The simulation of news and insiders'
        influence on stock-market prices
        dynamics in non-linear model
        Victor Romanov, Oksana Naletova, Eugenia Pantileeva, Alexander Federyakov




Plekhanov Russian Academy of Economics

       Computational Finance 2006
           27 – 29 June 2006
              London, UK
There exist two kinds of traders’ strategies

F- trader strategy:                                               N-trader strategy:

ef t  cF (vt  xt )3  (vt  xt )3                       ent  cN ( xt  yt )  xt  yt

vt  vt 1  h t                                             yt  xt 1  (1   ) yt 1

The aggregate excess demand:
                                                          et  wt ef t  (1  wt )ent

                         Dynamic prices’ adjustment:

                  xt 1  xt  bet  bwt ef t  b(1  wt )ent
                                                                                     wt
   Share of the two types of investors :                 wt 1 
                                                                             wt  (1  wt )e  gRt
                                               t 1                t 1                              t 1               t 1
   R - the past relative return   Rt  [ xt    ef
                                              j t  k
                                                          j       x ef
                                                                  j t  k
                                                                             j   j   ] / k  [ xt    en
                                                                                                    j t  k
                                                                                                               j       x en ] / k
                                                                                                                       j t  k
                                                                                                                                  j   j
Common view of program interface with graphic representation of
 artificial time series generated by the program and simulating
                       dollar/ruble exchange




    The interface permits to make the substitution parameter values into the model:
alfa, Cf, Cn, w1, g, b, k, Insiders share, q, S, Noise, Strength, u, h, v1, Count, bad/good
                        slide and to overview the variables values.
Non-linear oscillation                     The strange attractor


                                                                      The real
                                                                           head
                                                                           and
                                                                      shoulder
                                                                       pattern

This output looks like head and shoulder pattern
0,5

0




      t
vj+1 := vj +( h * (Exp Qj - 1) / (Exp Qj + 1)) + εj
The price fundamental value is rising up   The price fundamental value is falling down
           with “good” news                             with “bad” news
eins t  q * ( xt  xt 1 ) 2                                                        The insiders’ return

                                                                                     The total return including
         R  Rins t , if _ R  0                                                     insiders
Rt 1  { t
         Rt  Rins t , if _ Rt  0
                                                                                     The insiders’ past relative
                  t 1               t 1                                            return
Rins t  ( x j    eins
                 j t  k
                            j       x eins
                                    j t  k
                                               j   j   )/k


et  wt ef t  (1  w  l ) * ent  l * eins t                                          Excess demand now


      The combined news and insiders’ influence on the price fundamental value
              vt  (h * Exp ( s ( Rins t /( Rt  Rins t )))) * ( Exp (Qt )  1) /( Exp (Qt )  1), if ( Rt  Rins t )  0
vinst 1  {
                                       vt  (h * ( ExpQt  1) /( ExpQt  1))   t , if ( Rt  Rins t )  0
Insiders impact on the assets market price         Insiders’ super profit implying
                                                          market collapse




    Insiders past relative return            Market prices behavior in proximity of
                                                          crash point
26.5


                                  26


                                 25.5


                                  25


                                 24.5                                                                Ряд1


                                  24


                                 23.5


                                  23


                                 22.5
                                        0    20   40   60   80   100   120   140   160   180   200


Prices’ behavior with insiders
                                            Real data USD/ruble change rate
                                             data during Russian default for
                                             period 05.03.1999 – 01.11.1999




       Insiders’ return
18
                                         16
                                         14
                                         12
                                         10
                                                                                         Ряд1
                                          8
                                          6
                                          4
                                          2
                                          0
                                              0   100      200   300   400   500   600

  Insiders impact on the assets market
                 price                                  For comparison Yukos
                                                        actions open prices for
                                                        period from 13.10.2003
                                                             to 26.11.2004




Insiders past relative return
I   Input neurons

N
                    Output neurons
P
U
T


D
A
T
A
x(1)+1)     x(2)+       x(3)+       x(4)+      x(5)+   x(6)+             x(N)+




   x(1)       x(2)        x(3)         x(4)

   x(2)       x(3)        x(4)         x(5)

   x(3)       x(4)        x(5)         x(6)

   x(4)       x(5)        x(6)         x(7)                    Kohonen Net input data window sliding along time series
          ………………………………

   x(N-1)      x(N-2)      x(N-1)       x(N)




  The time series is cut into pieces to
    arrange sliding data window
Insiders modeling london-2006
0,4

  0,3

  0,2

  0,1

        0
            0   5     10         15         20         25   30    35
  -0,1

  -0,2

  -0,3


Chart pattern class A                                                    Chart pattern class B
  31                                                                       38.5

                                                                            38
 30.5
                                                                           37.5
  30
                                                                            37

 29.5
                                                                           36.5

  29                                                                        36

                                                                           35.5
 28.5
                                                                            35
  28
                                                                           34.5
 27.5
                                                                            34

  27                                                                       33.5
        0       100        200        300        400        500    600            0   100   200   300   400   500   600




The arrows indicate places where Kohonen Net recognize patterns of classes A and B
Fractal pattern of time series discovered by
                        Kohonen Network

Classes:

    cyclic


                     0,2

                    0,15

                     0,1

                                                               342

   stability
                    0,05
                                                               256
                         0                                     107
                             0        5        10        15
                    -0,05

                     -0,1

                    -0,15




   bearish


                  0,6

                  0,4

                  0,2
                                                              447


    bullish
                    0                                         229
                         0       10       20   30   40
                  -0,2                                        490
                                                              147
                  -0,4

                  -0,6

                  -0,8
Plot of Means for Each Cluster                                                           Plot of Means for Each Cluster
  30                                                                      35                                                                                  35


                                                                          30                                                                                  30
  25

                                                                          25                                                                                  25

  20
                                                                          20                                                                                  20


                                                                          15                                                                                  15
  15                                                               Ряд1

                                                                          10                                                                                  10

  10
                                                                           5                                                                                   5

                                                                                                                                               Cluster   1
                                                                           0                                                                   Cluster   2     0
  5
                                                                                                                                               Cluster   3
                                                                                                                                               Cluster   4
                                                                          -5                                                                   Cluster   5    -5
                                                                                 Var3          Var9        NewVar5   NewVar11  NewVar17                                                                                              Cluster 1
                                                                                                                                               Cluster   6             Var3          Var9        NewVar5   NewVar11  NewVar17
  0                                                                                     Var6          NewVar2   NewVar8   NewVar14  NewVar20                                  Var6          NewVar2   NewVar8   NewVar14  NewVar20
                                                                                                                                                                                                                                     Cluster 2
                                                                                                                                               Cluster   7                                                                           Cluster 3
       0       100        200         300        400   500   600                                           Variables                                                                                Variables


USD changing rate during the period
      01.08.1997-01.11.1999

                                The number of clusters estimation by k-means method (3 clusters)

                                                                          25
   24                                                                                                                                                         24
                                                                          21
   20                                                                                                                                                         20
                                                                          17
   16                                                                                                                                                         16
                                                                          13
   12                                                          Ряд1
                                                                                                                                               Ряд1           12                                                                     Ряд1
                                                                           9
       8                                                                                                                                                       8
                                                                           5
       4                                                                                                                                                       4
                                                                           1
       0                                                                                                                                                       0
           0         10          20         30         40
                                                                          -3 0          4         8         12         16         20   24                          0                 10               20               30   40

   6 rub/Usd                                                              16 rub/Usd                                                                         23 rub/Usd
                                            The clusters patterns discovered by Kohonen Network

More Related Content

DOCX
Multicurrency project
PPTX
PDF
Hedging, Arbitrage, and Optimality with Superlinear Frictions
PDF
Transaction Costs Made Tractable
PDF
Volatility derivatives and default risk
PDF
Stochastic Calculus Main Results
PDF
Optimalpolicyhandout
PDF
Dynamic Trading Volume
Multicurrency project
Hedging, Arbitrage, and Optimality with Superlinear Frictions
Transaction Costs Made Tractable
Volatility derivatives and default risk
Stochastic Calculus Main Results
Optimalpolicyhandout
Dynamic Trading Volume

What's hot (20)

PDF
F0543645
DOCX
Logics of the laplace transform
PDF
Basic concepts and how to measure price volatility
PDF
Lecture on nk [compatibility mode]
PDF
Chapter 1 nonlinear
PDF
Toeplitz (2)
PDF
Neuron-computer interface in Dynamic-Clamp experiments
PDF
Chapter 5 heterogeneous
PDF
Computation of the marginal likelihood
PDF
12 x1 t04 06 integrating functions of time (2012)
PDF
12 x1 t04 06 integrating functions of time (2013)
PDF
Chapter 4 likelihood
PDF
PhD defense talk slides
PDF
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
PDF
UT Austin - Portugal Lectures on Portfolio Choice
PDF
Incomplete-Market Equilibrium with Unhedgeable Fundamentals and Heterogeneous...
PDF
Biomathematics
PDF
CME Deliverable Interest Rate Swap Future
PDF
An Approximate Distribution of Delta-Hedging Errors in a Jump-Diffusion Model...
PDF
Dsp U Lec07 Realization Of Discrete Time Systems
F0543645
Logics of the laplace transform
Basic concepts and how to measure price volatility
Lecture on nk [compatibility mode]
Chapter 1 nonlinear
Toeplitz (2)
Neuron-computer interface in Dynamic-Clamp experiments
Chapter 5 heterogeneous
Computation of the marginal likelihood
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2013)
Chapter 4 likelihood
PhD defense talk slides
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
UT Austin - Portugal Lectures on Portfolio Choice
Incomplete-Market Equilibrium with Unhedgeable Fundamentals and Heterogeneous...
Biomathematics
CME Deliverable Interest Rate Swap Future
An Approximate Distribution of Delta-Hedging Errors in a Jump-Diffusion Model...
Dsp U Lec07 Realization Of Discrete Time Systems
Ad

Viewers also liked (6)

PPTX
Improve Your Product Portfolio Through Analytics - H. Del Castillo
PDF
2011 MAXIMA OWNER'S MANUAL
PDF
Magento's Imagine eCommerce Conference 2011 - Import Export in a Flash with t...
PPTX
GPUs, CPUs and SoC
PPS
Sub Prime Crisis Explained
PDF
悦己
Improve Your Product Portfolio Through Analytics - H. Del Castillo
2011 MAXIMA OWNER'S MANUAL
Magento's Imagine eCommerce Conference 2011 - Import Export in a Flash with t...
GPUs, CPUs and SoC
Sub Prime Crisis Explained
悦己
Ad

Similar to Insiders modeling london-2006 (20)

PPT
Numerical Technique, Initial Conditions, Eos,
PDF
Portfolios and Risk Premia for the Long Run
PPTX
Speech waves in tube and filters
DOCX
1 d wave equation
PDF
Cash Settled Interest Rate Swap Futures
PDF
New Mathematical Tools for the Financial Sector
PDF
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
PDF
State Space Model
PDF
Paris2012 session4
PPTX
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
PDF
The convenience yield implied by quadratic volatility smiles presentation [...
PDF
Confidence intervalanalysis methodology_eka
PDF
Elett02
PDF
Particle filtering
PDF
The price density function, a tool for measuring investment risk,volatility a...
PDF
A Classification Problem of Credit Risk Rating Investigated and Solved by Opt...
PPT
Quadrature amplitude modulation qam transmitter
PDF
Fractional Calculus
PDF
Spatio-Temporal Analysis of Gasoline Shortage in Tohoku Region after the Grea...
PDF
Talk spinoam photon
Numerical Technique, Initial Conditions, Eos,
Portfolios and Risk Premia for the Long Run
Speech waves in tube and filters
1 d wave equation
Cash Settled Interest Rate Swap Futures
New Mathematical Tools for the Financial Sector
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
State Space Model
Paris2012 session4
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
The convenience yield implied by quadratic volatility smiles presentation [...
Confidence intervalanalysis methodology_eka
Elett02
Particle filtering
The price density function, a tool for measuring investment risk,volatility a...
A Classification Problem of Credit Risk Rating Investigated and Solved by Opt...
Quadrature amplitude modulation qam transmitter
Fractional Calculus
Spatio-Temporal Analysis of Gasoline Shortage in Tohoku Region after the Grea...
Talk spinoam photon

More from Victor Romanov (20)

PPTX
Simulation of alliance network modified
PPTX
Virtual enterprise synthesys
PPTX
Presentation for iccms [автосохраненный]
PPTX
Romanov presentation-eomas-2015-last
PDF
D wires ext 0.12 (1)
PPTX
Amster present-07-02-final
PDF
Presentation for iccms [автосохраненный]
PPT
Cистема быстрого реагирования по защите нефтепроводов
PPTX
Emergency response planning m0di
PPTX
Eomas cloud erp query flow control simulation
PPTX
Oil & Gas Transporting emergency recovering information asystem (for lease))-
PPTX
Financial market crises predictor
PPT
Regions strategy development
PPT
презентация Immod 20-10
PPTX
информационная система быстрого реагирования на нештатные ситуации в области ...
PPT
мониторинг и анализ финансовых рынков, предсказание кризиса, симулятор
PPTX
инновации и технологии
PPTX
Situation Calculus Approach to the Oil Products Supply Control System, Autumn...
PPTX
Marketing (bas)
Simulation of alliance network modified
Virtual enterprise synthesys
Presentation for iccms [автосохраненный]
Romanov presentation-eomas-2015-last
D wires ext 0.12 (1)
Amster present-07-02-final
Presentation for iccms [автосохраненный]
Cистема быстрого реагирования по защите нефтепроводов
Emergency response planning m0di
Eomas cloud erp query flow control simulation
Oil & Gas Transporting emergency recovering information asystem (for lease))-
Financial market crises predictor
Regions strategy development
презентация Immod 20-10
информационная система быстрого реагирования на нештатные ситуации в области ...
мониторинг и анализ финансовых рынков, предсказание кризиса, симулятор
инновации и технологии
Situation Calculus Approach to the Oil Products Supply Control System, Autumn...
Marketing (bas)

Insiders modeling london-2006

  • 1. The simulation of news and insiders' influence on stock-market prices dynamics in non-linear model Victor Romanov, Oksana Naletova, Eugenia Pantileeva, Alexander Federyakov Plekhanov Russian Academy of Economics Computational Finance 2006 27 – 29 June 2006 London, UK
  • 2. There exist two kinds of traders’ strategies F- trader strategy: N-trader strategy: ef t  cF (vt  xt )3  (vt  xt )3 ent  cN ( xt  yt )  xt  yt vt  vt 1  h t yt  xt 1  (1   ) yt 1 The aggregate excess demand: et  wt ef t  (1  wt )ent Dynamic prices’ adjustment: xt 1  xt  bet  bwt ef t  b(1  wt )ent wt Share of the two types of investors : wt 1  wt  (1  wt )e  gRt t 1 t 1 t 1 t 1 R - the past relative return Rt  [ xt  ef j t  k j   x ef j t  k j j ] / k  [ xt  en j t  k j   x en ] / k j t  k j j
  • 3. Common view of program interface with graphic representation of artificial time series generated by the program and simulating dollar/ruble exchange The interface permits to make the substitution parameter values into the model: alfa, Cf, Cn, w1, g, b, k, Insiders share, q, S, Noise, Strength, u, h, v1, Count, bad/good slide and to overview the variables values.
  • 4. Non-linear oscillation The strange attractor The real head and shoulder pattern This output looks like head and shoulder pattern
  • 5. 0,5 0 t
  • 6. vj+1 := vj +( h * (Exp Qj - 1) / (Exp Qj + 1)) + εj The price fundamental value is rising up The price fundamental value is falling down with “good” news with “bad” news
  • 7. eins t  q * ( xt  xt 1 ) 2 The insiders’ return The total return including R  Rins t , if _ R  0 insiders Rt 1  { t Rt  Rins t , if _ Rt  0 The insiders’ past relative t 1 t 1 return Rins t  ( x j  eins j t  k j   x eins j t  k j j )/k et  wt ef t  (1  w  l ) * ent  l * eins t Excess demand now The combined news and insiders’ influence on the price fundamental value vt  (h * Exp ( s ( Rins t /( Rt  Rins t )))) * ( Exp (Qt )  1) /( Exp (Qt )  1), if ( Rt  Rins t )  0 vinst 1  { vt  (h * ( ExpQt  1) /( ExpQt  1))   t , if ( Rt  Rins t )  0
  • 8. Insiders impact on the assets market price Insiders’ super profit implying market collapse Insiders past relative return Market prices behavior in proximity of crash point
  • 9. 26.5 26 25.5 25 24.5 Ряд1 24 23.5 23 22.5 0 20 40 60 80 100 120 140 160 180 200 Prices’ behavior with insiders Real data USD/ruble change rate data during Russian default for period 05.03.1999 – 01.11.1999 Insiders’ return
  • 10. 18 16 14 12 10 Ряд1 8 6 4 2 0 0 100 200 300 400 500 600 Insiders impact on the assets market price For comparison Yukos actions open prices for period from 13.10.2003 to 26.11.2004 Insiders past relative return
  • 11. I Input neurons N Output neurons P U T D A T A
  • 12. x(1)+1) x(2)+ x(3)+ x(4)+ x(5)+ x(6)+ x(N)+ x(1) x(2) x(3) x(4) x(2) x(3) x(4) x(5) x(3) x(4) x(5) x(6) x(4) x(5) x(6) x(7) Kohonen Net input data window sliding along time series ……………………………… x(N-1) x(N-2) x(N-1) x(N) The time series is cut into pieces to arrange sliding data window
  • 14. 0,4 0,3 0,2 0,1 0 0 5 10 15 20 25 30 35 -0,1 -0,2 -0,3 Chart pattern class A Chart pattern class B 31 38.5 38 30.5 37.5 30 37 29.5 36.5 29 36 35.5 28.5 35 28 34.5 27.5 34 27 33.5 0 100 200 300 400 500 600 0 100 200 300 400 500 600 The arrows indicate places where Kohonen Net recognize patterns of classes A and B
  • 15. Fractal pattern of time series discovered by Kohonen Network Classes: cyclic 0,2 0,15 0,1 342 stability 0,05 256 0 107 0 5 10 15 -0,05 -0,1 -0,15 bearish 0,6 0,4 0,2 447 bullish 0 229 0 10 20 30 40 -0,2 490 147 -0,4 -0,6 -0,8
  • 16. Plot of Means for Each Cluster Plot of Means for Each Cluster 30 35 35 30 30 25 25 25 20 20 20 15 15 15 Ряд1 10 10 10 5 5 Cluster 1 0 Cluster 2 0 5 Cluster 3 Cluster 4 -5 Cluster 5 -5 Var3 Var9 NewVar5 NewVar11 NewVar17 Cluster 1 Cluster 6 Var3 Var9 NewVar5 NewVar11 NewVar17 0 Var6 NewVar2 NewVar8 NewVar14 NewVar20 Var6 NewVar2 NewVar8 NewVar14 NewVar20 Cluster 2 Cluster 7 Cluster 3 0 100 200 300 400 500 600 Variables Variables USD changing rate during the period 01.08.1997-01.11.1999 The number of clusters estimation by k-means method (3 clusters) 25 24 24 21 20 20 17 16 16 13 12 Ряд1 Ряд1 12 Ряд1 9 8 8 5 4 4 1 0 0 0 10 20 30 40 -3 0 4 8 12 16 20 24 0 10 20 30 40 6 rub/Usd 16 rub/Usd 23 rub/Usd The clusters patterns discovered by Kohonen Network