SlideShare a Scribd company logo
© 2021, AJCSE. All Rights Reserved 27
REVIEW ARTICLE
On Optimization of Manufacturing of Field-effect Transistors to Increase Their
Integration Rate in the Framework of a Double-tail Dynamic Comparator
E. L. Pankratov1,2
1
Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, Nizhny Novgorod, Russia,
2
Department of Higher Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia
Received on: 29-09-2021; Revised on: 30-10-2021; Accepted on: 30-11-2021
ABSTRACT
In this paper, we introduce an approach to increase integration rate of elements of a double-tail dynamic
comparator. Framework the approach we consider a heterostructure with special configuration. Several
specific areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of
dopant and/or radiation defects should be optimized.
Key words: Accounting of missmatch induced stress and porosity of materials, analytical approach for
modeling, double-tail dynamic comparator, optimization of manufacturing
INTRODUCTION
An actual and intensively solving problem of solid state electronics is increasing of integration rate of
elements of integrated circuits (p-n-junctions, their systems et al.).[1-8]
Increasing of the integration rate
of elements of integrated circuits could be obtain during decreasing of their dimensions. To decrease the
dimensions are using several approaches. They are widely using laser and microwave types of annealing
of infused dopants. These types of annealing are also widely using for annealing of radiation defects,
generated during ion implantation.[9-17]
Using the approaches gives a possibility to increase integration rate
of elements of integrated circuits through inhomogeneity of technological parameters due to generating
in homogenous distribution of temperature. In this situation, one can obtain decreasing dimensions
of elements of integrated circuits[18]
with account Arrhenius law.[1,3]
Another approach to manufacture
elements of integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion
implantation.[1-3]
However, in this case, optimization of dopant and/or radiation defects is required.[18]
In this paper, we consider a heterostructure. The heterostructure consist of a substrate and several
epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further, we consider
doping of these sections by diffusion or ion implantation. The doping gives a possibility to manufacture
field-effect transistors framework a double-tail dynamic comparator so as it is shown on Figure 1. The
manufacturing gives a possibility to increase density of elements of the double-tail dynamic comparator.[4]
After the considered doping, dopant and/or radiation defects should be annealed. Framework the paper,
we analyzed dynamics of redistribution of dopant and/or radiation defects during their annealing. We
introduce an approach to decrease dimensions of the element. However, it is necessary to complicate
technological process.
METHOD OF SOLUTION
In this section, we determine spatio-temporal distributions of concentrations of infused and implanted
dopants.Todeterminethesedistributions,wecalculateappropriatesolutionsofthesecondFick’slaw[1,3,18,19]
Address for correspondence:
E. L. Pankratov,
E-mail: elp2004@mail.ru
Available Online at www.ajcse.info
Asian Journal of Computer Science Engineering 2021;6(4):27-45
ISSN 2581 – 3781
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 28
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
S
G
D
Figure 1: The considered comparator[4]










C x y z t
t x
D
C x y z t
x y
D
C x y z t
y
C C
, , , , , , , , ,
( )
==
( )





 +
( )






 +
( )










z
D
C x y z t
z
C
, , ,
 (1)
Boundary and initial conditions for the equations are
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
=
= = =
C x y z t
x
C x y z t
x
C x y z t
y
x x L y
x
, , ,
,
, , ,
,
, , ,
,
0 0
0 0 0
∂
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
=
=
= =
C x y z t
y
C x y z t
z
C x y z t
z
x L
z x L
y
z
, , ,
, , ,
,
, , ,
0
0 0
0
,
, ( , , , ) ( , , )
C x y z f x y z
0 =
,(2)
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 29
The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the
temperature of annealing; DС
is the dopant diffusion coefficient. Value of dopant diffusion coefficient
could be changed with changing materials of heterostructure, with changing temperature of materials
(including annealing), with changing concentrations of dopant and radiation defects. We approximate
dependences of dopant diffusion coefficient on parameters by the following relation with account results
in Refs.[20-22]
D D x y z T
C x y z t
P x y z T
V x y z t
C L
= ( ) +
( )
( )





 +
(
, , ,
, , ,
, , ,
, , ,
1 1 1
ξ ς
γ
γ
)
)
+
( )
( )








V
V x y z t
V
* *
, , ,
ς2
2
2
.(3)
Here, the function DL
(x,y,z,T) describes the spatial (in heterostructure) and temperature (due toArrhenius
law) dependences of diffusion coefficient of dopant. The function P (x,y,z,T) describes the limit of
solubility of dopant. Parameter γ ∈[1,3]
describes average quantity of charged defects interacted with
atom of dopant.[20]
The function V(x,y,z,t) describes the spatio-temporal distribution of concentration of
radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of vacancies.
The considered concentrational dependence of dopant diffusion coefficient has been described in details
in.[20]
It should be noted, that using diffusion type of doping did not generation radiation defects. In this
situation ζ1
= ζ2
= 0, we determine spatio-temporal distributions of concentrations of radiation defects by
solving the following system of equations[21,22,23]
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂





 +
∂
∂
I x y z t
t x
D x y z T
I x y z t
x y
D x y z
I I
, , ,
, , ,
, , ,
, , ,
,
, , ,
, , ,
, , ,
T
I x y z t
y
z
D x y z T
I x y z t
z
I
( )
∂ ( )
∂





 +
+
∂
∂
( )
∂ ( )
∂






 − ( ) ( ) ( )−
− ( )
k x y z T I x y z t V x y z t
k x y z T I x y z
I V
I I
,
,
, , , , , , , , ,
, , , , ,
2
,
,t
( )
 (4)
∂ ( )
∂
=
∂
∂
( )
∂ ( )
∂





 +
∂
∂
V x y z t
t x
D x y z T
V x y z t
x y
D x y z
V V
, , ,
, , ,
, , ,
, , ,
,
, , ,
, , ,
, , ,
T
V x y z t
y
z
D x y z T
V x y z t
z
V
( )
∂ ( )
∂





 +
+
∂
∂
( )
∂ ( )
∂






 − ( ) ( ) ( )+
+ ( )
k x y z T I x y z t V x y z t
k x y z T V x y z
I V
V V
,
,
, , , , , , , , ,
, , , , ,
2
,
, .
t
( )
Boundary and initial conditions for these equations are
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
=
= = =
  
x y z t
x
x y z t
x
x y z t
y
x x L y
x
, , ,
,
, , ,
,
, , ,
,
0 0
0 0 0
∂
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
=
=
= =

 
x y z t
y
x y z t
z
x y z t
z
y L
z z L
y
z
, , ,
, , ,
,
, , ,
0
0 0
0
,
, ( , , , ) ( , , ).
r x y z f x y z
r
0 =
,(5)
Here ρ=I,V, the function I (x,y,z,t) describes the spatio-temporal distribution of concentration of radiation
interstitials; Dρ
(x,y,z,T) are the diffusion coefficients of point radiation defects; terms V2
(x,y,z,t) and
I2
(x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V
(x,y,z,T) is the parameter of
recombination of point radiation defects; kI,I
(x,y,z,T) and kV,V
(x,y,z,T) are the parameters of generation of
simplest complexes of point radiation defects.
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 30
Further, we determine distributions in space and time of concentrations of divacancies ΦV
(x,y,z,t) and
diinterstitials ΦI
(x,y,z,t) by solving the following system of equations[21,22]








Φ Φ
Φ Φ
I
I
I
I
x y z t
t x
D x y z T
x y z t
x y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
I
( )
( )





 +


Φ
+ ( )
( )





 + ( )




z
D x y z T
x y z t
z
k x y z T I x y z
I
I
I I
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t k x y z T I x y z t
I
( )− ( ) ( )
, , , , , , (6)








Φ Φ
Φ Φ
V
V
V
V
x y z t
t x
D x y z T
x y z t
x y
D x
, , ,
, , ,
, , ,
( )
= ( )
( )





 + ,
, , ,
, , ,
y z T
x y z t
y
V
( )
( )





 +


Φ
+ ( )
( )





 + ( )




z
D x y z T
x y z t
z
k x y z T V x y z
V
V
V V
Φ
Φ
, , ,
, , ,
, , , , , ,
,
2
t
t k x y z T V x y z t
V
( )− ( ) ( )
, , , , , , .
Boundary and initial conditions for these equations are
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
= = =
Φ Φ Φ
  
x y z t
x
x y z t
x
x y z t
y
x x L y
x
, , ,
,
, , ,
,
, , ,
0 0
0 0 =
=
∂ ( )
∂
=
∂ ( )
∂
=
∂ ( )
∂
=
=
0 0
0
0
,
, , ,
, , ,
,
, , ,
Φ
Φ Φ

 
x y z t
y
x y z t
z
x y z t
z
y L
z
y
z
z Lz
=
= 0
ΦI
(x,y,z,0)=fΦI
(x,y,z), ΦV
(x,y,z,0)=fΦV
(x,y,z).(7)
Here, DΦρ
(x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects; kI
(x,y,z,T)
and kV
(x,y,z,T) are the parameters of decay of these complexes.
We calculate distributions of concentrations of point radiation defects in space and time by recently
elaborated approach.[18]
The approach based on transformation of approximations of diffusion coefficients
in the following form: Dρ
(x,y,z,T)=D0ρ
[1+ερ
gρ
(x,y,z,T)], where D0ρ
are the average values of diffusion
coefficients, 0≤ερ
1, |gρ
(x, y,z,T)|≤1, ρ =I,V. We also used analogs transformation of approximations of
parameters of recombination of point defects and parameters of generation of their complexes:
kI,V
(x,y,z,T)=k0I,V
[1+εI,V
gI,V
(x,y,z,T)], kI,I
(x,y,z,T)=k0I,I
[1+εI,I
gI,I
(x,y,z,T)] and kV,V
(x,y,z,T)=k0V,V
[1+εV,V
gV,V
(x,y,z,T)], where k0ρ1,ρ2
are the their average values, 0≤εI,V
1, 0≤εI,I
1, 0≤εV,V
1, | gI,V
(x,y,z,T)|≤1, |
gI,I
(x,y,z,T)|≤1, |gV,V
(x,y,z,T)|≤1. Let us introduce the following dimensionless variables:
 
I x y z t I x y z t I V x y z t V x y z t V L k I
, , , , , , , , , , , , , ,
* *
( ) = ( ) ( ) == ( ) =
ω 2
0 ,
,
,
V I V
I V
D D
L k D D
0 0
2
0 0 0
Ωρ ρ ρ
=
,
χ = x/Lx
, η = y/Ly
, φ = z/Lz
. The introduction leads to transformation of Eqs.(4) and conditions (5) to the
following form
∂ ( )
∂
=
∂
∂
+ ( )

 

∂ ( )
 
I D
D D
g T
I
I
I V
I I
χ η ϕ ϑ
ϑ χ
ε χ η ϕ
χ η ϕ ϑ
, , ,
, , ,
, , ,
0
0 0
1
∂
∂






+
∂
∂
+ ( )

 
 ×
{
χ η
ε χ η ϕ
1 I I
g T
, , ,
×
∂ ( )
∂



+
∂
∂
+ ( )

 

I D
D D
D
D D
g T
I
I V
I
I V
I I
χ η ϕ ϑ
η ϕ
ε χ η ϕ
, , ,
, , ,
0
0 0
0
0 0
1 

∂ ( )
∂






− ( ) ×


I
I
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
, , ,
, , ,
× + ( )

 
 ( )− + ( )
ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
1 1
I V I V I I I I I
g T V g T
, , , ,
, , , , , , , , ,
 Ω 

 
 ( )

I 2
χ η ϕ ϑ
, , ,  (8)
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 31
∂ ( )
∂
=
∂
∂
+ ( )

 

∂ ( )
 
V D
D D
g T
V
V
I V
V V
χ η ϕ ϑ
ϑ χ
ε χ η ϕ
χ η ϕ ϑ
, , ,
, , ,
, , ,
0
0 0
1
∂
∂






+
∂
∂
+ ( )

 
 ×
{
χ η
ε χ η ϕ
1 V V
g T
, , ,
×
∂ ( )
∂



+
∂
∂
+ ( )

 

V D
D D
D
D D
g T
V
I V
V
I V
V V
χ η ϕ ϑ
η ϕ
ε χ η ϕ
, , ,
, , ,
0
0 0
0
0 0
1 

∂ ( )
∂






− ( ) ×


V
I
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
, , ,
, , ,
× + ( )

 
 ( )− + ( )
ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
1 1
I V I V V V V V V
g T V g T
, , , ,
, , , , , , , , ,
 Ω 

 
 ( )

V 2
χ η ϕ ϑ
, , ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ χ
, , ,
0
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ χ
, , ,
1
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
, , ,
0
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
, , ,
1
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
, , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
, , ,
1
0 , 
ρ χ η ϕ ϑ
χ η ϕ ϑ
ρ
ρ
, , ,
, , ,
*
( ) =
( )
f
.(9)
We determine solutions of Eqs.(8) with conditions (9) framework recently introduced approach,[18]
that
is, as the power series
 
ρ χ η ϕ ϑ ε ω ρ χ η ϕ ϑ
ρ ρ
, , , , , ,
( ) = ( )
=
∞
=
∞
=
∞
∑
∑
∑ i j k
ijk
k
j
i
Ω
0
0
0
.(10)
Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equations for
initial-order approximations of concentration of point defects 
I000 χ η ϕ ϑ
, , ,
( ) and 
V000 χ η ϕ ϑ
, , ,
( ) and
corrections for them 
Iijk χ η ϕ ϑ
, , ,
( ) and 
Vijk χ η ϕ ϑ
, , ,
( ), i ≥1, j ≥1, k ≥1. The equations are presented in
the Appendix. Solutions of the equations could be obtained by standard Fourier approach.[24,25]
The
solutions are presented in the Appendix.
Now, we calculate distributions of concentrations of simplest complexes of point radiation defects in
space and time. To determine the distributions we transform approximations of diffusion coefficients in
the following form: DΦρ
(x,y,z,T)=D0Φρ
[1+ εΦρ
gΦρ
(x,y,z,T)], where D0Φρ
are the average values of diffusion
coefficients. In this situation, the Eqs.(6) could be written as
∂
∂
∂
∂
ε
∂
∂
Φ Φ
Φ Φ Φ
I
I I I
I
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
= + ( )

 

( )

0 1






+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
+ + ( )

 

( )






+
D
y
g x y z T
x y z t
y
D
z
I I I
I
I
0 0
1 1
Φ Φ Φ Φ
Φ
∂
∂
ε
∂
∂
∂
∂
, , ,
, , ,
+
+ ( )

 

( )






−
ε
∂
∂
Φ Φ
Φ
I I
I
g x y z T
x y z t
z
, , ,
, , ,
− ( ) ( )
k x y z T I x y z t
I , , , , , ,
∂
∂
∂
∂
ε
∂
∂
Φ Φ
Φ Φ Φ
V
V V V
V
x y z t
t
D
x
g x y z T
x y z t
x
, , ,
, , ,
, , ,
( )
= + ( )

 

( )

0 1






+ ( ) ( )+
k x y z T I x y z t
I I
, , , , , , ,
2
+ + ( )

 

( )






+
D
y
g x y z T
x y z t
y
D
z
V V V
V
V
0 0
1 1
Φ Φ Φ Φ
Φ
∂
∂
ε
∂
∂
∂
∂
, , ,
, , ,
+
+ ( )

 

( )






−
ε
∂
∂
Φ Φ
Φ
V V
V
g x y z T
x y z t
z
, , ,
, , ,
− ( ) ( )
k x y z T I x y z t
I , , , , , , .
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 32
Farther, we determine solutions of above equations as the following power series
Φ Φ
Φ
ρ ρ ρ
ε
x y z t x y z t
i
i
i
, , , , , ,
( ) = ( )
=
∞
∑
0
.(11)
Now, we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The using
gives the possibility to obtain equations for initial-order approximations of concentrations of complexes
of defects Φρ0
(x,y,z,t), corrections for them Φρi
(x,y,z,t) (for them i ≥1) and boundary and initial conditions
for them. We remove equations and conditions to the Appendix. Solutions of the equations have been
calculated by standard approaches[24,25]
and presented in the Appendix.
Now, we calculate distribution of concentration of dopant in space and time using the approach, which
was used for analysis of radiation defects. To use the approach we consider following transformation
of approximation of dopant diffusion coefficient: DL
(x,y,z,T)=D0L
[1+ εL
gL
(x,y,z,T)], where D0L
is the
average value of dopant diffusion coefficient, 0≤εL
 1, |gL
(x,y,z,T)|≤1. Farther, we consider solution of
Eq.(1) as the following series:
C x y z t C x y z t
L
i j
ij
j
i
, , , , , ,
( ) = ( )
=
∞
=
∞
∑
∑ε ξ
1
0
.
Using the relation into Eq.(1) and conditions (2) leads to obtaining equations for the functions Cij
(x,y,z,t)
(i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in the Appendix.
Solutions of the equations have been calculated by standard approaches (see, for example,[24,25]
). The
solutions are presented in the Appendix.
We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically
using the second-order approximations on all parameters, which have been used in appropriate series.
Usually, the second-order approximations are enough good approximations to make qualitative analysis
and to obtain quantitative results. All analytical results have been checked by numerical simulation.
DISCUSSION
In this section, we analyzed spatio-temporal distributions of concentrations of dopants. Figure 2 shows
typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures.
We calculate these distributions of concentrations of dopants under the following condition: value of
dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest
Figure 2: (a) Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direction,
which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion
coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient
in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. (b) Dependences of concentration
of dopant, implanted in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface
between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure
increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than
value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogenous sample and annealing time Θ
= 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0
. Curve 2 corresponds to homogenous sample and annealing time Θ = 0.0057 (Lx
2
+Ly
2
+Lz
2
)/D0
.
Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx
2
+Ly
2
+Lz
2
)/D0
and Θ = 0.0057
(Lx
2
+Ly
2
+Lz
2
)/D0
, respectively
b
a
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 33
areas. In this situation, one can find increasing of compactness of field-effect transistors with increasing
of homogeneity of distribution of concentration of dopant at one time. Changing relation between values
of dopant diffusion coefficients leads to opposite result [Figure 3].
It should be noted, that framework the considered approach one shall optimize annealing of dopant and/
or radiation defects. To do the optimization we used recently introduced criterion.[26-34]
The optimization
based on approximation real distribution by step-wise function ψ (x,y,z) [Figure 4]. Farther, the required
values of optimal annealing time have been calculated by minimization the following mean-squared
error.
U
L L L
C x y z x y z d z d y d x
x y z
L
L
L z
y
x
= ( )− ( )

 

∫
∫
∫
1
0
0
0
, , , , ,
Θ  .(12)
We show optimal values of annealing time as functions of parameters on Figure 5. It is known, that
standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case,
after finishing the annealing dopant achieves interface between layers of heterostructure. If the dopant
has no enough time to achieve the interface, it is practicably to anneal the dopant additionally. The
Figure 5b shows the described dependences of optimal values of additional annealing time for the same
parameters as for Figure 5a. Necessity to anneal radiation defects leads to smaller values of optimal
annealing of implanted dopant in comparison with optimal annealing time of infused dopant.
Figure 3: (a) Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from
Figs. 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values
of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient in this
section is smaller, than value of dopant diffusion coefficient in nearest sections. (b) Calculated distributions of implanted
dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted dopant in system of two
epitaxial layers. Dushed lines are spatial distributions of implanted dopant in one epitaxial layer. Annealing time increases
with increasing of number of curves
b
a
Figure 4: (a) Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different values
of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds
to increasing of annealing time. (b) Distributions of concentration of implanted dopant in depth of heterostructure from
Figure 1 for different values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of
number of curve corresponds to increasing of annealing time
b
a
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 34
CONCLUSION
In this paper, we introduce an approach to increase integration rate of element of a double-tail dynamic
comparator. The approach gives us possibility to decrease area of the elements with smaller increasing
of the element’s thickness.
REFERENCES
1. Lachin VI, Savelov NS. Electronics. Rostov-Na-Donu: Phoenix; 2001.
2. Alexenko AG, Shagurin II. Microcircuitry. Moscow: Radio and Communication; 1990.
3. Avaev NA, Naumov YE, Frolkin VT. Basis of Microelectronics. Moscow: Radio and Communication; 1991.
4. Wang Z, Duan Q, Roh J. A 0.03mm2 Delta-sigma modulator with cascaded inverter amplifier. Analog Integr Circ Sig
Process 2014;81:495-501.
5. Fathi D, Forouzandeh B, Masoumi N. New enhanced noise analysis in active mixers in nanoscale technologies.
Nano. 2009;4:233-8.
6. Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N. Pareto ANOVA analysis for CMOS. 0.18 µm two-stage Op-amp.
Mat Sci Sem Proc 2014;24:9-14.
7. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudrik YY, et al. Technologies dependencies.
Semiconductors 2009;43:897-903.
8. Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF, Chow TP Jr. Monolithic integration of light-emitting diodes and
power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits
in GaN on sapphire substrate. Appl Phys Lett 2013;102:192107-9.
9. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor.
Semiconductors 2009;43:971-4.
10. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, et al. Formation of donor centers after
annealing of dysprosium and holmium implanted silicon. Semiconductors 1998;32:1029-32.
11. Kumar MJ, Singh TV. Quantum confinement effect in strained silicon MOSFET. Int J Nanosci 2008;7:81-4.
12. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via
band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102:053901-5.
13. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in
p-type ZnO. Appl Phys Lett 2013;102:152114-8.
14. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the
maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4.
15. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:094901-5.
16. Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow p-n-junctions in Si prepared by pulse photon annealing.
Semiconductors 2020;36:611-7.
17. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in
Figure 5: (a) Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes
the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion
coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter
ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2
and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0.
(b) Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes
the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion
coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε
for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε
= γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0
b
a
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 35
semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836-43.
18. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors.Analytical approaches
to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58-82.
19. Erofeev YN. Pulse Devices. Moscow: Higher School; 1989.
20. Kozlivsky VV. Modification of Semiconductors by Proton Beams. Saint-Petersburg: Nauka; 2003.
21. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991.
22. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979.
23. Fahey PM, Griffin PB, Plummer JD. Point defects and dopent diffusion in silicon. Rev Mod Phys 1989;61:289-388.
24. Tikhonov AN, Samarskii AA. The Mathematical Physics Equations. Nauka: Moscow; 1972.
25. Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford, United Kingdom: Oxford University Press; 1964.
26. PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity.
Russ Microelectron 2007;36:33-9.
27. Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for
production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97.
28. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational
amplifier to increase their integration rate. Influence mismatch-induced stress. J Comp Theor Nanosci 2017;14:4885-99.
29. Pankratov EL. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density
of their elements. Influence of miss-match induced stress. Adv Sci Eng Med 2017;9:787-801.
30. Pankratov EL, Bulaeva EA. On increasing of density of transistors in a hybrid cascaded multilevel inverter. Multidiscipline
Model Mater Struct 2017;13:664-77.
31. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of
optimization. Int J Micronano Scale Transp 2014;4:17-31.
32. Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect
heterotransistors. Multidiscipline Model Mater Struct 2016;12:578-604.
33. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater
Sci Semiconductor Process 2015;34:260-8.
APPENDIX
Equations for the functions 
Iijk χ η ϕ ϑ
, , ,
( ) and 
Vijk χ η ϕ ϑ
, , ,
( ), i ≥0, j ≥0, k ≥0 and conditions for them
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
000 0
0
2
000
2
2
000
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
000
2

I , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
000 0
0
2
000
2
2
000
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂






η
χ η ϕ ϑ
ϕ
2
2
000
2

V , , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
  
I D
D
I I
i I
V
i i
00 0
0
2
00
2
2
00
χ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
η
, , , , , , ,
2
2
2
00
2
0
0
+
∂ ( )
∂





 + ×

I D
D
i I
V
χ η ϕ ϑ
ϕ
, , ,
×
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
−
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I
i
I
, , ,
, , ,
, , ,
 
100 i
i− ( )
∂





 +





100 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











−
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
g T
I
I
i
, , ,
, , ,

100
, i ≥1,
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
  
V D
D
V V
i V
I
i i
00 0
0
2
00
2
2
00
χ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
η
, , , , , , ,
2
2
2
00
2
+
∂ ( )
∂





 +
∂
∂
( ) ×




V
g T
i
V
χ η ϕ ϑ
ϕ χ
χ η ϕ
, , ,
, , ,
×
∂ ( )
∂


 +
∂
∂
( )
∂
− −
 
V D
D
D
D
g T
V
i V
I
V
I
V
i
100 0
0
0
0
100
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
χ
χ η ϕ ϑ
η ϕ
χ η ϕ
, , ,
, , ,
( )
∂





 +
∂
∂
( ) ×


g T
V
×
∂ ( )
∂



−

V D
D
i V
I
100 0
0
χ η ϕ ϑ
ϕ
, , ,
, i ≥1,
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 36
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
010 0
0
2
010
2
2
010
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
010
2

I , , ,
− + ( )

 
 ( ) ( )
1 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
 
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
010 0
0
2
010
2
2
010
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
010
2

V , , ,
− + ( )

 
 ( ) ( )
1 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V
, , , , , , , , , , ,
  ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
020 0
0
2
020
2
2
020
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
020
2

I , , ,
− + ( )

 
 ( ) ( )+
1 010 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V I
, , , , , , , , , , ,
   χ
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 


V010
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
I
V
020 0
0
2
020
2
2
020
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
020
2

V , , ,
− + ( )

 
 ( ) ( )+
1 010 000 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I V I V
g T I V I
, , , , , , , , , , ,
   χ
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 


V010 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
001 0
0
2
001
2
2
001
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
001
2

I , , ,
− + ( )

 
 ( )
1 000
2
ε χ η ϕ χ η ϕ ϑ
I I I I
g T I
, , , , , , , ,

∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
001 0
0
2
001
2
2
001
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
001
2

V , , ,
− + ( )

 
 ( )
1 000
2
ε χ η ϕ χ η ϕ ϑ
I I I I
g T V
, , , , , , , ,
 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
110 0
0
2
110
2
2
110
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 + ×
η
χ η ϕ ϑ
ϕ
2
2
110
2
0
0

I D
D
I
V
, , ,
×
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
g T
I
g T
I
I I
, , ,
, , ,
, , ,
 
010 010
0 χ η ϕ ϑ
η ϕ
χ η ϕ
, , ,
, , ,
( )
∂





 +
∂
∂
( ) ×







g T
I
×
∂ ( )
∂








− ( ) ( )+

  
I
I V I
010
100 000
χ η ϕ ϑ
ϕ
χ η ϕ ϑ χ η ϕ ϑ
, , ,
, , , , , , 0
000 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
( ) ( )

 
 ×

V
× + ( )

 

1 ε χ η ϕ
I I I I
g T
, , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
110 0
0
2
110
2
2
110
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
110
2

V , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
V
g T
V
I
V V
0
0
010
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






V010 χ η ϕ ϑ
η
, , ,
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 37
+
∂
∂
( )
∂ ( )
∂











− +
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η
g T
V
g
V V V V V
, , ,
, , ,
, ,
, ,

010
1 ϕ
ϕ,T
( )

 
 ×
× ( ) ( )+ ( ) ( )
   
V I V I
100 000 000 100
χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ
, , , , , , , , , , , ,


 
 ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
002 0
0
2
002
2
2
002
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
002
2

I , , ,
− + ( )

 
 ( ) ( )
1 001 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
I I I I
g T I I
, , , , , , , , , , ,
 
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
002 0
0
2
002
2
2
002
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 −
η
χ η ϕ ϑ
ϕ
2
2
002
2

V , , ,
− + ( )

 
 ( ) ( )
1 001 000
ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ
V V V V
g E V V
, , , , , , , , , , ,
  ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
101 0
0
2
101
2
2
101
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
101
2

I , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
I
g T
I
V
I I
0
0
001
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






I001 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− + (
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
I
g T
I I I
, , ,
, , ,
, , ,

001
1 )
)

 
 ( ) ( )
 
I V
100 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
101 0
0
2
101
2
2
101
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 +
η
χ η ϕ ϑ
ϕ
2
2
101
2

V , , ,
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
D
D
g T
V
g T
V
I
V V
0
0
001
χ
χ η ϕ
χ η ϕ ϑ
χ η
χ η ϕ
, , ,
, , ,
, , ,

)
)
∂ ( )
∂





 +






V001 χ η ϕ ϑ
η
, , ,
+
∂
∂
( )
∂ ( )
∂











− + (
ϕ
χ η ϕ
χ η ϕ ϑ
ϕ
ε χ η ϕ
g T
V
g T
V V V
, , ,
, , ,
, , ,

001
1 )
)

 
 ( ) ( )
 
I V
000 100
χ η ϕ ϑ χ η ϕ ϑ
, , , , , , ;
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
I D
D
I I
I
V
011 0
0
2
011
2
2
011
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 − ( ) ×
η
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
2
2
011
2 010


I
I
, , ,
, , ,
× + ( )

 
 ( )− + ( )
1 1
000
ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
I I I I I V I V
g T I g T
, , , ,
, , , , , , , , ,
 

 
 ( ) ( )
 
I V
001 000
χ η ϕ ϑ χ η ϕ ϑ
, , , , , ,
∂ ( )
∂
=
∂ ( )
∂
+
∂
  
V D
D
V V
V
I
011 0
0
2
011
2
2
011
χ η ϕ ϑ
ϑ
χ η ϕ ϑ
χ
χ η ϕ ϑ
, , , , , , , , ,
(
( )
∂
+
∂ ( )
∂





 − ( ) ×
η
χ η ϕ ϑ
ϕ
χ η ϕ ϑ
2
2
011
2 010


V
V
, , ,
, , ,
× + ( )

 
 ( )− + ( )
1 1
000
ε χ η ϕ χ η ϕ ϑ ε χ η ϕ
V V V V I V I V
g T V g t
, , , ,
, , , , , , , , ,
 

 
 ( ) ( )
 
I V
000 001
χ η ϕ ϑ χ η ϕ ϑ
, , , , , , ;
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ
ijk
x
, , ,
0
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
χ
ijk
x
, , ,
1
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
ijk , , ,
0
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
η η
ijk , , ,
1
0 ,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
ijk , , ,
0
0,
∂ ( )
∂
=
=

ρ χ η ϕ ϑ
ϕ ϕ
ijk , , ,
1
0 (i ≥0, j ≥0, k ≥0);
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 38

ρ χ η ϕ χ η ϕ ρ
ρ
000 0
, , , , , *
( ) = ( )
f , 
ρ χ η ϕ
ijk , , ,0 0
( ) = (i ≥1, j ≥1, k ≥1).
Solutions of the above equations could be written as

ρ χ η ϕ ϑ χ η ϕ ϑ
ρ ρ
000
1
1 2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
L L
F c c c e
n n
n
,
where F nu nv n w f u v w d wd vd u
n n
ρ ρ
ρ
π π π
= ( ) ( ) ( ) ( )
∫
∫
∫
1
0
1
0
1
0
1
*
cos cos cos , , , cn
(χ) = cos (π n χ),
e n D D
nI V I
ϑ π ϑ
( ) = −
( )
exp 2 2
0 0 , e n D D
nV I V
ϑ π ϑ
( ) = −
( )
exp 2 2
0 0 ;

I
D
D
nc c c e e s u c
i
I
V
n nI nI n n
00
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v
I u v w
u
i
n
( )
∂ ( )
∂
×
−
=
∞
∫
∫
∫
∫
∑

100
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× ( ) ( ) − ( ) ( ) ( ) ( ) −
c w g u v w T d wd vd u d
D
D
nc c c e e
n I
I
V
n nI nI
, , , τ π χ η ϕ ϑ
2 0
0
τ
τ
ϑ
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
c u s v
n n
n 0
1
0
1
0
1
× ( ) ( )
∂ ( )
∂
−
−
∫c w g u v w T
I u v w
v
d wd vd u d
D
D
nc
n I
i I
V
, , ,
, , ,

100
0
1
0
0
2
τ
τ π n
n nI nI
n
c c e e
χ η ϕ ϑ τ
ϑ
( ) ( ) ( ) ( ) −
( ) ×
∫
∑
=
∞
0
1
× ( ) ( ) ( ) ( )
∂ ( )
∂
−
∫
c u c v s w g u v w T
I u v w
w
d wd vd u d
n n n I
i
, , ,
, , ,

100
0
1
0


1
1
0
1
∫
∫ , i ≥1,

V
D
D
nc c c e e s u c
i
V
I
n nV nI n n
00
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) v
v g u v w T
V
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) ( ) ( ) ( )
−
c w
V u
u
d wd vd u d
D
D
nc c c e e
n
i V
I
n nV n

100 0
0
,τ
τ χ η ϕ ϑ I
I n n
n
c u s v
−
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
τ
ϑ
0
1
0
1
0
1
× ( ) ( )
∂ ( )
∂
−
−
∫
2 2
100
0
1
0
0
π
τ
τ π χ
c w g u v w T
V u
v
d wd vd u d
D
D
nc
n V
i V
I
n
, , ,
,

(
( ) ( ) ( ) ( ) ×
=
∞
∑ c c enV
n
η ϕ ϑ
1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u c v s w g u v w T
V u
w
d wd vd u d
nI n n n V
i
τ
τ
τ
, , ,
,

100
0
1
1
0
1
0
1
0
∫
∫
∫
∫
ϑ
, i ≥1,
where sn
(χ) = sin (π n χ);

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
010 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( ) ( )
1 000 000
ε τ τ
I V I V
g u v w T I u v w V u v w d wd vd u
, , , , , , , , , , ,
  d
d τ ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
020
0
0
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( )
D
D
c c c e e c u c
I
V
n n n n n n n v
v c w
n I V
n
( ) ( ) +

 ×
∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε
ϑ
,
× ( )
 ( ) ( )+ (
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
  
010 000 000
   )
) ( )

 


V u v w d wd vd u d
010 , , ,  ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
001 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
× + ( )

 
 ( )
1 000
2
ε ρ τ τ
ρ ρ ρ ρ
, , , , , , , ,
g u v w T u v w d wd vd u d
 ;

ρ χ η ϕ ϑ χ η ϕ ϑ τ
ρ ρ
002 2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c e e c u c v c w
n n n n n n n n (
( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
n
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 39
× + ( )

 
 ( ) ( )
1 001 000
ε ρ τ ρ τ
ρ ρ ρ ρ
, , , , , , , , , , ,
g u v w T u v w u v w d wd vd u
  d
d τ ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
110
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) (
−
g u v w T
I u v w
u
d wd vd u d
D
D
nc c
I
i I
V
n n
, , ,
, , ,

100 0
0
2
τ
τ π χ η)
) ( ) ( ) ×
=
∞
∑ c e
n nI
n
ϕ ϑ
1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u s v c u g u v w T
I u v w
v
d wd vd
nI n n n I
i
τ
τ
, , ,
, , ,

100
u
u d
D
D
I
V
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ − ×
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
−
n e e c u c v s u g u v w T
I u v w
nI nI n n n I
i
ϑ τ
τ
, , ,
, , ,

100
∂
∂
×
∫
∫
∫
∫
∑
=
∞
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( )
c c c c e c c e c u c v c
n n n n nI n n nI n n n
χ η ϕ χ ϑ η ϕ τ
2 v
v I V
n
( ) + ×


∫
∫
∫
∫
∑
=
∞
1
0
1
0
1
0
1
0
1
ε
ϑ
,
× ( )
 ( ) ( )+ (
g u v w T I u v w V u v w I u v w
I V
, , , , , , , , , , , , ,
  
100 000 000
   )
) ( )

 


V u v w d wd vd u d
100 , , , 

V
D
D
nc c c e e s u
V
I
n n n nV nV n
110
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v c u
n n
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) (
−
g u v w T
V u v w
u
d wd vd u d
D
D
nc c
V
i V
I
n n
, , ,
, , ,

100 0
0
2
τ
τ π χ η)
) ( ) ( ) ×
=
∞
∑ c e
n nV
n
ϕ ϑ
1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
−
e c u s v c u g u v w T
V u v w
v
d wd vd
nV n n n V
i
τ
τ
, , ,
, , ,

100
u
u d
D
D
V
I
τ π
ϑ
0
1
0
1
0
1
0
0
0
2
∫
∫
∫
∫ − ×
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
−
ne e c u c v s u g u v w T
V u v w
nV nV n n n V
i
ϑ τ
τ
, , ,
, , ,

100
∂
∂
×
∫
∫
∫
∫
∑
=
∞
w
d wd vd u d
n
τ
ϑ
0
1
0
1
0
1
0
1
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
( ) ( ) ( ) +
c c c c e c c e c u c v
n n n n nI n n nV n n
χ η ϕ χ ϑ η ϕ τ
2 1 ε
ε
ϑ
I V I V
n
g u v w T
, , , , ,
( )

 
 ×
∫
∫
∫
∫
∑
=
∞
0
1
0
1
0
1
0
1
× ( ) ( ) ( )+ ( )
c w I u v w V u v w I u v w V u v
n
   
100 000 000 100
, , , , , , , , , , ,
   w
w d wd vd u d
, 
( )

 
 ;

I
D
D
nc c c e e s u
I
V
n n n nI nI n
101
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v g u v w T
n I
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
× ( )
∂ ( )
∂
− ( ) ( ) ( )
c w
I u v w
u
d wd vd u d
D
D
nc c c e
n
I
V
n n n n

001 0
0
2
, , ,τ
τ π χ η ϕ I
I
n
ϑ
( ) ×
=
∞
∑
1
× ( ) ( ) ( )
∂ ( )
∂
−
∫
∫s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π I
I
V
nI n n n
n
D
ne c c c
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u c v s w g u v w T
I u v w
w
d wd vd u d
nI n n n I
τ
τ
, , ,
, , ,

001
τ
τ χ η ϕ
ϑ
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
c c c
n n n
n
× ( ) −
( ) ( ) ( ) ( ) + ( )

 

e e c u c v c w g u v w T I u
nI nI n n n I V I V
ϑ τ ε
1 100
, , , , ,  ,
, , , , , ,
v w V u v w d wd vd u d
τ τ τ
ϑ
( ) ( )
∫
∫
∫
∫ 
000
0
1
0
1
0
1
0

V
D
D
nc c c e e s u
V
I
n n n nV nV n
101
0
0
2
χ η ϕ ϑ π χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) c
c v g u v w T
n V
n
( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
, , ,
0
1
0
1
0
1
0
1
ϑ
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 40
× ( )
∂ ( )
∂
− ( ) ( ) ( )
c w
V u v w
u
d wd vd u d
D
D
nc c c e
n
V
I
n n n n

001 0
0
2
, , ,τ
τ π χ η ϕ I
I nV n
n
e c u
ϑ τ
ϑ
( ) −
( ) ( ) ×
∫
∫
∑
=
∞
0
1
0
1
× ( ) ( ) ( )
∂ ( )
∂
−
∫
∫s v c w g u v w T
I u v w
v
d wd vd u d
D
n n I , , ,
, , ,

001
0
1
0
1
0
2
τ
τ π I
I
V
nI n n n
n
D
ne c c c
0 1
ϑ χ η ϕ
( ) ( ) ( ) ( ) ×
=
∞
∑
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u c v s w g u v w T
V u v w
w
d wd vd u d
nV n n n V
τ
τ
, , ,
, , ,

001
τ
τ χ η ϕ
ϑ
0
1
0
1
0
1
0 1
2
∫
∫
∫
∫ ∑
− ( ) ( ) ( ) ×
=
∞
c c c
n n n
n
× ( ) −
( ) ( ) ( ) ( ) + ( )

 

e e c u c v c w g u v w T I u
nV nV n n n I V I V
ϑ τ ε
1 100
, , , , ,  ,
, , , , , , ;
v w V u v w d wd vd u d
τ τ τ
ϑ
( ) ( )
∫
∫
∫
∫ 
000
0
1
0
1
0
1
0

I c c c e e c u c v c w
n n n nI nI n n n
011 2
χ η ϕ ϑ χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× + ( )

 
 ( )+ + ( )
1 1
010
ε τ ε
I I I I I V I V
g u v w T I u v w g u v w T
, , , ,
, , , , , , , , ,
 

 
 ( ) ( )}
 
I u v w V u v w d wd vd u d
001 000
, , , , , ,
τ τ τ

V c c c e e c u c v c w
n n n nV nV n n n
011 2
χ η ϕ ϑ χ η ϕ ϑ τ
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) ( ) ( ) (
( ) ( )
{ ×
∫
∫
∫
∫
∑
=
∞

I u v w
n
000
0
1
0
1
0
1
0
1
, , ,τ
ϑ
× + ( )

 
 ( )+ + ( )
1 1
010
ε τ ε
I I I I I V I V
g u v w T I u v w g u v w T
, , , ,
, , , , , , , , ,
 

 
 ( ) ( )}
 
I u v w V u v w d wd vd u d
001 000
, , , , , , .
τ τ τ
Equations for functions Φρi
(x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation
defects.







Φ Φ Φ
Φ
I
I
I I
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦI x y z t
z
0
2
, , ,
( )





 +

+ ( ) ( )− ( ) ( )
k x y z T I x y z t k x y z T I x y z t
I I I
, , , , , , , , , , , , ,
2







Φ Φ Φ
Φ
V
V
V V
x y z t
t
D
x y z t
x
x y z t
y
0
0
2
0
2
2
0
2
2
, , , , , , , , ,
( )
=
( )
+
( )
+
Φ
ΦV x y z t
z
0
2
, , ,
( )





 +

+ ( ) ( )− ( ) ( )
k x y z T V x y z t k x y z T V x y z t
V V V
, , , , , , , , , , , , ,
2
;







Φ Φ Φ
Φ
I i
I
I i I i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
( )
=
( )
+
( )
+
0
2
2
2
2
2
Φ
ΦI i x y z t
z
, , ,
( )








+
 2
+ ( )
( )





 + (
−
D
x
g x y z T
x y z t
x y
g x y z T
I I
I i
I
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , , )
)
( )





 +





−


ΦI i x y z t
y
1 , , ,
+ ( )
( )











−




z
g x y z T
x y z t
z
I
I i
Φ
Φ
, , ,
, , ,
1
, i≥1,







Φ Φ Φ
Φ
V i
V
V i V i
x y z t
t
D
x y z t
x
x y z t
y
, , , , , , , , ,
( )
=
( )
+
( )
+
0
2
2
2
2
2
Φ
ΦV i x y z t
z
, , ,
( )








+
 2
+ ( )
( )





 + (
−
D
x
g x y z T
x y z t
x y
g x y z T
V V
V i
V
0
1
Φ Φ Φ
Φ






, , ,
, , ,
, , , )
)
( )





 +





−


ΦV i x y z t
y
1 , , ,
+ ( )
( )











−




z
g x y z T
x y z t
z
V
V i
Φ
Φ
, , ,
, , ,
1
, i≥1;
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 41
Boundary and initial conditions for the functions takes the form
∂ ( )
∂
=
=
Φi
x
x y z t
x
, , ,
0
0 ,
∂ ( )
∂
=
=
Φi
x L
x y z t
x
x
, , ,
0,
∂ ( )
∂
=
=
Φi
y
x y z t
y
, , ,
0
0,
∂ ( )
∂
=
=
Φi
y L
x y z t
y
y
, , ,
0,
∂ ( )
∂
=
=
Φi
z
x y z t
z
, , ,
0
0,
∂ ( )
∂
=
=
Φi
z L
x y z t
z
z
, , ,
0 , i≥0; Φρ
0
(x,y,z,0)=fΦρ
(x,y,z),
Φρ
i
(x,y,z,0)=0, i≥1.
Solutions of the above equations could be written as
Φ Φ Φ
  
0
1
1 2
x y z t
L L L L L L
F c x c y c z e t
x y z x y z
n n n n n
n
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ ∑
+ ( ) ( ) ( ) ×
=
∞
2
1
L
n c x c y c z
n n n
n
× ( ) −
( ) ( ) ( ) ( ) ( ) ( )−


e t e c u c v c w k u v w T I u v w
n n n n n I I
Φ Φ
ρ ρ
τ τ
, , , , , , ,
2
0
0
0
0
0
L
L
L
t z
y
x
∫
∫
∫
∫
− ( ) ( )

k u v w T I u v w d wd vd u d
I , , , , , ,  ,
where F c u c v c w f u v w d wd vd u
n n n n
L
L
L z
y
x
Φ Φ
 
= ( ) ( ) ( ) ( )
∫
∫
∫ , ,
0
0
0
, e t n D t L L L
n x y z
Φ Φ
ρ ρ
π
( ) = − + +
( )




− − −
exp 2 2
0
2 2 2
,
cn
(x) = cos (π n x/Lx
);
Φ Φ Φ
ρ
π
τ
ρ ρ
i
x y z
n n n n n n
x y z t
L L L
nc x c y c z e t e s u
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( ) (
2
2 )
) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n
L
L
L
t
n
z
y
x
Φρ
, , ,
0
0
0
0
1
× ( )
( )
− ( ) ( ) ( )
−
c w
u v w
u
d wd vd u d
L L L
nc x c y c z
n
I i
x y z
n n n
∂ τ
∂
τ
π
ρ
Φ 1
2
2
, , ,
e
e t e
n n
t
n
Φ Φ
ρ ρ
τ
( ) −
( ) ×
∫
∑
=
∞
0
1
× −
( ) ( ) ( ) ( ) ( )
( )
−
e c u s v c w g u v w T
u v w
v
d wd v
n n n n
I i
Φ Φ
Φ
ρ ρ
ρ
τ
∂ τ
∂
, , ,
, , ,
1
d
d u d
L L L
n
L
L
L
t
x y z n
z
y
x
τ
π
0
0
0
0
2
1
2
∫
∫
∫
∫ ∑
− ×
=
∞
× ( ) −
( ) ( ) ( ) ( )
( )
−
e t e c u c v s w
u v w
w
g u v w
n n n n n
I i
Φ Φ Φ
Φ
ρ ρ
ρ
ρ
τ
∂ τ
∂
1 , , ,
, , ,T
T d wd vd u d
L
L
L
t z
y
x
( ) ×
∫
∫
∫
∫ τ
0
0
0
0
× ( ) ( ) ( )
c x c y c z
n n n , i ≥1,
where sn
(x) = sin (π n x/Lx
).
Equations for the functions Cij
(x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
00
0
2
00
2 0
2
00
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
00
2
∂ ( )
∂
, , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
∂
C x y z t
t
D
C x y z t
x
C x y z t
y
C
i
L
i i
0
0
2
0
2
2
0
2
2
, , , , , , , , , i
i x y z t
z
0
2
, , ,
( )
∂





 +
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
(
−
D
x
g x y z T
C x y z t
x
D
y
g x y z T
L L
i
L L
0
10
0
, , ,
, , ,
, , , )
)
∂ ( )
∂





 +
−
C x y z t
y
i 10 , , ,
+
∂
∂
( )
∂ ( )
∂






−
D
z
g x y z T
C x y z t
z
L L
i
0
10
, , ,
, , ,
, i ≥1;
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 42
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
01
0
2
01
2 0
2
01
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
01
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
∂ ( )
∂





 +
∂
∂
D
x
C x y z t
P x y z T
C x y z t
x
D
L L
0
00 00
0


, , ,
, , ,
, , ,
y
y
C x y z t
P x y z T
C x y z t
y
00 00


, , ,
, , ,
, , ,
( )
( )
∂ ( )
∂





 +
+
∂
∂
( )
( )
∂ ( )
∂






D
z
C x y z t
P x y z T
C x y z t
z
L
0
00 00


, , ,
, , ,
, , ,
;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
02
0
2
02
2 0
2
02
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
02
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
( )
∂ ( )
−
D
x
C x y z t
C x y z t
P x y z T
C x y z t
L
0 01
00
1
00
, , ,
, , ,
, , ,
, , ,


∂
∂





 +
∂
∂
( )
( )
( )
×






−
x y
C x y z t
C x y z t
P x y z T
01
00
1
, , ,
, , ,
, , ,





×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
01
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
D
x
C x y z t
P x y z
L
( )
∂ ( )
∂











+
∂
∂
( )
00
0
00
, , , , , ,
, , ,


T
T
( )
×








×
∂ ( )
∂


 +
∂
∂
( )
( )
∂
C x y z t
x y
C x y z t
P x y z T
C x y z t
01 00 01
, , , , , ,
, , ,
, , ,


(
( )
∂





 +
∂
∂
( )
( )
∂ ( )
∂




y z
C x y z t
P x y z T
C x y z t
z
00 01


, , ,
, , ,
, , ,








;
∂ ( )
∂
=
∂ ( )
∂
+
∂ ( )
∂
+
C x y z t
t
D
C x y z t
x
D
C x y z t
y
L L
11
0
2
11
2 0
2
11
2
, , , , , , , , ,
D
D
C x y z t
z
L
0
2
11
2
∂ ( )
∂
+
, , ,
+
∂
∂
( )
( )
( )
∂ ( )
∂
 −
x
C x y z t
C x y z t
P x y z T
C x y z t
x
10
00
1
00
, , ,
, , ,
, , ,
, , ,







 +
∂
∂
( )
( )
( )
×








−
y
C x y z t
C x y z t
P x y z T
10
00
1
, , ,
, , ,
, , ,


×
∂ ( )
∂


 +
∂
∂
( )
( )
−
C x y z t
y z
C x y z t
C x y z t
P x y z
00
10
00
1
, , ,
, , ,
, , ,
, , ,


T
T
C x y z t
z
D L
( )
∂ ( )
∂











+
00
0
, , ,
+
∂
∂
( )
( )
∂ ( )
∂





 +
∂
∂
D
x
C x y z t
P x y z T
C x y z t
x y
C
L
0
00 10 0


, , ,
, , ,
, , , 0
0 10


x y z t
P x y z T
C x y z t
y
, , ,
, , ,
, , ,
( )
( )
∂ ( )
∂





 +





+
∂
∂
( )
( )
∂ ( )
∂











+
z
C x y z t
P x y z T
C x y z t
z
D L
00 10
0


, , ,
, , ,
, , , ∂
∂
∂
( )
∂ ( )
∂





 +


 x
g x y z T
C x y z t
x
L , , ,
, , ,
01
+
∂
∂
( )
∂ ( )
∂





 +
∂
∂
( )
∂
y
g x y z T
C x y z t
y z
g x y z T
C x y
L L
, , ,
, , ,
, , ,
,
01 01 ,
, ,
z t
z
( )
∂









;


C x y z t
x
ij
x
, , ,
( )
=
=0
0 ,


C x y z t
x
ij
x Lx
, , ,
( )
=
=
0 ,


C x y z t
y
ij
y
, , ,
( )
=
=0
0 ,


C x y z t
y
ij
y Ly
, , ,
( )
=
=
0 ,


C x y z t
z
ij
z
, , ,
( )
=
=0
0 ,


C x y z t
z
ij
z Lz
, , ,
( )
=
=
0, i ≥0, j ≥0;
C00
(x,y,z,0)=fC
(x,y,z), Cij
(x,y,z,0)=0, i ≥1, j ≥1.
Functions Cij
(x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions of the
above equations
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 43
C x y z t
F
L L L L L L
F c x c y c z e t
C
x y z x y z
nC n n n nC
n
00
0
1
2
, , ,
( ) = + ( ) ( ) ( ) ( )
=
∞
∑
∑ .
Here ( ) 2 2
0 2 2 2
1 1 1
exp
nC C
x y z
e t n D t
L L L

 
 
= − + +
 
 
 
 
 
, F c u c v f u v w c w d wd vd u
nC n n C n
L
L
L z
y
x
= ( ) ( ) ( ) ( )
∫
∫
∫ , , ;
0
0
0
C x y z t
L L L
n F c x c y c z e t e s u
i
x y z
nC n n n nC nC n
0 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v g u v w T
n L
L
L
L
t
n
z
y
x
, , ,
0
0
0
0
1
× ( )
∂ ( )
∂
− ( ) ( )
−
c w
C u v w
u
d wd vd u d
L L L
n F c x c y c z
n
i
x y z
nC n n n
10
2
2
, , ,τ
τ
π
(
( ) ( ) −
( ) ×
∫
∑
=
∞
e t e
nC nC
t
n
τ
0
1
× ( ) ( ) ( ) ( )
∂ ( )
∂
−
∫
c u s v c v g u v w T
C u v w
v
d wd vd u d
n n n L
i
L
L z
, , ,
, , ,
10
0
0
τ
τ
y
y
x
L
x y z
nC nC
n
L L L
n F e t
∫
∫ ∑
− ( ) ×
=
∞
0
2
1
2π
× ( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂ −
c x c y c z e c u c v s v g u v w T
C u v
n n n nC n n n L
i
 , , ,
,
10 ,
, ,
w
w
d wd vd u d
L
L
L
t z
y
x


( )
∂
∫
∫
∫
∫ 0
0
0
0
, i ≥1;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
01 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( )×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
×
( )
( )
∂ ( )
∂
−
C u v w
P u v w T
C u v w
u
d wd vd u d
L L L
x y z
00 00
2
2
γ
γ
τ τ
τ
π
, , ,
, , ,
, , ,
n
n F c x c y c z e t
nC n n n nC
n
( ) ( ) ( ) ( ) ×
=
∞
∑
1
× −
( ) ( ) ( ) ( )
( )
( )
∂
e c u s v c w
C u v w
P u v w T
C u v w
nC n n n
τ
τ τ
γ
γ
00 00
, , ,
, , ,
, , ,
(
( )
∂
− ( )×
∫
∫
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n e t
L
L
L
t
x y z
nC
n
z
y
x
τ
π
0
0
0
0
2
1
2
× ( ) ( ) ( ) −
( ) ( ) ( ) ( )
( )
F c x c y c z e c u c v s w
C u v w
P u
nC n n n nC n n n
τ
τ
γ
γ
00 , , ,
,v
v w T
C u v w
w
d wd vd u d
L
L
L
t z
y
x
, ,
, , ,
( )
∂ ( )
∂
∫
∫
∫
∫
00
0
0
0
0
τ
τ ;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
02 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
× ( )
( )
( )
∂ ( )
∂
−
C u v w
C u v w
P u v w T
C u v w
u
d wd v
01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
d
d u d
L L L
F c x c y
x y z
nC n n
n
τ
π
− ( ) ( )×
=
∞
∑
2
2
1
× ( ) ( ) −
( ) ( ) ( ) ( )
( )
−
nc z e t e c u s v C u v w
C u v w
P
n nC nC n n
τ τ
τ
γ
01
00
1
, , ,
, , ,
γ
γ
τ
u v w T
C u v w
v
L
L
L
t z
y
x
, , ,
, , ,
( )
∂ ( )
∂
×
∫
∫
∫
∫
00
0
0
0
0
× ( ) − ( ) ( ) ( ) ( ) −
( )
c w d wd vd u d
L L L
n F c x c y c z e t e c
n
x y z
nC n n n nC nC n
τ
π
τ
2
2
u
u c v
n
L
L
t
n
y
x
( ) ( ) ×
∫
∫
∫
∑
=
∞
0
0
0
1
× ( ) ( )
( )
( )
∂ ( )
∂
−
s w C u v w
C u v w
P u v w T
C u v w
n 01
00
1
00
, , ,
, , ,
, , ,
, , ,
τ
τ τ
γ
γ
w
w
d wd vd u d
L L L
n c x
L
x y z
n
n
z
τ
π
0
2
1
2
∫ ∑
− ( ) ×
=
∞
× ( ) ( ) ( ) −
( ) ( ) ( ) ( ) ( )
∂
F c y c z e t e s u c v c w C u v w
C
nC n n nC nC n n n
 
01
00
, , ,
u
u v w
u
L
L
L
t z
y
x
, , ,
( )
∂
×
∫
∫
∫
∫ 0
0
0
0
×
( )
( )
− ( ) (
−
C u v w
P u v w T
d wd vd u d
L L L
n F c x c y
x y z
nC n n
00
1
2
2
γ
γ
τ
τ
π
, , ,
, , ,
)
) ( ) ( ) −
( ) ( ) ×
∫
∫
∑
=
∞
c z e t e c u
n nC nC n
L
t
n
x
τ
0
0
1
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 44
× ( ) ( ) ( )
( )
( )
∂
−
s v c w C u v w
C u v w
P u v w T
C u v w
n n 01
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
v
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
× ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( ) (
F c x c y c z e t e c u c v s w C u v w
nC n n n nC nC n n n
τ τ
01 , , , )
)
( )
( )
×
−
∫
∫
∫
∫
C u v w
P u v w T
L
L
L
t z
y
x
00
1
0
0
0
0
γ
γ
τ
, , ,
, , ,
×
∂ ( )
∂
− ( ) ( ) ( ) ( )
C u v w
w
d wd vd u d
L L L
F c x c y c z e t
x y z
nC n n n nC
00
2
2
, , ,τ
τ
π
e
e s u
nC n
L
t
n
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
× ( ) ( )
( )
( )
∂ ( )
∂
n c v c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n n
00 01
γ
γ
τ τ
, , ,
, , ,
, , ,
τ
τ
π
0
0
2
1
2
L
L
x y z
n nC
n
z
y
L L L
c x e t
∫
∫ ∑
− ( ) ( ) ×
=
∞
× ( ) −
( ) ( ) ( ) ( )
( )
( )
∂
F c y e c u s v c w
C u v w
P u v w T
C
nC n nC n n n
τ
τ
γ
γ
00 0
, , ,
, , ,
1
1
0
0
0
0
u v w
v
d wd v d u d
L
L
L
t z
y
x
, , ,τ
τ
( )
∂
×
∫
∫
∫
∫
× ( )− ( ) ( ) ( ) ( ) −
( ) ( ) (
n c z
L L L
n F c x c y c z e t e c u c v
n
x y z
nC n n n nC nC n n
2
2
π
τ )
) ( ) ×
∫
∫
∫
∫
∑
=
∞
s w
n
L
L
L
t
n
z
y
x
0
0
0
0
1
×
( )
( )
∂ ( )
∂
C u v w
P u v w T
C u v w
w
d wd vd u d
00 01
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
;
C x y z t
L L L
n F c x c y c z e t e s u
x y z
nC n n n nC nC n
11 2
2
, , ,
( ) = − ( ) ( ) ( ) ( ) −
( )
π
τ (
( ) ( ) ( ) ×
∫
∫
∫
∫
∑
=
∞
c v c w
n n
L
L
L
t
n
z
y
x
0
0
0
0
1
× ( )
∂ ( )
∂
− ( ) (
g u v w T
C u v w
u
d wd vd u d
L L L
n F c x c y
L
x y z
nC n n
, , ,
, , ,
01
2
2
τ
τ
π
)
) ( ) ( ) ×
=
∞
∑ c z e t
n nC
n 1
× −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
e c u s v c w g u v w T
C u v w
v
d wd vd u d
nC n n n L
τ
τ
τ
, , ,
, , ,
01
0
L
L
L
L
t
x y z
z
y
x
L L L
∫
∫
∫
∫ − ×
0
0
0
2
2π
× ( ) −
( ) ( ) ( ) ( ) ( )
∂ ( )
∂
n e t e c u c v s w g u v w T
C u v w
w
d w
nC nC n n n L


, , ,
, , ,
01
d
d vd u d
L
L
L
t
n
z
y
x

0
0
0
0
1
∫
∫
∫
∫
∑
=
∞
×
× ( ) ( ) ( )− ( ) ( ) ( ) ( ) −
F c x c y c z
L L L
F c x c y c z e t e
nC n n n
x y z
nC n n n nC nC
2
2
π
τ
(
( ) ( ) ( ) ×
∫
∫
∫
∑
=
∞
s u c v
n n
L
L
t
n
y
x
0
0
0
1
× ( )
( )
( )
∂ ( )
∂
∫
n c w
C u v w
P u v w T
C u v w
u
d wd vd u d
n
Lz
00 10
0
γ
γ
τ τ
τ
, , ,
, , ,
, , ,
−
− ( ) ( )×
=
∞
∑
2
2
1
π
L L L
n F c x c y
x y z
nC n n
n
× ( ) ( ) −
( ) ( ) ( ) ( )
( )
( )
c z e t e c u s v c w
C u v w
P u v w T
n nC nC n n n
τ
τ
γ
γ
00 , , ,
, , ,
∂
∂ ( )
∂
−
∫
∫
∫
∫
C u v w
v
d wd vd u d
L
L
L
t z
y
x
10
0
0
0
0
, , ,τ
τ
− ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( )
2
2
π
τ
L L L
n F c x c y c z e t e c u c v s w
C
x y z
nC n n n nC nC n n n
0
00
0
0
0
0
1
γ
γ
τ
u v w
P u v w T
L
L
L
t
n
z
y
x
, , ,
, , ,
( )
( )
×
∫
∫
∫
∫
∑
=
∞
×
∂ ( )
∂
− ( ) ( ) ( ) (
C u v w
w
d wd v d u d
L L L
n F c x c y c z e t
x y z
nC n n n nC
10
2
2
, , ,τ
τ
π
)
) −
( ) ( ) ×
∫
∫
∑
=
∞
e s u
nC n
L
t
n
x
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
c v c w C u v w
C u v w
P u v w T
C u v w
n n 10
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
π
( )
∂
− ×
∫
∫ ∑
=
∞
u
d wd vd u d
L L L
n
L
L
x y z n
z
y
0
0
2
1
2
Pankratov: On optimization of of a double-tail dynamic comparator
AJCSE/Oct-Dec-2021/Vol 6/Issue 4 45
× ( ) ( ) ( ) ( ) −
( ) ( ) ( ) ( )
−
F c x c y c z e t e c u s v c w
C u v w
nC n n n nC nC n n n
τ
γ
00
1
, , ,
,
, , ,
, , ,
τ τ
γ
( )
( )
∂ ( )
∂
×
∫
∫
∫
∫ P u v w T
C u v w
v
L
L
L
t z
y
x
00
0
0
0
0
× ( ) − ( ) ( ) ( ) ( )
C u v w d wd vd u d
L L L
n F c x c y c z e t e
x y z
nC n n n nC n
10 2
2
, , ,τ τ
π
C
C n
L
t
n
c u
x
−
( ) ( ) ×
∫
∫
∑
=
∞
τ
0
0
1
× ( ) ( ) ( )
( )
( )
∂
−
c v s w C u v w
C u v w
P u v w T
C u v w
n n 10
00
1
00
, , ,
, , ,
, , ,
, ,
τ
τ
γ
γ
,
,τ
τ
( )
∂
∫
∫ w
d wd vd u d
L
L z
y
0
0
.

More Related Content

PDF
01_AJMS_195_19_RA.pdf
PDF
01_AJMS_195_19_RA.pdf
PDF
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
PDF
02_AJMS_196_19_RA.pdf
PDF
02_AJMS_196_19_RA.pdf
PDF
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
PDF
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
PDF
On Approach to Increase Integration Rate of Elements of a Current Source Circuit
01_AJMS_195_19_RA.pdf
01_AJMS_195_19_RA.pdf
An Approach to Analyze Non-linear Dynamics of Mass Transport during Manufactu...
02_AJMS_196_19_RA.pdf
02_AJMS_196_19_RA.pdf
On Approach to Increase Integration Rate of Elements of a Switched-capacitor ...
On Approach to Increase Integration rate of Elements of a Circuit Driver with...
On Approach to Increase Integration Rate of Elements of a Current Source Circuit

Similar to On Optimization of Manufacturing of Field-effect Transistors to Increase Their Integration Rate in the Framework of a Double-tail Dynamic Comparator (20)

PDF
06_AJMS_17_18_RA.pdf
PDF
06_AJMS_17_18_RA.pdf
PDF
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
PDF
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
PDF
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
PDF
3_AJMS_222_19.pdf
PDF
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
PDF
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
PDF
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
PDF
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
PDF
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
PDF
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
PDF
05_AJMS_199_19_RA.pdf
PDF
05_AJMS_199_19_RA.pdf
PDF
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
PDF
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
PDF
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
PDF
On Increasing of Integration Rate of Elements of an Operational Transresistan...
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Prognosis of Manufacturing of a Broadband Power Amplifiers based on Hetero...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
3_AJMS_222_19.pdf
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
OPTIMIZATION OF MANUFACTURE OF FIELDEFFECT HETEROTRANSISTORS WITHOUT P-NJUNCT...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
On Decreasing of Dimensions of Field-Effect Heterotransistors in Logical CMOP...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
05_AJMS_199_19_RA.pdf
05_AJMS_199_19_RA.pdf
OPTIMIZATION OF DOPANT DIFFUSION AND ION IMPLANTATION TO INCREASE INTEGRATION...
Optimization of Dopant Diffusion and Ion Implantation to Increase Integration...
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
On Increasing of Integration Rate of Elements of an Operational Transresistan...
On Increasing of Integration Rate of Elements of an Operational Transresistan...
Ad

More from BRNSSPublicationHubI (20)

PDF
Investigation the Effect of Wet Granulation and Hydrophilic Binder in Dissolu...
PDF
Antimicrobial Activity of Green Tea: Honey Blend against Acne-Causing Microo...
PDF
Allergic Angina with QTc Prolongation and Wellens Type-A Syndrome Post-ceftr...
PDF
Polymer Synergy in Action: Antimicrobial Properties of Chitosan-Alginate Com...
PDF
Screening of polymerization effect with Alginate-HPMC-Guar gum on Polymer-Ba...
PDF
Formulation and Evaluation of Herbal Soap for Fairness and Glowing Skin
PDF
An Analytical Study to Ascertain the Safety of Dashmooli Kwath (Syrup)
PDF
An Analytical Study of Kushmanda avaleha to Evaluate its Safest Ayurvedic Pre...
PDF
Evaluation of the Antibacterial Activity of Methanolic Extracts of Hemigraphi...
PDF
Management of Polycystic Ovary Syndrome by Chinese Herbal Medicine Cinnamon a...
PDF
The Role of Air Pollution on Climate Change: Myths and Realities
PDF
Suggesting a Prescriptive Model for Online Agricultural Education
PDF
Multidimensional Poverty Status Correlates of Rural Households in Kaduna Stat...
PDF
Typology of Processed Tea (Camellia sinensis [L.] O. Kuntze): A Review
PDF
Sustainable Entrepreneurship of Farm Women through Duck Farming in Purba Bard...
PDF
A Comparative Study of Management Approaches for Khari Goats in Traditional V...
PDF
From Field to Kitchen: Pre-extension Demonstration of Sweet Potato Variety (H...
PDF
Characterization of Systematic Variations in Met Parameters: Impact of El Nin...
PDF
Mutual interactions and Inter-relationships between “Weather” and “Weather Sy...
PDF
The Relationship between the Food Nutritional Value and the Absence of Microb...
Investigation the Effect of Wet Granulation and Hydrophilic Binder in Dissolu...
Antimicrobial Activity of Green Tea: Honey Blend against Acne-Causing Microo...
Allergic Angina with QTc Prolongation and Wellens Type-A Syndrome Post-ceftr...
Polymer Synergy in Action: Antimicrobial Properties of Chitosan-Alginate Com...
Screening of polymerization effect with Alginate-HPMC-Guar gum on Polymer-Ba...
Formulation and Evaluation of Herbal Soap for Fairness and Glowing Skin
An Analytical Study to Ascertain the Safety of Dashmooli Kwath (Syrup)
An Analytical Study of Kushmanda avaleha to Evaluate its Safest Ayurvedic Pre...
Evaluation of the Antibacterial Activity of Methanolic Extracts of Hemigraphi...
Management of Polycystic Ovary Syndrome by Chinese Herbal Medicine Cinnamon a...
The Role of Air Pollution on Climate Change: Myths and Realities
Suggesting a Prescriptive Model for Online Agricultural Education
Multidimensional Poverty Status Correlates of Rural Households in Kaduna Stat...
Typology of Processed Tea (Camellia sinensis [L.] O. Kuntze): A Review
Sustainable Entrepreneurship of Farm Women through Duck Farming in Purba Bard...
A Comparative Study of Management Approaches for Khari Goats in Traditional V...
From Field to Kitchen: Pre-extension Demonstration of Sweet Potato Variety (H...
Characterization of Systematic Variations in Met Parameters: Impact of El Nin...
Mutual interactions and Inter-relationships between “Weather” and “Weather Sy...
The Relationship between the Food Nutritional Value and the Absence of Microb...
Ad

Recently uploaded (20)

PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Cell Structure & Organelles in detailed.
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Institutional Correction lecture only . . .
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Pre independence Education in Inndia.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Cell Types and Its function , kingdom of life
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
master seminar digital applications in india
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
RMMM.pdf make it easy to upload and study
PDF
Microbial disease of the cardiovascular and lymphatic systems
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Cell Structure & Organelles in detailed.
Pharma ospi slides which help in ospi learning
Institutional Correction lecture only . . .
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial diseases, their pathogenesis and prophylaxis
Pre independence Education in Inndia.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Abdominal Access Techniques with Prof. Dr. R K Mishra
Cell Types and Its function , kingdom of life
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPH.pptx obstetrics and gynecology in nursing
master seminar digital applications in india
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Computing-Curriculum for Schools in Ghana
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
human mycosis Human fungal infections are called human mycosis..pptx
RMMM.pdf make it easy to upload and study
Microbial disease of the cardiovascular and lymphatic systems

On Optimization of Manufacturing of Field-effect Transistors to Increase Their Integration Rate in the Framework of a Double-tail Dynamic Comparator

  • 1. © 2021, AJCSE. All Rights Reserved 27 REVIEW ARTICLE On Optimization of Manufacturing of Field-effect Transistors to Increase Their Integration Rate in the Framework of a Double-tail Dynamic Comparator E. L. Pankratov1,2 1 Department of Mathematical and Natural Sciences, Nizhny Novgorod State University, Nizhny Novgorod, Russia, 2 Department of Higher Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia Received on: 29-09-2021; Revised on: 30-10-2021; Accepted on: 30-11-2021 ABSTRACT In this paper, we introduce an approach to increase integration rate of elements of a double-tail dynamic comparator. Framework the approach we consider a heterostructure with special configuration. Several specific areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/or radiation defects should be optimized. Key words: Accounting of missmatch induced stress and porosity of materials, analytical approach for modeling, double-tail dynamic comparator, optimization of manufacturing INTRODUCTION An actual and intensively solving problem of solid state electronics is increasing of integration rate of elements of integrated circuits (p-n-junctions, their systems et al.).[1-8] Increasing of the integration rate of elements of integrated circuits could be obtain during decreasing of their dimensions. To decrease the dimensions are using several approaches. They are widely using laser and microwave types of annealing of infused dopants. These types of annealing are also widely using for annealing of radiation defects, generated during ion implantation.[9-17] Using the approaches gives a possibility to increase integration rate of elements of integrated circuits through inhomogeneity of technological parameters due to generating in homogenous distribution of temperature. In this situation, one can obtain decreasing dimensions of elements of integrated circuits[18] with account Arrhenius law.[1,3] Another approach to manufacture elements of integrated circuits with smaller dimensions is doping of heterostructure by diffusion or ion implantation.[1-3] However, in this case, optimization of dopant and/or radiation defects is required.[18] In this paper, we consider a heterostructure. The heterostructure consist of a substrate and several epitaxial layers. Some sections have been manufactured in the epitaxial layers. Further, we consider doping of these sections by diffusion or ion implantation. The doping gives a possibility to manufacture field-effect transistors framework a double-tail dynamic comparator so as it is shown on Figure 1. The manufacturing gives a possibility to increase density of elements of the double-tail dynamic comparator.[4] After the considered doping, dopant and/or radiation defects should be annealed. Framework the paper, we analyzed dynamics of redistribution of dopant and/or radiation defects during their annealing. We introduce an approach to decrease dimensions of the element. However, it is necessary to complicate technological process. METHOD OF SOLUTION In this section, we determine spatio-temporal distributions of concentrations of infused and implanted dopants.Todeterminethesedistributions,wecalculateappropriatesolutionsofthesecondFick’slaw[1,3,18,19] Address for correspondence: E. L. Pankratov, E-mail: elp2004@mail.ru Available Online at www.ajcse.info Asian Journal of Computer Science Engineering 2021;6(4):27-45 ISSN 2581 – 3781
  • 2. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 28 S G D S G D S G D S G D S G D S G D S G D S G D S G D S G D S G D S G D Figure 1: The considered comparator[4]           C x y z t t x D C x y z t x y D C x y z t y C C , , , , , , , , , ( ) == ( )       + ( )        + ( )           z D C x y z t z C , , , (1) Boundary and initial conditions for the equations are ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = = = = C x y z t x C x y z t x C x y z t y x x L y x , , , , , , , , , , , , 0 0 0 0 0 ∂ ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = = = = C x y z t y C x y z t z C x y z t z x L z x L y z , , , , , , , , , , 0 0 0 0 , , ( , , , ) ( , , ) C x y z f x y z 0 = ,(2)
  • 3. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 29 The function C(x,y,z,t) describes the spatio-temporal distribution of concentration of dopant; T is the temperature of annealing; DС is the dopant diffusion coefficient. Value of dopant diffusion coefficient could be changed with changing materials of heterostructure, with changing temperature of materials (including annealing), with changing concentrations of dopant and radiation defects. We approximate dependences of dopant diffusion coefficient on parameters by the following relation with account results in Refs.[20-22] D D x y z T C x y z t P x y z T V x y z t C L = ( ) + ( ) ( )       + ( , , , , , , , , , , , , 1 1 1 ξ ς γ γ ) ) + ( ) ( )         V V x y z t V * * , , , ς2 2 2 .(3) Here, the function DL (x,y,z,T) describes the spatial (in heterostructure) and temperature (due toArrhenius law) dependences of diffusion coefficient of dopant. The function P (x,y,z,T) describes the limit of solubility of dopant. Parameter γ ∈[1,3] describes average quantity of charged defects interacted with atom of dopant.[20] The function V(x,y,z,t) describes the spatio-temporal distribution of concentration of radiation vacancies. Parameter V* describes the equilibrium distribution of concentration of vacancies. The considered concentrational dependence of dopant diffusion coefficient has been described in details in.[20] It should be noted, that using diffusion type of doping did not generation radiation defects. In this situation ζ1 = ζ2 = 0, we determine spatio-temporal distributions of concentrations of radiation defects by solving the following system of equations[21,22,23] ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ I x y z t t x D x y z T I x y z t x y D x y z I I , , , , , , , , , , , , , , , , , , , , , , T I x y z t y z D x y z T I x y z t z I ( ) ∂ ( ) ∂       + + ∂ ∂ ( ) ∂ ( ) ∂        − ( ) ( ) ( )− − ( ) k x y z T I x y z t V x y z t k x y z T I x y z I V I I , , , , , , , , , , , , , , , , 2 , ,t ( ) (4) ∂ ( ) ∂ = ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ V x y z t t x D x y z T V x y z t x y D x y z V V , , , , , , , , , , , , , , , , , , , , , , T V x y z t y z D x y z T V x y z t z V ( ) ∂ ( ) ∂       + + ∂ ∂ ( ) ∂ ( ) ∂        − ( ) ( ) ( )+ + ( ) k x y z T I x y z t V x y z t k x y z T V x y z I V V V , , , , , , , , , , , , , , , , 2 , , . t ( ) Boundary and initial conditions for these equations are ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = = = =    x y z t x x y z t x x y z t y x x L y x , , , , , , , , , , , , 0 0 0 0 0 ∂ ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = = = =    x y z t y x y z t z x y z t z y L z z L y z , , , , , , , , , , 0 0 0 0 , , ( , , , ) ( , , ). r x y z f x y z r 0 = ,(5) Here ρ=I,V, the function I (x,y,z,t) describes the spatio-temporal distribution of concentration of radiation interstitials; Dρ (x,y,z,T) are the diffusion coefficients of point radiation defects; terms V2 (x,y,z,t) and I2 (x,y,z,t) correspond to generation divacancies and diinterstitials; kI,V (x,y,z,T) is the parameter of recombination of point radiation defects; kI,I (x,y,z,T) and kV,V (x,y,z,T) are the parameters of generation of simplest complexes of point radiation defects.
  • 4. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 30 Further, we determine distributions in space and time of concentrations of divacancies ΦV (x,y,z,t) and diinterstitials ΦI (x,y,z,t) by solving the following system of equations[21,22]         Φ Φ Φ Φ I I I I x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y I ( ) ( )       +   Φ + ( ) ( )       + ( )     z D x y z T x y z t z k x y z T I x y z I I I I Φ Φ , , , , , , , , , , , , , 2 t t k x y z T I x y z t I ( )− ( ) ( ) , , , , , , (6)         Φ Φ Φ Φ V V V V x y z t t x D x y z T x y z t x y D x , , , , , , , , , ( ) = ( ) ( )       + , , , , , , , y z T x y z t y V ( ) ( )       +   Φ + ( ) ( )       + ( )     z D x y z T x y z t z k x y z T V x y z V V V V Φ Φ , , , , , , , , , , , , , 2 t t k x y z T V x y z t V ( )− ( ) ( ) , , , , , , . Boundary and initial conditions for these equations are ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = = = Φ Φ Φ    x y z t x x y z t x x y z t y x x L y x , , , , , , , , , , , 0 0 0 0 = = ∂ ( ) ∂ = ∂ ( ) ∂ = ∂ ( ) ∂ = = 0 0 0 0 , , , , , , , , , , , Φ Φ Φ    x y z t y x y z t z x y z t z y L z y z z Lz = = 0 ΦI (x,y,z,0)=fΦI (x,y,z), ΦV (x,y,z,0)=fΦV (x,y,z).(7) Here, DΦρ (x,y,z,T) are the diffusion coefficients of the above complexes of radiation defects; kI (x,y,z,T) and kV (x,y,z,T) are the parameters of decay of these complexes. We calculate distributions of concentrations of point radiation defects in space and time by recently elaborated approach.[18] The approach based on transformation of approximations of diffusion coefficients in the following form: Dρ (x,y,z,T)=D0ρ [1+ερ gρ (x,y,z,T)], where D0ρ are the average values of diffusion coefficients, 0≤ερ 1, |gρ (x, y,z,T)|≤1, ρ =I,V. We also used analogs transformation of approximations of parameters of recombination of point defects and parameters of generation of their complexes: kI,V (x,y,z,T)=k0I,V [1+εI,V gI,V (x,y,z,T)], kI,I (x,y,z,T)=k0I,I [1+εI,I gI,I (x,y,z,T)] and kV,V (x,y,z,T)=k0V,V [1+εV,V gV,V (x,y,z,T)], where k0ρ1,ρ2 are the their average values, 0≤εI,V 1, 0≤εI,I 1, 0≤εV,V 1, | gI,V (x,y,z,T)|≤1, | gI,I (x,y,z,T)|≤1, |gV,V (x,y,z,T)|≤1. Let us introduce the following dimensionless variables:   I x y z t I x y z t I V x y z t V x y z t V L k I , , , , , , , , , , , , , , * * ( ) = ( ) ( ) == ( ) = ω 2 0 , , , V I V I V D D L k D D 0 0 2 0 0 0 Ωρ ρ ρ = , χ = x/Lx , η = y/Ly , φ = z/Lz . The introduction leads to transformation of Eqs.(4) and conditions (5) to the following form ∂ ( ) ∂ = ∂ ∂ + ( )     ∂ ( )   I D D D g T I I I V I I χ η ϕ ϑ ϑ χ ε χ η ϕ χ η ϕ ϑ , , , , , , , , , 0 0 0 1 ∂ ∂       + ∂ ∂ + ( )     × { χ η ε χ η ϕ 1 I I g T , , , × ∂ ( ) ∂    + ∂ ∂ + ( )     I D D D D D D g T I I V I I V I I χ η ϕ ϑ η ϕ ε χ η ϕ , , , , , , 0 0 0 0 0 0 1   ∂ ( ) ∂       − ( ) ×   I I χ η ϕ ϑ ϕ χ η ϕ ϑ , , , , , , × + ( )     ( )− + ( ) ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 I V I V I I I I I g T V g T , , , , , , , , , , , , ,  Ω      ( )  I 2 χ η ϕ ϑ , , , (8)
  • 5. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 31 ∂ ( ) ∂ = ∂ ∂ + ( )     ∂ ( )   V D D D g T V V I V V V χ η ϕ ϑ ϑ χ ε χ η ϕ χ η ϕ ϑ , , , , , , , , , 0 0 0 1 ∂ ∂       + ∂ ∂ + ( )     × { χ η ε χ η ϕ 1 V V g T , , , × ∂ ( ) ∂    + ∂ ∂ + ( )     V D D D D D D g T V I V V I V V V χ η ϕ ϑ η ϕ ε χ η ϕ , , , , , , 0 0 0 0 0 0 1   ∂ ( ) ∂       − ( ) ×   V I χ η ϕ ϑ ϕ χ η ϕ ϑ , , , , , , × + ( )     ( )− + ( ) ω ε χ η ϕ χ η ϕ ϑ ε χ η ϕ 1 1 I V I V V V V V V g T V g T , , , , , , , , , , , , ,  Ω      ( )  V 2 χ η ϕ ϑ , , , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ χ , , , 0 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ χ , , , 1 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η , , , 0 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η , , , 1 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ , , , 1 0 ,  ρ χ η ϕ ϑ χ η ϕ ϑ ρ ρ , , , , , , * ( ) = ( ) f .(9) We determine solutions of Eqs.(8) with conditions (9) framework recently introduced approach,[18] that is, as the power series   ρ χ η ϕ ϑ ε ω ρ χ η ϕ ϑ ρ ρ , , , , , , ( ) = ( ) = ∞ = ∞ = ∞ ∑ ∑ ∑ i j k ijk k j i Ω 0 0 0 .(10) Substitution of the series (10) into Eqs.(8) and conditions (9) gives us possibility to obtain equations for initial-order approximations of concentration of point defects  I000 χ η ϕ ϑ , , , ( ) and  V000 χ η ϕ ϑ , , , ( ) and corrections for them  Iijk χ η ϕ ϑ , , , ( ) and  Vijk χ η ϕ ϑ , , , ( ), i ≥1, j ≥1, k ≥1. The equations are presented in the Appendix. Solutions of the equations could be obtained by standard Fourier approach.[24,25] The solutions are presented in the Appendix. Now, we calculate distributions of concentrations of simplest complexes of point radiation defects in space and time. To determine the distributions we transform approximations of diffusion coefficients in the following form: DΦρ (x,y,z,T)=D0Φρ [1+ εΦρ gΦρ (x,y,z,T)], where D0Φρ are the average values of diffusion coefficients. In this situation, the Eqs.(6) could be written as ∂ ∂ ∂ ∂ ε ∂ ∂ Φ Φ Φ Φ Φ I I I I I x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )  0 1       + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 + + ( )     ( )       + D y g x y z T x y z t y D z I I I I I 0 0 1 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ ∂ ∂ , , , , , , + + ( )     ( )       − ε ∂ ∂ Φ Φ Φ I I I g x y z T x y z t z , , , , , , − ( ) ( ) k x y z T I x y z t I , , , , , , ∂ ∂ ∂ ∂ ε ∂ ∂ Φ Φ Φ Φ Φ V V V V V x y z t t D x g x y z T x y z t x , , , , , , , , , ( ) = + ( )     ( )  0 1       + ( ) ( )+ k x y z T I x y z t I I , , , , , , , 2 + + ( )     ( )       + D y g x y z T x y z t y D z V V V V V 0 0 1 1 Φ Φ Φ Φ Φ ∂ ∂ ε ∂ ∂ ∂ ∂ , , , , , , + + ( )     ( )       − ε ∂ ∂ Φ Φ Φ V V V g x y z T x y z t z , , , , , , − ( ) ( ) k x y z T I x y z t I , , , , , , .
  • 6. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 32 Farther, we determine solutions of above equations as the following power series Φ Φ Φ ρ ρ ρ ε x y z t x y z t i i i , , , , , , ( ) = ( ) = ∞ ∑ 0 .(11) Now, we used the series (11) into Eqs.(6) and appropriate boundary and initial conditions. The using gives the possibility to obtain equations for initial-order approximations of concentrations of complexes of defects Φρ0 (x,y,z,t), corrections for them Φρi (x,y,z,t) (for them i ≥1) and boundary and initial conditions for them. We remove equations and conditions to the Appendix. Solutions of the equations have been calculated by standard approaches[24,25] and presented in the Appendix. Now, we calculate distribution of concentration of dopant in space and time using the approach, which was used for analysis of radiation defects. To use the approach we consider following transformation of approximation of dopant diffusion coefficient: DL (x,y,z,T)=D0L [1+ εL gL (x,y,z,T)], where D0L is the average value of dopant diffusion coefficient, 0≤εL 1, |gL (x,y,z,T)|≤1. Farther, we consider solution of Eq.(1) as the following series: C x y z t C x y z t L i j ij j i , , , , , , ( ) = ( ) = ∞ = ∞ ∑ ∑ε ξ 1 0 . Using the relation into Eq.(1) and conditions (2) leads to obtaining equations for the functions Cij (x,y,z,t) (i ≥1, j ≥1), boundary and initial conditions for them. The equations are presented in the Appendix. Solutions of the equations have been calculated by standard approaches (see, for example,[24,25] ). The solutions are presented in the Appendix. We analyzed distributions of concentrations of dopant and radiation defects in space and time analytically using the second-order approximations on all parameters, which have been used in appropriate series. Usually, the second-order approximations are enough good approximations to make qualitative analysis and to obtain quantitative results. All analytical results have been checked by numerical simulation. DISCUSSION In this section, we analyzed spatio-temporal distributions of concentrations of dopants. Figure 2 shows typical spatial distributions of concentrations of dopants in neighborhood of interfaces of heterostructures. We calculate these distributions of concentrations of dopants under the following condition: value of dopant diffusion coefficient in doped area is larger, than value of dopant diffusion coefficient in nearest Figure 2: (a) Dependences of concentration of dopant, infused in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. (b) Dependences of concentration of dopant, implanted in heterostructure from Figure 1, on coordinate in direction, which is perpendicular to interface between epitaxial layer substrate. Difference between values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves. Value of dopant diffusion coefficient in the epitaxial layer is larger, than value of dopant diffusion coefficient in the substrate. Curve 1 corresponds to homogenous sample and annealing time Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curve 2 corresponds to homogenous sample and annealing time Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 . Curves 3 and 4 correspond to heterostructure from Figure 1; annealing times Θ = 0.0048 (Lx 2 +Ly 2 +Lz 2 )/D0 and Θ = 0.0057 (Lx 2 +Ly 2 +Lz 2 )/D0 , respectively b a
  • 7. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 33 areas. In this situation, one can find increasing of compactness of field-effect transistors with increasing of homogeneity of distribution of concentration of dopant at one time. Changing relation between values of dopant diffusion coefficients leads to opposite result [Figure 3]. It should be noted, that framework the considered approach one shall optimize annealing of dopant and/ or radiation defects. To do the optimization we used recently introduced criterion.[26-34] The optimization based on approximation real distribution by step-wise function ψ (x,y,z) [Figure 4]. Farther, the required values of optimal annealing time have been calculated by minimization the following mean-squared error. U L L L C x y z x y z d z d y d x x y z L L L z y x = ( )− ( )     ∫ ∫ ∫ 1 0 0 0 , , , , , Θ  .(12) We show optimal values of annealing time as functions of parameters on Figure 5. It is known, that standard step of manufactured ion-doped structures is annealing of radiation defects. In the ideal case, after finishing the annealing dopant achieves interface between layers of heterostructure. If the dopant has no enough time to achieve the interface, it is practicably to anneal the dopant additionally. The Figure 5b shows the described dependences of optimal values of additional annealing time for the same parameters as for Figure 5a. Necessity to anneal radiation defects leads to smaller values of optimal annealing of implanted dopant in comparison with optimal annealing time of infused dopant. Figure 3: (a) Distributions of concentration of dopant, infused in average section of epitaxial layer of heterostructure from Figs. 1 in direction parallel to interface between epitaxial layer and substrate of heterostructure. Difference between values of dopant diffusion coefficients increases with increasing of number of curves. Value of dopant diffusion coefficient in this section is smaller, than value of dopant diffusion coefficient in nearest sections. (b) Calculated distributions of implanted dopant in epitaxial layers of heterostructure. Solid lines are spatial distributions of implanted dopant in system of two epitaxial layers. Dushed lines are spatial distributions of implanted dopant in one epitaxial layer. Annealing time increases with increasing of number of curves b a Figure 4: (a) Distributions of concentration of infused dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time. (b) Distributions of concentration of implanted dopant in depth of heterostructure from Figure 1 for different values of annealing time (curves 2-4) and idealized step-wise approximation (curve 1). Increasing of number of curve corresponds to increasing of annealing time b a
  • 8. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 34 CONCLUSION In this paper, we introduce an approach to increase integration rate of element of a double-tail dynamic comparator. The approach gives us possibility to decrease area of the elements with smaller increasing of the element’s thickness. REFERENCES 1. Lachin VI, Savelov NS. Electronics. Rostov-Na-Donu: Phoenix; 2001. 2. Alexenko AG, Shagurin II. Microcircuitry. Moscow: Radio and Communication; 1990. 3. Avaev NA, Naumov YE, Frolkin VT. Basis of Microelectronics. Moscow: Radio and Communication; 1991. 4. Wang Z, Duan Q, Roh J. A 0.03mm2 Delta-sigma modulator with cascaded inverter amplifier. Analog Integr Circ Sig Process 2014;81:495-501. 5. Fathi D, Forouzandeh B, Masoumi N. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. 2009;4:233-8. 6. Chachuli SA, Fasyar PN, Soin N, Kar NM, Yusop N. Pareto ANOVA analysis for CMOS. 0.18 µm two-stage Op-amp. Mat Sci Sem Proc 2014;24:9-14. 7. Ageev AO, Belyaev AE, Boltovets NS, Ivanov VN, Konakova RV, Kudrik YY, et al. Technologies dependencies. Semiconductors 2009;43:897-903. 8. Li Z, Waldron J, Detchprohm T, Wetzel C, Karlicek RF, Chow TP Jr. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl Phys Lett 2013;102:192107-9. 9. Tsai JH, Chiu SY, Lour WS, Guo DF. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors 2009;43:971-4. 10. Alexandrov OV, Zakhar’in AO, Sobolev NA, Shek EI, Makoviychuk MM, et al. Formation of donor centers after annealing of dysprosium and holmium implanted silicon. Semiconductors 1998;32:1029-32. 11. Kumar MJ, Singh TV. Quantum confinement effect in strained silicon MOSFET. Int J Nanosci 2008;7:81-4. 12. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett 2013;102:053901-5. 13. Reynolds JG, Reynolds CL, Mohanta A Jr., Muth JF, Rowe JE, Everitt HO, et al. Shallow acceptor complexes in p-type ZnO. Appl Phys Lett 2013;102:152114-8. 14. Ong KK, Pey KL, Lee PS, Wee AT, Wang XC, Chong YF. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl Phys Lett 2006;89:172111-4. 15. Wang HT, Tan LS, Chor EF. Pulsed laser annealing of Be-implanted GaN. J Appl Phys 2006;98:094901-5. 16. Shishiyanu ST, Shishiyanu TS, Railyan SK. Shallow p-n-junctions in Si prepared by pulse photon annealing. Semiconductors 2020;36:611-7. 17. Bykov YV, Yeremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, et al. Diffusion processes in Figure 5: (a) Dimensionless optimal annealing time of infused dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0. (b) Dimensionless optimal annealing time of implanted dopant as a function of several parameters. Curve 1 describes the dependence of the annealing time on the relation a/L and ξ = γ = 0 for equal to each other values of dopant diffusion coefficient in all parts of heterostructure. Curve 2 describes the dependence of the annealing time on value of parameter ε for a/L=1/2 and ξ = γ = 0. Curve 3 describes the dependence of the annealing time on value of parameter ξ for a/L=1/2 and ε = γ = 0. Curve 4 describes the dependence of the annealing time on value of parameter γ for a/L=1/2 and ε = ξ = 0 b a
  • 9. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 35 semiconductor structures during microwave annealing. Radiophys Quantum Electron 2003;43:836-43. 18. Pankratov EL, Bulaeva EA. Doping of materials during manufacture p-n-junctions and bipolar transistors.Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Rev Theor Sci 2013;1:58-82. 19. Erofeev YN. Pulse Devices. Moscow: Higher School; 1989. 20. Kozlivsky VV. Modification of Semiconductors by Proton Beams. Saint-Petersburg: Nauka; 2003. 21. Gotra ZY. Technology of Microelectronic Devices. Moscow: Radio and Communication; 1991. 22. Vinetskiy VL, Kholodar GA. Radiative Physics of Semiconductors. Kiev: Naukova Dumka; 1979. 23. Fahey PM, Griffin PB, Plummer JD. Point defects and dopent diffusion in silicon. Rev Mod Phys 1989;61:289-388. 24. Tikhonov AN, Samarskii AA. The Mathematical Physics Equations. Nauka: Moscow; 1972. 25. Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford, United Kingdom: Oxford University Press; 1964. 26. PankratovEL.Dopantdiffusiondynamicsandoptimaldiffusiontimeasinfluencedbydiffusion-coefficientnonuniformity. Russ Microelectron 2007;36:33-9. 27. Pankratov EL. Redistribution of a dopant during annealing of radiation defects in a multilayer structure by laser scans for production of an implanted-junction rectifier. Int J Nanosci 2008;7:187-97. 28. Pankratov EL. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J Comp Theor Nanosci 2017;14:4885-99. 29. Pankratov EL. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density of their elements. Influence of miss-match induced stress. Adv Sci Eng Med 2017;9:787-801. 30. Pankratov EL, Bulaeva EA. On increasing of density of transistors in a hybrid cascaded multilevel inverter. Multidiscipline Model Mater Struct 2017;13:664-77. 31. Pankratov EL, Bulaeva EA. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int J Micronano Scale Transp 2014;4:17-31. 32. Pankratov EL, Bulaeva EA. An analytical approach for analysis and optimization of formation of field-effect heterotransistors. Multidiscipline Model Mater Struct 2016;12:578-604. 33. Pankratov EL, Bulaeva EA. An approach to increase the integration rate of planar drift heterobipolar transistors. Mater Sci Semiconductor Process 2015;34:260-8. APPENDIX Equations for the functions  Iijk χ η ϕ ϑ , , , ( ) and  Vijk χ η ϕ ϑ , , , ( ), i ≥0, j ≥0, k ≥0 and conditions for them ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 000 0 0 2 000 2 2 000 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 000 2  I , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 000 0 0 2 000 2 2 000 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       η χ η ϕ ϑ ϕ 2 2 000 2  V , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂    I D D I I i I V i i 00 0 0 2 00 2 2 00 χ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ η , , , , , , , 2 2 2 00 2 0 0 + ∂ ( ) ∂       + ×  I D D i I V χ η ϕ ϑ ϕ , , , × ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ − χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I i I , , , , , , , , ,   100 i i− ( ) ∂       +      100 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − ϕ χ η ϕ χ η ϕ ϑ ϕ g T I I i , , , , , ,  100 , i ≥1, ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂    V D D V V i V I i i 00 0 0 2 00 2 2 00 χ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ η , , , , , , , 2 2 2 00 2 + ∂ ( ) ∂       + ∂ ∂ ( ) ×     V g T i V χ η ϕ ϑ ϕ χ χ η ϕ , , , , , , × ∂ ( ) ∂    + ∂ ∂ ( ) ∂ − −   V D D D D g T V i V I V I V i 100 0 0 0 0 100 χ η ϕ ϑ χ η χ η ϕ , , , , , , χ χ η ϕ ϑ η ϕ χ η ϕ , , , , , , ( ) ∂       + ∂ ∂ ( ) ×   g T V × ∂ ( ) ∂    −  V D D i V I 100 0 0 χ η ϕ ϑ ϕ , , , , i ≥1,
  • 10. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 36 ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 010 0 0 2 010 2 2 010 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 010 2  I , , , − + ( )     ( ) ( ) 1 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 010 0 0 2 010 2 2 010 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 010 2  V , , , − + ( )     ( ) ( ) 1 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V , , , , , , , , , , ,   ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 020 0 0 2 020 2 2 020 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 020 2  I , , , − + ( )     ( ) ( )+ 1 010 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V I , , , , , , , , , , ,    χ χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )      V010 ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V I V 020 0 0 2 020 2 2 020 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 020 2  V , , , − + ( )     ( ) ( )+ 1 010 000 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I V I V g T I V I , , , , , , , , , , ,    χ χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )      V010 ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 001 0 0 2 001 2 2 001 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 001 2  I , , , − + ( )     ( ) 1 000 2 ε χ η ϕ χ η ϕ ϑ I I I I g T I , , , , , , , ,  ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 001 0 0 2 001 2 2 001 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 001 2  V , , , − + ( )     ( ) 1 000 2 ε χ η ϕ χ η ϕ ϑ I I I I g T V , , , , , , , ,  ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 110 0 0 2 110 2 2 110 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + × η χ η ϕ ϑ ϕ 2 2 110 2 0 0  I D D I V , , , × ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ g T I g T I I I , , , , , , , , ,   010 010 0 χ η ϕ ϑ η ϕ χ η ϕ , , , , , , ( ) ∂       + ∂ ∂ ( ) ×        g T I × ∂ ( ) ∂         − ( ) ( )+     I I V I 010 100 000 χ η ϕ ϑ ϕ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , 0 000 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ( ) ( )     ×  V × + ( )     1 ε χ η ϕ I I I I g T , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 110 0 0 2 110 2 2 110 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 110 2  V , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T V g T V I V V 0 0 010 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       V010 χ η ϕ ϑ η , , ,
  • 11. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 37 + ∂ ∂ ( ) ∂ ( ) ∂            − + ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η g T V g V V V V V , , , , , , , , , ,  010 1 ϕ ϕ,T ( )     × × ( ) ( )+ ( ) ( )     V I V I 100 000 000 100 χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ χ η ϕ ϑ , , , , , , , , , , , ,      ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 002 0 0 2 002 2 2 002 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 002 2  I , , , − + ( )     ( ) ( ) 1 001 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ I I I I g T I I , , , , , , , , , , ,   ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 002 0 0 2 002 2 2 002 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − η χ η ϕ ϑ ϕ 2 2 002 2  V , , , − + ( )     ( ) ( ) 1 001 000 ε χ η ϕ χ η ϕ ϑ χ η ϕ ϑ V V V V g E V V , , , , , , , , , , ,   ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 101 0 0 2 101 2 2 101 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 101 2  I , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T I g T I V I I 0 0 001 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       I001 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ( ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T I g T I I I , , , , , , , , ,  001 1 ) )     ( ) ( )   I V 100 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 101 0 0 2 101 2 2 101 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       + η χ η ϕ ϑ ϕ 2 2 101 2  V , , , + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( D D g T V g T V I V V 0 0 001 χ χ η ϕ χ η ϕ ϑ χ η χ η ϕ , , , , , , , , ,  ) ) ∂ ( ) ∂       +       V001 χ η ϕ ϑ η , , , + ∂ ∂ ( ) ∂ ( ) ∂            − + ( ϕ χ η ϕ χ η ϕ ϑ ϕ ε χ η ϕ g T V g T V V V , , , , , , , , ,  001 1 ) )     ( ) ( )   I V 000 100 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    I D D I I I V 011 0 0 2 011 2 2 011 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − ( ) × η χ η ϕ ϑ ϕ χ η ϕ ϑ 2 2 011 2 010   I I , , , , , , × + ( )     ( )− + ( ) 1 1 000 ε χ η ϕ χ η ϕ ϑ ε χ η ϕ I I I I I V I V g T I g T , , , , , , , , , , , , ,       ( ) ( )   I V 001 000 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ∂ ( ) ∂ = ∂ ( ) ∂ + ∂    V D D V V V I 011 0 0 2 011 2 2 011 χ η ϕ ϑ ϑ χ η ϕ ϑ χ χ η ϕ ϑ , , , , , , , , , ( ( ) ∂ + ∂ ( ) ∂       − ( ) × η χ η ϕ ϑ ϕ χ η ϕ ϑ 2 2 011 2 010   V V , , , , , , × + ( )     ( )− + ( ) 1 1 000 ε χ η ϕ χ η ϕ ϑ ε χ η ϕ V V V V I V I V g T V g t , , , , , , , , , , , , ,       ( ) ( )   I V 000 001 χ η ϕ ϑ χ η ϕ ϑ , , , , , , ; ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ ijk x , , , 0 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ χ ijk x , , , 1 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η ijk , , , 0 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ η η ijk , , , 1 0 , ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ ijk , , , 0 0, ∂ ( ) ∂ = =  ρ χ η ϕ ϑ ϕ ϕ ijk , , , 1 0 (i ≥0, j ≥0, k ≥0);
  • 12. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 38  ρ χ η ϕ χ η ϕ ρ ρ 000 0 , , , , , * ( ) = ( ) f ,  ρ χ η ϕ ijk , , ,0 0 ( ) = (i ≥1, j ≥1, k ≥1). Solutions of the above equations could be written as  ρ χ η ϕ ϑ χ η ϕ ϑ ρ ρ 000 1 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ L L F c c c e n n n , where F nu nv n w f u v w d wd vd u n n ρ ρ ρ π π π = ( ) ( ) ( ) ( ) ∫ ∫ ∫ 1 0 1 0 1 0 1 * cos cos cos , , , cn (χ) = cos (π n χ), e n D D nI V I ϑ π ϑ ( ) = − ( ) exp 2 2 0 0 , e n D D nV I V ϑ π ϑ ( ) = − ( ) exp 2 2 0 0 ;  I D D nc c c e e s u c i I V n nI nI n n 00 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v I u v w u i n ( ) ∂ ( ) ∂ × − = ∞ ∫ ∫ ∫ ∫ ∑  100 0 1 0 1 0 1 0 1 , , ,τ ϑ × ( ) ( ) − ( ) ( ) ( ) ( ) − c w g u v w T d wd vd u d D D nc c c e e n I I V n nI nI , , , τ π χ η ϕ ϑ 2 0 0 τ τ ϑ ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ c u s v n n n 0 1 0 1 0 1 × ( ) ( ) ∂ ( ) ∂ − − ∫c w g u v w T I u v w v d wd vd u d D D nc n I i I V , , , , , ,  100 0 1 0 0 2 τ τ π n n nI nI n c c e e χ η ϕ ϑ τ ϑ ( ) ( ) ( ) ( ) − ( ) × ∫ ∑ = ∞ 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ c u c v s w g u v w T I u v w w d wd vd u d n n n I i , , , , , ,  100 0 1 0   1 1 0 1 ∫ ∫ , i ≥1,  V D D nc c c e e s u c i V I n nV nI n n 00 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) v v g u v w T V n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) ( ) − c w V u u d wd vd u d D D nc c c e e n i V I n nV n  100 0 0 ,τ τ χ η ϕ ϑ I I n n n c u s v − ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ τ ϑ 0 1 0 1 0 1 × ( ) ( ) ∂ ( ) ∂ − − ∫ 2 2 100 0 1 0 0 π τ τ π χ c w g u v w T V u v d wd vd u d D D nc n V i V I n , , , ,  ( ( ) ( ) ( ) ( ) × = ∞ ∑ c c enV n η ϕ ϑ 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u c v s w g u v w T V u w d wd vd u d nI n n n V i τ τ τ , , , ,  100 0 1 1 0 1 0 1 0 ∫ ∫ ∫ ∫ ϑ , i ≥1, where sn (χ) = sin (π n χ);  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 010 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) ( ) 1 000 000 ε τ τ I V I V g u v w T I u v w V u v w d wd vd u , , , , , , , , , , ,   d d τ ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 020 0 0 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) D D c c c e e c u c I V n n n n n n n v v c w n I V n ( ) ( ) +   × ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε ϑ , × ( )  ( ) ( )+ ( g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , ,    010 000 000    ) ) ( )      V u v w d wd vd u d 010 , , ,  ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 001 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n × + ( )     ( ) 1 000 2 ε ρ τ τ ρ ρ ρ ρ , , , , , , , , g u v w T u v w d wd vd u d  ;  ρ χ η ϕ ϑ χ η ϕ ϑ τ ρ ρ 002 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c e e c u c v c w n n n n n n n n ( ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ n
  • 13. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 39 × + ( )     ( ) ( ) 1 001 000 ε ρ τ ρ τ ρ ρ ρ ρ , , , , , , , , , , , g u v w T u v w u v w d wd vd u   d d τ ;  I D D nc c c e e s u I V n n n nI nI n 110 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( − g u v w T I u v w u d wd vd u d D D nc c I i I V n n , , , , , ,  100 0 0 2 τ τ π χ η) ) ( ) ( ) × = ∞ ∑ c e n nI n ϕ ϑ 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u s v c u g u v w T I u v w v d wd vd nI n n n I i τ τ , , , , , ,  100 u u d D D I V τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) − n e e c u c v s u g u v w T I u v w nI nI n n n I i ϑ τ τ , , , , , ,  100 ∂ ∂ × ∫ ∫ ∫ ∫ ∑ = ∞ w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) c c c c e c c e c u c v c n n n n nI n n nI n n n χ η ϕ χ ϑ η ϕ τ 2 v v I V n ( ) + ×   ∫ ∫ ∫ ∫ ∑ = ∞ 1 0 1 0 1 0 1 0 1 ε ϑ , × ( )  ( ) ( )+ ( g u v w T I u v w V u v w I u v w I V , , , , , , , , , , , , ,    100 000 000    ) ) ( )      V u v w d wd vd u d 100 , , ,   V D D nc c c e e s u V I n n n nV nV n 110 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v c u n n n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( − g u v w T V u v w u d wd vd u d D D nc c V i V I n n , , , , , ,  100 0 0 2 τ τ π χ η) ) ( ) ( ) × = ∞ ∑ c e n nV n ϕ ϑ 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ − e c u s v c u g u v w T V u v w v d wd vd nV n n n V i τ τ , , , , , ,  100 u u d D D V I τ π ϑ 0 1 0 1 0 1 0 0 0 2 ∫ ∫ ∫ ∫ − × × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) − ne e c u c v s u g u v w T V u v w nV nV n n n V i ϑ τ τ , , , , , ,  100 ∂ ∂ × ∫ ∫ ∫ ∫ ∑ = ∞ w d wd vd u d n τ ϑ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( ) + c c c c e c c e c u c v n n n n nI n n nV n n χ η ϕ χ ϑ η ϕ τ 2 1 ε ε ϑ I V I V n g u v w T , , , , , ( )     × ∫ ∫ ∫ ∫ ∑ = ∞ 0 1 0 1 0 1 0 1 × ( ) ( ) ( )+ ( ) c w I u v w V u v w I u v w V u v n     100 000 000 100 , , , , , , , , , , ,    w w d wd vd u d ,  ( )     ;  I D D nc c c e e s u I V n n n nI nI n 101 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v g u v w T n I n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) c w I u v w u d wd vd u d D D nc c c e n I V n n n n  001 0 0 2 , , ,τ τ π χ η ϕ I I n ϑ ( ) × = ∞ ∑ 1 × ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫s v c w g u v w T I u v w v d wd vd u d D n n I , , , , , ,  001 0 1 0 1 0 2 τ τ π I I V nI n n n n D ne c c c 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑ × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u c v s w g u v w T I u v w w d wd vd u d nI n n n I τ τ , , , , , ,  001 τ τ χ η ϕ ϑ 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ c c c n n n n × ( ) − ( ) ( ) ( ) ( ) + ( )     e e c u c v c w g u v w T I u nI nI n n n I V I V ϑ τ ε 1 100 , , , , ,  , , , , , , , v w V u v w d wd vd u d τ τ τ ϑ ( ) ( ) ∫ ∫ ∫ ∫  000 0 1 0 1 0 1 0  V D D nc c c e e s u V I n n n nV nV n 101 0 0 2 χ η ϕ ϑ π χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) c c v g u v w T n V n ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ , , , 0 1 0 1 0 1 0 1 ϑ
  • 14. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 40 × ( ) ∂ ( ) ∂ − ( ) ( ) ( ) c w V u v w u d wd vd u d D D nc c c e n V I n n n n  001 0 0 2 , , ,τ τ π χ η ϕ I I nV n n e c u ϑ τ ϑ ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ 0 1 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ − ∫ ∫s v c w g u v w T I u v w v d wd vd u d D n n I , , , , , ,  001 0 1 0 1 0 2 τ τ π I I V nI n n n n D ne c c c 0 1 ϑ χ η ϕ ( ) ( ) ( ) ( ) × = ∞ ∑ × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u c v s w g u v w T V u v w w d wd vd u d nV n n n V τ τ , , , , , ,  001 τ τ χ η ϕ ϑ 0 1 0 1 0 1 0 1 2 ∫ ∫ ∫ ∫ ∑ − ( ) ( ) ( ) × = ∞ c c c n n n n × ( ) − ( ) ( ) ( ) ( ) + ( )     e e c u c v c w g u v w T I u nV nV n n n I V I V ϑ τ ε 1 100 , , , , ,  , , , , , , , ; v w V u v w d wd vd u d τ τ τ ϑ ( ) ( ) ∫ ∫ ∫ ∫  000 0 1 0 1 0 1 0  I c c c e e c u c v c w n n n nI nI n n n 011 2 χ η ϕ ϑ χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ × + ( )     ( )+ + ( ) 1 1 010 ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,       ( ) ( )}   I u v w V u v w d wd vd u d 001 000 , , , , , , τ τ τ  V c c c e e c u c v c w n n n nV nV n n n 011 2 χ η ϕ ϑ χ η ϕ ϑ τ , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ( ) ( ) { × ∫ ∫ ∫ ∫ ∑ = ∞  I u v w n 000 0 1 0 1 0 1 0 1 , , ,τ ϑ × + ( )     ( )+ + ( ) 1 1 010 ε τ ε I I I I I V I V g u v w T I u v w g u v w T , , , , , , , , , , , , ,       ( ) ( )}   I u v w V u v w d wd vd u d 001 000 , , , , , , . τ τ τ Equations for functions Φρi (x,y,z,t), i ≥0 to describe concentrations of simplest complexes of radiation defects.        Φ Φ Φ Φ I I I I x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦI x y z t z 0 2 , , , ( )       +  + ( ) ( )− ( ) ( ) k x y z T I x y z t k x y z T I x y z t I I I , , , , , , , , , , , , , 2        Φ Φ Φ Φ V V V V x y z t t D x y z t x x y z t y 0 0 2 0 2 2 0 2 2 , , , , , , , , , ( ) = ( ) + ( ) + Φ ΦV x y z t z 0 2 , , , ( )       +  + ( ) ( )− ( ) ( ) k x y z T V x y z t k x y z T V x y z t V V V , , , , , , , , , , , , , 2 ;        Φ Φ Φ Φ I i I I i I i x y z t t D x y z t x x y z t y , , , , , , , , , ( ) = ( ) + ( ) + 0 2 2 2 2 2 Φ ΦI i x y z t z , , , ( )         +  2 + ( ) ( )       + ( − D x g x y z T x y z t x y g x y z T I I I i I 0 1 Φ Φ Φ Φ       , , , , , , , , , ) ) ( )       +      −   ΦI i x y z t y 1 , , , + ( ) ( )            −     z g x y z T x y z t z I I i Φ Φ , , , , , , 1 , i≥1,        Φ Φ Φ Φ V i V V i V i x y z t t D x y z t x x y z t y , , , , , , , , , ( ) = ( ) + ( ) + 0 2 2 2 2 2 Φ ΦV i x y z t z , , , ( )         +  2 + ( ) ( )       + ( − D x g x y z T x y z t x y g x y z T V V V i V 0 1 Φ Φ Φ Φ       , , , , , , , , , ) ) ( )       +      −   ΦV i x y z t y 1 , , , + ( ) ( )            −     z g x y z T x y z t z V V i Φ Φ , , , , , , 1 , i≥1;
  • 15. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 41 Boundary and initial conditions for the functions takes the form ∂ ( ) ∂ = = Φi x x y z t x , , , 0 0 , ∂ ( ) ∂ = = Φi x L x y z t x x , , , 0, ∂ ( ) ∂ = = Φi y x y z t y , , , 0 0, ∂ ( ) ∂ = = Φi y L x y z t y y , , , 0, ∂ ( ) ∂ = = Φi z x y z t z , , , 0 0, ∂ ( ) ∂ = = Φi z L x y z t z z , , , 0 , i≥0; Φρ 0 (x,y,z,0)=fΦρ (x,y,z), Φρ i (x,y,z,0)=0, i≥1. Solutions of the above equations could be written as Φ Φ Φ    0 1 1 2 x y z t L L L L L L F c x c y c z e t x y z x y z n n n n n n , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ ∑ + ( ) ( ) ( ) × = ∞ 2 1 L n c x c y c z n n n n × ( ) − ( ) ( ) ( ) ( ) ( ) ( )−   e t e c u c v c w k u v w T I u v w n n n n n I I Φ Φ ρ ρ τ τ , , , , , , , 2 0 0 0 0 0 L L L t z y x ∫ ∫ ∫ ∫ − ( ) ( )  k u v w T I u v w d wd vd u d I , , , , , ,  , where F c u c v c w f u v w d wd vd u n n n n L L L z y x Φ Φ   = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , 0 0 0 , e t n D t L L L n x y z Φ Φ ρ ρ π ( ) = − + + ( )     − − − exp 2 2 0 2 2 2 , cn (x) = cos (π n x/Lx ); Φ Φ Φ ρ π τ ρ ρ i x y z n n n n n n x y z t L L L nc x c y c z e t e s u , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) ( 2 2 ) ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L t n z y x Φρ , , , 0 0 0 0 1 × ( ) ( ) − ( ) ( ) ( ) − c w u v w u d wd vd u d L L L nc x c y c z n I i x y z n n n ∂ τ ∂ τ π ρ Φ 1 2 2 , , , e e t e n n t n Φ Φ ρ ρ τ ( ) − ( ) × ∫ ∑ = ∞ 0 1 × − ( ) ( ) ( ) ( ) ( ) ( ) − e c u s v c w g u v w T u v w v d wd v n n n n I i Φ Φ Φ ρ ρ ρ τ ∂ τ ∂ , , , , , , 1 d d u d L L L n L L L t x y z n z y x τ π 0 0 0 0 2 1 2 ∫ ∫ ∫ ∫ ∑ − × = ∞ × ( ) − ( ) ( ) ( ) ( ) ( ) − e t e c u c v s w u v w w g u v w n n n n n I i Φ Φ Φ Φ ρ ρ ρ ρ τ ∂ τ ∂ 1 , , , , , ,T T d wd vd u d L L L t z y x ( ) × ∫ ∫ ∫ ∫ τ 0 0 0 0 × ( ) ( ) ( ) c x c y c z n n n , i ≥1, where sn (x) = sin (π n x/Lx ). Equations for the functions Cij (x,y,z,t) (i ≥0, j ≥0), boundary and initial conditions could be written as ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 00 0 2 00 2 0 2 00 2 , , , , , , , , , D D C x y z t z L 0 2 00 2 ∂ ( ) ∂ , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + ∂ C x y z t t D C x y z t x C x y z t y C i L i i 0 0 2 0 2 2 0 2 2 , , , , , , , , , i i x y z t z 0 2 , , , ( ) ∂       + + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( − D x g x y z T C x y z t x D y g x y z T L L i L L 0 10 0 , , , , , , , , , ) ) ∂ ( ) ∂       + − C x y z t y i 10 , , , + ∂ ∂ ( ) ∂ ( ) ∂       − D z g x y z T C x y z t z L L i 0 10 , , , , , , , i ≥1;
  • 16. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 42 ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 01 0 2 01 2 0 2 01 2 , , , , , , , , , D D C x y z t z L 0 2 01 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ∂ ( ) ∂       + ∂ ∂ D x C x y z t P x y z T C x y z t x D L L 0 00 00 0   , , , , , , , , , y y C x y z t P x y z T C x y z t y 00 00   , , , , , , , , , ( ) ( ) ∂ ( ) ∂       + + ∂ ∂ ( ) ( ) ∂ ( ) ∂       D z C x y z t P x y z T C x y z t z L 0 00 00   , , , , , , , , , ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 02 0 2 02 2 0 2 02 2 , , , , , , , , , D D C x y z t z L 0 2 02 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ( ) ∂ ( ) − D x C x y z t C x y z t P x y z T C x y z t L 0 01 00 1 00 , , , , , , , , , , , ,   ∂ ∂       + ∂ ∂ ( ) ( ) ( ) ×       − x y C x y z t C x y z t P x y z T 01 00 1 , , , , , , , , ,      × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 01 00 1 , , , , , , , , , , , ,   T T C x y z t z D x C x y z t P x y z L ( ) ∂ ( ) ∂            + ∂ ∂ ( ) 00 0 00 , , , , , , , , ,   T T ( ) ×         × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) ∂ C x y z t x y C x y z t P x y z T C x y z t 01 00 01 , , , , , , , , , , , ,   ( ( ) ∂       + ∂ ∂ ( ) ( ) ∂ ( ) ∂     y z C x y z t P x y z T C x y z t z 00 01   , , , , , , , , ,         ; ∂ ( ) ∂ = ∂ ( ) ∂ + ∂ ( ) ∂ + C x y z t t D C x y z t x D C x y z t y L L 11 0 2 11 2 0 2 11 2 , , , , , , , , , D D C x y z t z L 0 2 11 2 ∂ ( ) ∂ + , , , + ∂ ∂ ( ) ( ) ( ) ∂ ( ) ∂  − x C x y z t C x y z t P x y z T C x y z t x 10 00 1 00 , , , , , , , , , , , ,         + ∂ ∂ ( ) ( ) ( ) ×         − y C x y z t C x y z t P x y z T 10 00 1 , , , , , , , , ,   × ∂ ( ) ∂    + ∂ ∂ ( ) ( ) − C x y z t y z C x y z t C x y z t P x y z 00 10 00 1 , , , , , , , , , , , ,   T T C x y z t z D L ( ) ∂ ( ) ∂            + 00 0 , , , + ∂ ∂ ( ) ( ) ∂ ( ) ∂       + ∂ ∂ D x C x y z t P x y z T C x y z t x y C L 0 00 10 0   , , , , , , , , , 0 0 10   x y z t P x y z T C x y z t y , , , , , , , , , ( ) ( ) ∂ ( ) ∂       +      + ∂ ∂ ( ) ( ) ∂ ( ) ∂            + z C x y z t P x y z T C x y z t z D L 00 10 0   , , , , , , , , , ∂ ∂ ∂ ( ) ∂ ( ) ∂       +    x g x y z T C x y z t x L , , , , , , 01 + ∂ ∂ ( ) ∂ ( ) ∂       + ∂ ∂ ( ) ∂ y g x y z T C x y z t y z g x y z T C x y L L , , , , , , , , , , 01 01 , , , z t z ( ) ∂          ;   C x y z t x ij x , , , ( ) = =0 0 ,   C x y z t x ij x Lx , , , ( ) = = 0 ,   C x y z t y ij y , , , ( ) = =0 0 ,   C x y z t y ij y Ly , , , ( ) = = 0 ,   C x y z t z ij z , , , ( ) = =0 0 ,   C x y z t z ij z Lz , , , ( ) = = 0, i ≥0, j ≥0; C00 (x,y,z,0)=fC (x,y,z), Cij (x,y,z,0)=0, i ≥1, j ≥1. Functions Cij (x,y,z,t) (i ≥0, j ≥0) could be approximated by the following series during solutions of the above equations
  • 17. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 43 C x y z t F L L L L L L F c x c y c z e t C x y z x y z nC n n n nC n 00 0 1 2 , , , ( ) = + ( ) ( ) ( ) ( ) = ∞ ∑ ∑ . Here ( ) 2 2 0 2 2 2 1 1 1 exp nC C x y z e t n D t L L L      = − + +           , F c u c v f u v w c w d wd vd u nC n n C n L L L z y x = ( ) ( ) ( ) ( ) ∫ ∫ ∫ , , ; 0 0 0 C x y z t L L L n F c x c y c z e t e s u i x y z nC n n n nC nC n 0 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v g u v w T n L L L L t n z y x , , , 0 0 0 0 1 × ( ) ∂ ( ) ∂ − ( ) ( ) − c w C u v w u d wd vd u d L L L n F c x c y c z n i x y z nC n n n 10 2 2 , , ,τ τ π ( ( ) ( ) − ( ) × ∫ ∑ = ∞ e t e nC nC t n τ 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − ∫ c u s v c v g u v w T C u v w v d wd vd u d n n n L i L L z , , , , , , 10 0 0 τ τ y y x L x y z nC nC n L L L n F e t ∫ ∫ ∑ − ( ) × = ∞ 0 2 1 2π × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂ − c x c y c z e c u c v s v g u v w T C u v n n n nC n n n L i  , , , , 10 , , , w w d wd vd u d L L L t z y x   ( ) ∂ ∫ ∫ ∫ ∫ 0 0 0 0 , i ≥1; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 01 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( )× ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ∂ ( ) ∂ − C u v w P u v w T C u v w u d wd vd u d L L L x y z 00 00 2 2 γ γ τ τ τ π , , , , , , , , , n n F c x c y c z e t nC n n n nC n ( ) ( ) ( ) ( ) × = ∞ ∑ 1 × − ( ) ( ) ( ) ( ) ( ) ( ) ∂ e c u s v c w C u v w P u v w T C u v w nC n n n τ τ τ γ γ 00 00 , , , , , , , , , ( ( ) ∂ − ( )× ∫ ∫ ∫ ∫ ∑ = ∞ v d wd vd u d L L L n e t L L L t x y z nC n z y x τ π 0 0 0 0 2 1 2 × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) F c x c y c z e c u c v s w C u v w P u nC n n n nC n n n τ τ γ γ 00 , , , ,v v w T C u v w w d wd vd u d L L L t z y x , , , , , ( ) ∂ ( ) ∂ ∫ ∫ ∫ ∫ 00 0 0 0 0 τ τ ; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 02 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ − C u v w C u v w P u v w T C u v w u d wd v 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ d d u d L L L F c x c y x y z nC n n n τ π − ( ) ( )× = ∞ ∑ 2 2 1 × ( ) ( ) − ( ) ( ) ( ) ( ) ( ) − nc z e t e c u s v C u v w C u v w P n nC nC n n τ τ τ γ 01 00 1 , , , , , , γ γ τ u v w T C u v w v L L L t z y x , , , , , , ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ 00 0 0 0 0 × ( ) − ( ) ( ) ( ) ( ) − ( ) c w d wd vd u d L L L n F c x c y c z e t e c n x y z nC n n n nC nC n τ π τ 2 2 u u c v n L L t n y x ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ 0 0 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ − s w C u v w C u v w P u v w T C u v w n 01 00 1 00 , , , , , , , , , , , , τ τ τ γ γ w w d wd vd u d L L L n c x L x y z n n z τ π 0 2 1 2 ∫ ∑ − ( ) × = ∞ × ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ∂ F c y c z e t e s u c v c w C u v w C nC n n nC nC n n n   01 00 , , , u u v w u L L L t z y x , , , ( ) ∂ × ∫ ∫ ∫ ∫ 0 0 0 0 × ( ) ( ) − ( ) ( − C u v w P u v w T d wd vd u d L L L n F c x c y x y z nC n n 00 1 2 2 γ γ τ τ π , , , , , , ) ) ( ) ( ) − ( ) ( ) × ∫ ∫ ∑ = ∞ c z e t e c u n nC nC n L t n x τ 0 0 1
  • 18. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 44 × ( ) ( ) ( ) ( ) ( ) ∂ − s v c w C u v w C u v w P u v w T C u v w n n 01 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ v d wd vd u d L L L n L L x y z n z y 0 0 2 1 2 × ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) ( F c x c y c z e t e c u c v s w C u v w nC n n n nC nC n n n τ τ 01 , , , ) ) ( ) ( ) × − ∫ ∫ ∫ ∫ C u v w P u v w T L L L t z y x 00 1 0 0 0 0 γ γ τ , , , , , , × ∂ ( ) ∂ − ( ) ( ) ( ) ( ) C u v w w d wd vd u d L L L F c x c y c z e t x y z nC n n n nC 00 2 2 , , ,τ τ π e e s u nC n L t n x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 × ( ) ( ) ( ) ( ) ∂ ( ) ∂ n c v c w C u v w P u v w T C u v w u d wd vd u d n n 00 01 γ γ τ τ , , , , , , , , , τ τ π 0 0 2 1 2 L L x y z n nC n z y L L L c x e t ∫ ∫ ∑ − ( ) ( ) × = ∞ × ( ) − ( ) ( ) ( ) ( ) ( ) ( ) ∂ F c y e c u s v c w C u v w P u v w T C nC n nC n n n τ τ γ γ 00 0 , , , , , , 1 1 0 0 0 0 u v w v d wd v d u d L L L t z y x , , ,τ τ ( ) ∂ × ∫ ∫ ∫ ∫ × ( )− ( ) ( ) ( ) ( ) − ( ) ( ) ( n c z L L L n F c x c y c z e t e c u c v n x y z nC n n n nC nC n n 2 2 π τ ) ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ s w n L L L t n z y x 0 0 0 0 1 × ( ) ( ) ∂ ( ) ∂ C u v w P u v w T C u v w w d wd vd u d 00 01 γ γ τ τ τ , , , , , , , , , ; C x y z t L L L n F c x c y c z e t e s u x y z nC n n n nC nC n 11 2 2 , , , ( ) = − ( ) ( ) ( ) ( ) − ( ) π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ c v c w n n L L L t n z y x 0 0 0 0 1 × ( ) ∂ ( ) ∂ − ( ) ( g u v w T C u v w u d wd vd u d L L L n F c x c y L x y z nC n n , , , , , , 01 2 2 τ τ π ) ) ( ) ( ) × = ∞ ∑ c z e t n nC n 1 × − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ e c u s v c w g u v w T C u v w v d wd vd u d nC n n n L τ τ τ , , , , , , 01 0 L L L L t x y z z y x L L L ∫ ∫ ∫ ∫ − × 0 0 0 2 2π × ( ) − ( ) ( ) ( ) ( ) ( ) ∂ ( ) ∂ n e t e c u c v s w g u v w T C u v w w d w nC nC n n n L   , , , , , , 01 d d vd u d L L L t n z y x  0 0 0 0 1 ∫ ∫ ∫ ∫ ∑ = ∞ × × ( ) ( ) ( )− ( ) ( ) ( ) ( ) − F c x c y c z L L L F c x c y c z e t e nC n n n x y z nC n n n nC nC 2 2 π τ ( ( ) ( ) ( ) × ∫ ∫ ∫ ∑ = ∞ s u c v n n L L t n y x 0 0 0 1 × ( ) ( ) ( ) ∂ ( ) ∂ ∫ n c w C u v w P u v w T C u v w u d wd vd u d n Lz 00 10 0 γ γ τ τ τ , , , , , , , , , − − ( ) ( )× = ∞ ∑ 2 2 1 π L L L n F c x c y x y z nC n n n × ( ) ( ) − ( ) ( ) ( ) ( ) ( ) ( ) c z e t e c u s v c w C u v w P u v w T n nC nC n n n τ τ γ γ 00 , , , , , , ∂ ∂ ( ) ∂ − ∫ ∫ ∫ ∫ C u v w v d wd vd u d L L L t z y x 10 0 0 0 0 , , ,τ τ − ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) 2 2 π τ L L L n F c x c y c z e t e c u c v s w C x y z nC n n n nC nC n n n 0 00 0 0 0 0 1 γ γ τ u v w P u v w T L L L t n z y x , , , , , , ( ) ( ) × ∫ ∫ ∫ ∫ ∑ = ∞ × ∂ ( ) ∂ − ( ) ( ) ( ) ( C u v w w d wd v d u d L L L n F c x c y c z e t x y z nC n n n nC 10 2 2 , , ,τ τ π ) ) − ( ) ( ) × ∫ ∫ ∑ = ∞ e s u nC n L t n x τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − c v c w C u v w C u v w P u v w T C u v w n n 10 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ π ( ) ∂ − × ∫ ∫ ∑ = ∞ u d wd vd u d L L L n L L x y z n z y 0 0 2 1 2
  • 19. Pankratov: On optimization of of a double-tail dynamic comparator AJCSE/Oct-Dec-2021/Vol 6/Issue 4 45 × ( ) ( ) ( ) ( ) − ( ) ( ) ( ) ( ) − F c x c y c z e t e c u s v c w C u v w nC n n n nC nC n n n τ γ 00 1 , , , , , , , , , , τ τ γ ( ) ( ) ∂ ( ) ∂ × ∫ ∫ ∫ ∫ P u v w T C u v w v L L L t z y x 00 0 0 0 0 × ( ) − ( ) ( ) ( ) ( ) C u v w d wd vd u d L L L n F c x c y c z e t e x y z nC n n n nC n 10 2 2 , , ,τ τ π C C n L t n c u x − ( ) ( ) × ∫ ∫ ∑ = ∞ τ 0 0 1 × ( ) ( ) ( ) ( ) ( ) ∂ − c v s w C u v w C u v w P u v w T C u v w n n 10 00 1 00 , , , , , , , , , , , τ τ γ γ , ,τ τ ( ) ∂ ∫ ∫ w d wd vd u d L L z y 0 0 .