The document summarizes research using machine learning models to analyze the impact of weather factors on the COVID-19 pandemic and to detect COVID-19 from chest X-rays. It describes using decision tree regressors to determine that temperature, humidity, and sun exposure have 85.88% impact on COVID-19 spread and 91.89% impact on COVID-19 deaths. It also details using pre-trained convolutional neural networks like VGG16 and VGG19 on chest X-rays to classify images as normal, pneumonia, or COVID-19 with over 92% accuracy. Finally, it mentions using logistic regression to predict an individual's risk of death from COVID-19 based on attributes like age, gender, and location, achieving 94.
Related topics: