The document compares the performance of different machine learning models for detecting COVID-19 from CT scans, including single models like SVM, NB, MLP, CNN and ensemble models like AdaBoost and GBDT. Based on accuracy, precision, recall, F1-score and MCC metrics, the SVM model achieved the best performance with an accuracy of 99.2%, followed by CNN and AdaBoost. While MLP, NB and GBDT showed lower performance, CNN had the advantage of automatically detecting important image features.
Related topics: