 2 , , , , , , 2 n t L L L n n n nC nC n n n z y x n n x y z T w v u P w v u C w c v s u c e t e z c y c x c n L L L z c y c γ γ τ τ π ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ − − ∂ ∂ × ∞ =1 0 0 2 10 2 , , , n t L n nC nC n n n nC z y x nC x u c e t e z c y c x c F n L L L d u d v d w d v w v u C F τ π τ τ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ − ∫ ∫ ∂ ∂ × ∞ =1 2 0 0 10 00 2 , , , , , , , , , n n n n nC z y x L L n n z c y c x c F n L L L d u d v d w d w w v u C T w v u P w v u C w s v c y z π τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) − ∫ ∫ ∫ ∫ ∂ ∂ − × − t L L L n n n nC nC x y z d u d v d w d u w v u C T w v u P w v u C w v u C w c v c u s e t e 0 0 0 0 00 1 00 10 , , , , , , , , , , , , τ τ τ τ τ γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ ∫ ∂ ∂ − − ∞ = − 1 0 0 0 0 00 1 00 2 , , , , , , , , , 2 n t L L L n n n nC nC n n n z y x x y z v w v u C T w v u P w v u C w c v s u c e t e z c y c x c L L L τ τ τ π γ γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) × ∑ ∫ ∫ ∫ − − × ∞ =1 0 0 0 2 10 2 , , , n t L L n n nC nC n n n z y x nC x y v c u c e t e z c y c x c n L L L F d u d v d w d w v u C n τ π τ τ ( ) ( ) ( ) ( ) ( ) ∫ ∂ ∂ × − z L n nC d u d v d w d w w v u C T w v u P w v u C w v u C w s F 0 00 1 00 10 , , , , , , , , , , , , τ τ τ τ γ γ . Short Biographies: Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Radiophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radiophysics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Microstructures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgorod State University of Architecture and Civil Engineering. Now E.L. Pankratov is in his Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. He has 96 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architecture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. E.A. Bulaeva was a contributor of grant of President of Russia (grant № MK-548.2010.2). She has 29 published papers in area of her researches.