materiaIs
virtuaLab
First Principles Insights into
Nanoscale Phase Stability and
Charging Mechanisms 
inAlkali-O2 Batteries 	

ShinYoung Kang,Yifei Mo, Shyue Ping Ong,
Gerbrand Ceder
Aug 12, 2014
ACS 248th National Meeting
The promise of alkali-air batteries	

A+ + O2 + e− à AxOy AxOy è A+ + O2 + e−
Oxygen
Reduction
Reaction
Oxygen
Evolution
Reaction
Equilibrium potential
(V)
Theoretical specific
energy* (kWh/kg)
Theoretical energy
density* (kWh/L)
Li / Li2O2 2.96 3.46 7.99
Na / Na2O 1.96 1.70 3.86
Na / Na2O2 2.33 1.60 4.48
Na / NaO2 2.27 1.10 2.43
metal
anode
air cathode
*based on the mass and volume of discharge product only
Aug 12, 2014 ACS 248th National Meeting
Outline	

1.  Facile topotatic delithiation of
Li2O2 in Li-O2 batteries
2.  Nanoscale Phase Stability of
NaxOy
Aug 12, 2014 ACS 248th National Meeting
Outline	

1.  Facile topotatic delithiation of
Li2O2 in Li-O2 batteries
2.  Nanoscale Phase Stability of
NaxOy
Aug 12, 2014 ACS 248th National Meeting
Mizuno, Nakanishi, Kotani,Yokoishi, Iba,
50th Battery Symposium in Japan (2009)
T. Ogasawara,A. Debart, M. Holzapfel, P. Novak, P.G. Bruce, J.Am. Chem.
Soc. 2006
G. Girishkumar, B. McCloskey,AC. Luntz, S. Swanson,W.Wilcke, J. Phys.
Chem. Lett. 2010
K. Xu, Chem. Rev. 2004
Poor reversibility (~50 cycles)
Side reactions with electrolyte
(up to 99% Li2CO3)
Low power density
Low cyclic efficiency (~60%)
High charging overpotential (~1.1-1.5V)
Safety of Li metal anode
Aug 12, 2014 ACS 248th National Meeting
Challenges in Li-
Air Batteries
Recent experimental results reveal highly improved
performance	

Improved cyclability (~ 100 cycles)4,5
Higher rate (~ 3 mA/cm2)5
Lower discharging overpotential
Low charging overpotential at the initial stage of charging 4,5,6
More stable electrolyte (no carbonate!!)à less by-products4,5
Aug 12, 2014 ACS 248th National Meeting
McCloskey et al. JPCL (2012)
Potential	
  vs.	
  Li/Li+	
  (V)	
  
Capacity	
  (mAh)	
  
Peng et al. Science (2012)
Discharge	
  capacity	
  
(mAh/ggold)	
  
Cycle	
  
Evidence of LiO2 formation during discharge	

Aug 12, 2014 ACS 248th National Meeting
Peng et al. 8 observed
the formation of
metastable LiO2 using
in-situ surface
enhanced Raman
spectroscopy (SERS)
h
w
e
is
s,
2]
e
er
+
ct
À
n
is
e
e
V
of in situ SERS measurements are presented in Figure 3. A
background spectrum was collected before application of a
potential to the cell (OCV; open circuit voltage). The
Figure 3. In situ SERS during O2 reduction and re-oxidation on Au in
O2-saturated 0.1m LiClO4-CH3CN. Spectra collected at a series of
times and at the reducing potential of 2.2 V versus Li/Li+
followed by
other spectra at the oxidation potentials shown. The peaks are
assigned as follows: 1) CÀC stretch of CH3CN at 918 cmÀ1
, 2) OÀO
stretch of LiO2 at 1137 cmÀ1
, 3) OÀO stretch of Li2O2 at 808 cmÀ1
,
4) ClÀO stretch of ClO4
À
at 931 cmÀ1
.
Li2O2 LiO2
O2 + e−
Li+ + O2
−
2LiO2
*
→  O2
−,
→  LiO2
*,
→ Li2O2 + O2
(* indicates surface sites)
Proposed discharge mechanism
Is there a non-equilibrium,kinetically favored
pathway for delithiation with low overpotential?	

Li2O2 (LiLiO2) is isostructural
with P2 NaCoO2!
Aug 12, 2014 ACS 248th National Meeting
P2 NaCoO2 LiLiO2
De-sodiation
Na1-xCoO2 Li1-xLiO2
(Li2-xO2)
Topotactic
de-lithiation
Co
Na
O	
   Liinterlayer
O	
   Li2O2
Li2-xO2
Li, O2
Liintralayer
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
Determining the structure and energy of
LiO2	

Candidates: Known superoxides, XO2 peroxides, Li2O2 deriv., and NaCoO2
polymorphs
Aug 12, 2014 ACS 248th National Meeting
a b
c
a b
c
a b
c
a b
c
a b
c
P63/mmc
layered
P63/mmc
monomers
Li2O2
(P63/mmc = P2)
a b
c
P3m
disproportionated
R3m
(P3 layered)
Pnnm
I4/mmmC2/m PbcaPa3
Pyrite OrthorhombicLayered Bi-pyramidal
arrangement of
(LiO2)2
Marcasite
-2.7
-2.5
-2.3
-2.1
-1.9
ΔGform(eV/O2)
P3m
disproportionated
I4/mmm
Pa3
P bca
R3m
(P3 layered)
Pnnm
P63
/mmc layered
P63
/mmc monomers
C2/m
Calculated formation free energy of LiO2	

Aug 12, 2014 ACS 248th National Meeting
Derived from Li2O2
a b
c
Pnnm
−2.68 eV/O2
P3m
disproportionated
−2.63 eV/O2
1.50 Å
1.21 Åa b
c
P63/mmc-layered
−2.61 eV/O2
a b
c
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries,
Chem. Mater., 2013, 25, 3328–3336
Overpotential required for topotactic delithiation
of Li2O2 at the initial stage of charging	

Aug 12, 2014 ACS 248th National Meeting
0
−0.5
−1.0
−1.5
−2.0
−2.5
Mole fraction of Li
O2 Li
ΔHform(eV/atom)
LiO2
Li2O
Li2O2
Source: materialsproject.org
0 0.5 1.0
Equilibrium path:
Li2O2 2 Li+ + 2 e− + O2
φeq = −
ΔGf (Li2O2 )
2e
= 2.97 V
Non-equilibrium topotactic
delithiation path:
Li2O2 Li2-xO2 + x Li
+
φ =
ΔGf (Li2−x1
O2 )− ΔGf (Li2−x2
O2 )
(x1 − x2 )e
Delithiated Li2-xO2 x = 0.25,0.5,0.75	

Three intermediate states between Li2O2 and LiO2 are considered:
Li1.25O2, Li1.5O2, and Li1.75O2
Aug 12, 2014 ACS 248th National Meeting
…
…
Superoxide
Peroxide
2×1×1 supercell orderings 1×1×2 supercell orderings
“Layered”
configurations
Peroxide Superoxide
“Channel”
configurations
The	
  lowest	
  energy	
  structures	
  are	
  
layered	
  structures	
  for	
  all	
  Li2-­‐xO2	
  
Formation free energy of off-stoichiometric
phases Li2-xO2 referencing to the equil. path	

0.0
0.1
0.2
0.3
0.4
0.5
0.0 0.2 0.4 0.6 0.8 1.0
ΔGform–ΔGform(eV/O2)
x in Li2-xO2
equil
ΔGform-ΔGform(eV/
O2)	

equil	

x in Lix-2O2	

Li2O2	
   LiO2	
  
Pnnm LiO2	

½ Li2O2 + ½ O2	

P63/mmc
layered LiO2	

0.0	

 0.2	

 0.4	

 0.6	

 0.8	

 1.0	

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

à	
  Potential	
  continuous	
  topotactic	
  
delithiation	
  path	
  from	
  Li2O2	
  to	
  LiO2	
  
Li1.5O2	

Li1.75O2	

 Li1.25O2	

Li2O2	

P63/mmc
layered LiO2	

Aug 12, 2014 ACS 248th National Meeting
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging
Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
Voltage profile of kinetically favored non-
equilibrium topotactic delithiation path
Aug 12, 2014 ACS 248th National Meeting
2.5
2.7
2.9
3.1
3.3
3.5
0.0 0.5 1.0 1.5 2.0
3.34 3.34
3.27
3.40
2.61
Equil. decomposition path
(Li2O2 à 2Li+ + 2e− + O2)
Φeq= 2.97V
Voltagevs.Li/Li+(V)
x in Lix-2O2
Overpotential as low as
~0.3–0.4V
Predicted metastable voltage of 3.34V
consistent with experimentally observed
charging voltage plateau at 3.1−3.4V
Li2-xO2 can further decompose
through oxygen evolution reaction
or the ion dissolution in electrolyte
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
Conclusions
1.  Low-energy topotatic delithiation pathway exists
for Li2O2èLiO2
2.  Delithiation pathway likely to be kinetically favored
3.  Predicted overpotential of 0.3-0.4V consistent
with experimental observations
Aug 12, 2014 ACS 248th National Meeting
Li2O2 Li2-xO2 +
x(Li+ + e−)
2Li+ + 2e− + O2
Li+
O2 or
O2
−
Li+
Charging Mechanism 1:
Topotactic delithiation
Charging Mechanism 2:
??
Outline	

1.  Facile topotatic delithiation of
Li2O2 in Li-O2 batteries
2.  Nanoscale Phase Stability of
NaxOy
Aug 12, 2014 ACS 248th National Meeting
The promise of alkali-air batteries	

A+ + O2 + e− à AxOy AxOy è A+ + O2 + e−
Oxygen
Reduction
Reaction
Oxygen
Evolution
Reaction
Equilibrium potential
(V)
Theoretical specific
energy* (kWh/kg)
Theoretical energy
density* (kWh/L)
Li / Li2O2 2.96 3.46 7.99
Na / Na2O 1.96 1.70 3.86
Na / Na2O2 2.33 1.60 4.48
Na / NaO2 2.27 1.10 2.43
metal
anode
air cathode
*based on the mass and volume of discharge product only
Aug 12, 2014 ACS 248th National Meeting
Discharge product formed has huge impact
on Na-O2 battery performance	

Kim et al. PCCP 2013; Liu et al., ChemComm 2013; Li et al., ChemComm 2013
NaClO4/TEGDME
Not rechargeable
In NaPF6 or NaClO4/DME
Cathode: carbon or GNS
NaSO3CF3/DEGDME
Cathode: n-doped graphene
nanosheet (GNS)
Aug 12, 2014 ACS 248th National Meeting
Na2O2 as the dominant discharge product è
i.  High charging overpotentials (cf. ϕeq = 2.33V)
ii.  Negligible cyclability
When NaO2 is formed, charging overpotentials is
only  0.2V (cf. ϕeq = 2.27V)
Hartmann et al. Nature Mat. 2012
Question: Under what conditions (temperature,
oxygen partial pressure, particle size, etc.) would
NaO2 preferentially form instead of Na2O2?
To answer this question, we need to construct phase
diagram of Na-O system as a function of temperature,
pO2 and particle size.
Aug 12, 2014 ACS 248th National Meeting
(d) Pnnm NaO2
a
b
c
a
b
c
(a) Im3m Na
(c) P62m Na2O2
c
a b
a
b
c
(b) Fm3m Na2O
(g) Imm2 NaO3
(e) Pa3 NaO2
a
c
b
(f) R3m NaO2
b
c
a
a
c
b
Oxidation energy corrections for oxides,
peroxides,and superoxides	

Aug 12, 2014 ACS 248th National Meeting
Li2O
MgO
Al2O3
Na2O
K2O Li2O2, SrO2
K2O2
Na2O2
CaO
KO2
NaO2
RbO2
Correction
E (eV/O2)
Oxides 1.33
Peroxides 0.85
Superoxides 0.23
O=O bond is broken to
different degrees when
forming different oxides,
requiring different corrections
for DFT binding energy error.
Phase diagram of bulk Na-O compounds
as a function of temperature and pO2	

Aug 12, 2014 ACS 248th National Meeting
Disordered Pa-3 NaO2
Phase transition from Pnnm
NaO2 to Na2O2 at PO2= 1
atm, 230-240 K
Phase transition from
Fm-3m NaO2 to Na2O2 at
T= 300 K, 8.5 atm.
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of
sodium oxides: implications for Na-O2 batteries., Nano Lett.,
2014, 14, 1016–20
Calculated surface energy of Na2O2 as a
function of oxygen chemical potential	

Aug 12, 2014 ACS 248th National Meeting
O2	

 Na2O2	

 Na2O	

μO 	

NaO2	

 298 K, 1 atm	

Na	

~30−45 meV/Å2
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Calculated surface energy of Pa-3 NaO2 as
a function of oxygen chemical potential	

Aug 12, 2014 ACS 248th National Meeting
[010]
[001]
[100]
{100}
O2	

 Na2O2	

 Na2O	

μO 	

NaO2	

 298 K, 1 atm	

Na	

Stoichiometric {100} surface
has the lowest surface energy
of 12 meV/Å2
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Wulff shapes of Na2O2 and Pa-3 NaO2	

Aug 12, 2014 ACS 248th National Meeting
Na2O2	

 Pa3 NaO2	

μNa	

O2	

Na2O2	

Na2O	

Na	

μO 	

NaO2	

10
15
20
25
30
35
40
45
O2 limit	

{1100}	

{1120}	

{0001}	

O2 and Na2O2 limits	

10
15
20
25
30
35
40
45
{100}	

γ 	

(meV/Å2)	

10
15
20
25
30
35
40
45
Na2O limit	

 10
15
20
25
30
35
40
45
{1100}	

{1120}	

{0001}	

Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides:
implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Phase diagram of Na-O nanoparticles as a
function of PO2	

Aug 12, 2014 ACS 248th National Meeting
Surface energy + bulk energy à particle size-dependent ΔGform
* Particle size d = (V0)1/3,
where V0 is the total volume of the particle
Due to the low surface
energies, NaO2 nanoparticles
are stable over Na2O2 at
small particle size
When particle size bigger
than 6 nm, the low bulk
formation energy stabilizes
Na2O2 over NaO2
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Critical nucleation parameters of Na-O
nanoparticles as a function of pO2 and ϕ	

Aug 12, 2014 ACS 248th National Meeting
As a function of voltage at pO2 = 1atm As a function of pO2 at voltage = 2.1V
NaO2 particles are more likely to nucleate due to smaller
nucleation energy barrier and critical nucleus size
Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
Conclusions	

Bulk Na2O2 is stable
and NaO2 is metastable
at standard conditions.
NaO2 has significantly
lower surface energy
compared to Na2O2
O2 partial pressure
determine formation
and growth of a
particular sodium oxide
phase
Thermodynamic
equilibrium path leads
to Na2O2 formation
NaO2 stabilized in the
nanometer regime
where nucleation takes
place.
At higher O2 pressure,
NaO2 nucleation
barrier reduced and
remains stable up to
larger particle sizes
Aug 12, 2014 ACS 248th National Meeting
Acknowledgements and Publications	

Grant No.
EDCBEE,
DE-FG02-96ER45571
FE-PI0000012
Aug 12, 2014 ACS 248th National Meeting
Grant No.
TG-DMR97008S
Publications
i.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2
in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336, doi:
10.1021/cm401720n.
ii.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides:
implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20, doi:
10.1021/nl404557w.
materiaIs
virtuaLab
Thank you.	

Aug 12, 2014
ACS 248th National Meeting

More Related Content

PDF
First principles design of lithium superionic conductors
PDF
NANO266 - Lecture 13 - Ab initio molecular dyanmics
PDF
NANO266 - Lecture 5 - Exchange-Correlation Functionals
PDF
NANO266 - Lecture 10 - Temperature
PDF
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
PDF
NANO266 - Lecture 14 - Transition state modeling
PDF
A*STAR Webinar on The AI Revolution in Materials Science
PDF
NANO281 Lecture 01 - Introduction to Data Science in Materials Science
First principles design of lithium superionic conductors
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 5 - Exchange-Correlation Functionals
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 3 - Beyond the Hartree-Fock Approximation
NANO266 - Lecture 14 - Transition state modeling
A*STAR Webinar on The AI Revolution in Materials Science
NANO281 Lecture 01 - Introduction to Data Science in Materials Science

What's hot (19)

PPTX
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
PDF
Insights into the electrochemical stability of ionic liquids from first princ...
PDF
NANO266 - Lecture 2 - The Hartree-Fock Approach
PDF
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
PDF
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
PDF
NANO266 - Lecture 4 - Introduction to DFT
PDF
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
PDF
Quick and Dirty Introduction to Mott Insulators
PPT
Magnetic semiconductors: classes of materials, basic properties, central ques...
PDF
Electronic structure of strongly correlated materials Part III V.Anisimov
PPT
Room Temperature Superconductivity: Dream or Reality?
PDF
Ab initio md
PDF
Hybrid quantum systems
PPT
Theoretical picture: magnetic impurities, Zener model, mean-field theory
PDF
Strongly correlated electrons: LDA+U in practice
PPT
Strongly Interacting Atoms in Optical Lattices
PDF
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
PPT
Diluted Magnetic Semiconductors
PDF
Neutron Skin Measurements at Mainz
Edinburgh | May-16 | Ions that can Hop, Skip and Jump: Lithium Conduction ...
Insights into the electrochemical stability of ionic liquids from first princ...
NANO266 - Lecture 2 - The Hartree-Fock Approach
Creating It from Bit - Designing Materials by Integrating Quantum Mechanics, ...
NANO266 - Lecture 1 - Introduction to Quantum Mechanics
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 6 - Molecule Properties from Quantum Mechanical Modeling
Quick and Dirty Introduction to Mott Insulators
Magnetic semiconductors: classes of materials, basic properties, central ques...
Electronic structure of strongly correlated materials Part III V.Anisimov
Room Temperature Superconductivity: Dream or Reality?
Ab initio md
Hybrid quantum systems
Theoretical picture: magnetic impurities, Zener model, mean-field theory
Strongly correlated electrons: LDA+U in practice
Strongly Interacting Atoms in Optical Lattices
The Low Energy Physics Frontier of the Standard Model at the MAMI accelerator
Diluted Magnetic Semiconductors
Neutron Skin Measurements at Mainz
Ad

Viewers also liked (17)

PDF
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
PDF
NANO266 - Lecture 9 - Tools of the Modeling Trade
PDF
Understanding ECG signals in the MIMIC II database
PDF
Genomics data analysis in Julia
PPT
Excitation Energy Transfer In Photosynthetic Membranes
PDF
Programming languages: history, relativity and design
PDF
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
PDF
NANO266 - Lecture 12 - High-throughput computational materials design
PDF
Python as number crunching code glue
PDF
MAVRL Workshop 2014 - pymatgen-db & custodian
PDF
NANO266 - Lecture 11 - Surfaces and Interfaces
PDF
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
PDF
UCSD NANO106 - 12 - X-ray diffraction
PPTX
Miller indecies
PPT
Publish Your Papers In The Top Scientific Journals
PPTX
Solid state physics lec 1
PDF
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 7 - QM Modeling of Periodic Structures
NANO266 - Lecture 9 - Tools of the Modeling Trade
Understanding ECG signals in the MIMIC II database
Genomics data analysis in Julia
Excitation Energy Transfer In Photosynthetic Membranes
Programming languages: history, relativity and design
MAVRL Workshop 2014 - Python Materials Genomics (pymatgen)
NANO266 - Lecture 12 - High-throughput computational materials design
Python as number crunching code glue
MAVRL Workshop 2014 - pymatgen-db & custodian
NANO266 - Lecture 11 - Surfaces and Interfaces
UCSD NANO106 - 13 - Other Diffraction Techniques and Common Crystal Structures
UCSD NANO106 - 12 - X-ray diffraction
Miller indecies
Publish Your Papers In The Top Scientific Journals
Solid state physics lec 1
NANO266 - Lecture 8 - Properties of Periodic Solids
Ad

Similar to Insights into nanoscale phase stability and charging mechanisms in alkali o2 batteries from first principles calculations (20)

PPTX
Electrochemical Characterization of Electrocatalysts .pptx
PPT
15. Energy Applications II. Batteries.ppt
PPT
15. Energy Applications II. Batteries.ppt
PDF
2014 Journal of Power Sources 247 (2014) 572-578
DOCX
FYP Report-Xing Dan
PPT
Electrochemistry apps of redox
PPTX
final ppt on 30 sep 2022.pptx
PDF
Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High...
PDF
Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High...
PDF
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes
PDF
7th Lecture on Electrochemistry | Chemistry Part I | 12th Std
PPTX
W10 L47-AOP-Photocatalytic wastewater treatment.pptx
PDF
ncomms13869
PDF
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18
PDF
ELECTROLESS DEPOSITION OF NICKEL ONTO SURFACES
PDF
CTW Final Poster
PDF
Removal of Heavy Metals from Water using Electrocoagulation
PDF
4602E1213045
PDF
11.the estimation of the oxide ion polarizability using the electronegativity...
PDF
The estimation of the oxide ion polarizability using the electronegativity fo...
Electrochemical Characterization of Electrocatalysts .pptx
15. Energy Applications II. Batteries.ppt
15. Energy Applications II. Batteries.ppt
2014 Journal of Power Sources 247 (2014) 572-578
FYP Report-Xing Dan
Electrochemistry apps of redox
final ppt on 30 sep 2022.pptx
Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High...
Addressing Transport Issues in Non-Aqueous Li–air Batteries to Achieving High...
Electrochemical study of anatase TiO2 in aqueous sodium-ion electrolytes
7th Lecture on Electrochemistry | Chemistry Part I | 12th Std
W10 L47-AOP-Photocatalytic wastewater treatment.pptx
ncomms13869
ENGINEERING CHEMISTRY- Solved Model question paper,2017-18
ELECTROLESS DEPOSITION OF NICKEL ONTO SURFACES
CTW Final Poster
Removal of Heavy Metals from Water using Electrocoagulation
4602E1213045
11.the estimation of the oxide ion polarizability using the electronegativity...
The estimation of the oxide ion polarizability using the electronegativity fo...

More from University of California, San Diego (12)

PDF
UCSD NANO106 - 11 - X-rays and their interaction with matter
PDF
UCSD NANO106 - 10 - Bonding in Materials
PDF
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
PDF
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
PDF
UCSD NANO106 - 07 - Material properties and tensors
PDF
UCSD NANO106 - 06 - Plane and Space Groups
PDF
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
PDF
UCSD NANO106 - 04 - Symmetry in Crystallography
PDF
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
PDF
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
PDF
UCSD NANO106 - 01 - Introduction to Crystallography
PDF
The Materials Project Ecosystem - A Complete Software and Data Platform for M...
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 10 - Bonding in Materials
UCSD NANO106 - 09 - Piezoelectricity and Elasticity
UCSD NANO106 - 08 - Principal Directions and Representation Quadrics
UCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 06 - Plane and Space Groups
UCSD NANO106 - 05 - Group Symmetry and the 32 Point Groups
UCSD NANO106 - 04 - Symmetry in Crystallography
UCSD NANO106 - 03 - Lattice Directions and Planes, Reciprocal Lattice and Coo...
UCSD NANO106 - 02 - 3D Bravis Lattices and Lattice Computations
UCSD NANO106 - 01 - Introduction to Crystallography
The Materials Project Ecosystem - A Complete Software and Data Platform for M...

Recently uploaded (20)

PPT
Animal tissues, epithelial, muscle, connective, nervous tissue
PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
bone as a tissue presentation micky.pptx
PPTX
diabetes and its complications nephropathy neuropathy
PPT
Cell Structure Description and Functions
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PPTX
2currentelectricity1-201006102815 (1).pptx
PPTX
AP CHEM 1.2 Mass spectroscopy of elements
PPTX
Presentation1 INTRODUCTION TO ENZYMES.pptx
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PPTX
congenital heart diseases of burao university.pptx
PDF
Cosmology using numerical relativity - what hapenned before big bang?
PDF
CuO Nps photocatalysts 15156456551564161
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
Animal tissues, epithelial, muscle, connective, nervous tissue
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
TORCH INFECTIONS in pregnancy with toxoplasma
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
bone as a tissue presentation micky.pptx
diabetes and its complications nephropathy neuropathy
Cell Structure Description and Functions
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
2currentelectricity1-201006102815 (1).pptx
AP CHEM 1.2 Mass spectroscopy of elements
Presentation1 INTRODUCTION TO ENZYMES.pptx
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
congenital heart diseases of burao university.pptx
Cosmology using numerical relativity - what hapenned before big bang?
CuO Nps photocatalysts 15156456551564161
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...

Insights into nanoscale phase stability and charging mechanisms in alkali o2 batteries from first principles calculations

  • 1. materiaIs virtuaLab First Principles Insights into Nanoscale Phase Stability and Charging Mechanisms inAlkali-O2 Batteries ShinYoung Kang,Yifei Mo, Shyue Ping Ong, Gerbrand Ceder Aug 12, 2014 ACS 248th National Meeting
  • 2. The promise of alkali-air batteries A+ + O2 + e− à AxOy AxOy è A+ + O2 + e− Oxygen Reduction Reaction Oxygen Evolution Reaction Equilibrium potential (V) Theoretical specific energy* (kWh/kg) Theoretical energy density* (kWh/L) Li / Li2O2 2.96 3.46 7.99 Na / Na2O 1.96 1.70 3.86 Na / Na2O2 2.33 1.60 4.48 Na / NaO2 2.27 1.10 2.43 metal anode air cathode *based on the mass and volume of discharge product only Aug 12, 2014 ACS 248th National Meeting
  • 3. Outline 1.  Facile topotatic delithiation of Li2O2 in Li-O2 batteries 2.  Nanoscale Phase Stability of NaxOy Aug 12, 2014 ACS 248th National Meeting
  • 4. Outline 1.  Facile topotatic delithiation of Li2O2 in Li-O2 batteries 2.  Nanoscale Phase Stability of NaxOy Aug 12, 2014 ACS 248th National Meeting
  • 5. Mizuno, Nakanishi, Kotani,Yokoishi, Iba, 50th Battery Symposium in Japan (2009) T. Ogasawara,A. Debart, M. Holzapfel, P. Novak, P.G. Bruce, J.Am. Chem. Soc. 2006 G. Girishkumar, B. McCloskey,AC. Luntz, S. Swanson,W.Wilcke, J. Phys. Chem. Lett. 2010 K. Xu, Chem. Rev. 2004 Poor reversibility (~50 cycles) Side reactions with electrolyte (up to 99% Li2CO3) Low power density Low cyclic efficiency (~60%) High charging overpotential (~1.1-1.5V) Safety of Li metal anode Aug 12, 2014 ACS 248th National Meeting Challenges in Li- Air Batteries
  • 6. Recent experimental results reveal highly improved performance Improved cyclability (~ 100 cycles)4,5 Higher rate (~ 3 mA/cm2)5 Lower discharging overpotential Low charging overpotential at the initial stage of charging 4,5,6 More stable electrolyte (no carbonate!!)à less by-products4,5 Aug 12, 2014 ACS 248th National Meeting McCloskey et al. JPCL (2012) Potential  vs.  Li/Li+  (V)   Capacity  (mAh)   Peng et al. Science (2012) Discharge  capacity   (mAh/ggold)   Cycle  
  • 7. Evidence of LiO2 formation during discharge Aug 12, 2014 ACS 248th National Meeting Peng et al. 8 observed the formation of metastable LiO2 using in-situ surface enhanced Raman spectroscopy (SERS) h w e is s, 2] e er + ct À n is e e V of in situ SERS measurements are presented in Figure 3. A background spectrum was collected before application of a potential to the cell (OCV; open circuit voltage). The Figure 3. In situ SERS during O2 reduction and re-oxidation on Au in O2-saturated 0.1m LiClO4-CH3CN. Spectra collected at a series of times and at the reducing potential of 2.2 V versus Li/Li+ followed by other spectra at the oxidation potentials shown. The peaks are assigned as follows: 1) CÀC stretch of CH3CN at 918 cmÀ1 , 2) OÀO stretch of LiO2 at 1137 cmÀ1 , 3) OÀO stretch of Li2O2 at 808 cmÀ1 , 4) ClÀO stretch of ClO4 À at 931 cmÀ1 . Li2O2 LiO2 O2 + e− Li+ + O2 − 2LiO2 * →  O2 −, →  LiO2 *, → Li2O2 + O2 (* indicates surface sites) Proposed discharge mechanism
  • 8. Is there a non-equilibrium,kinetically favored pathway for delithiation with low overpotential? Li2O2 (LiLiO2) is isostructural with P2 NaCoO2! Aug 12, 2014 ACS 248th National Meeting P2 NaCoO2 LiLiO2 De-sodiation Na1-xCoO2 Li1-xLiO2 (Li2-xO2) Topotactic de-lithiation Co Na O   Liinterlayer O   Li2O2 Li2-xO2 Li, O2 Liintralayer Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 9. Determining the structure and energy of LiO2 Candidates: Known superoxides, XO2 peroxides, Li2O2 deriv., and NaCoO2 polymorphs Aug 12, 2014 ACS 248th National Meeting a b c a b c a b c a b c a b c P63/mmc layered P63/mmc monomers Li2O2 (P63/mmc = P2) a b c P3m disproportionated R3m (P3 layered) Pnnm I4/mmmC2/m PbcaPa3 Pyrite OrthorhombicLayered Bi-pyramidal arrangement of (LiO2)2 Marcasite
  • 10. -2.7 -2.5 -2.3 -2.1 -1.9 ΔGform(eV/O2) P3m disproportionated I4/mmm Pa3 P bca R3m (P3 layered) Pnnm P63 /mmc layered P63 /mmc monomers C2/m Calculated formation free energy of LiO2 Aug 12, 2014 ACS 248th National Meeting Derived from Li2O2 a b c Pnnm −2.68 eV/O2 P3m disproportionated −2.63 eV/O2 1.50 Å 1.21 Åa b c P63/mmc-layered −2.61 eV/O2 a b c Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 11. Overpotential required for topotactic delithiation of Li2O2 at the initial stage of charging Aug 12, 2014 ACS 248th National Meeting 0 −0.5 −1.0 −1.5 −2.0 −2.5 Mole fraction of Li O2 Li ΔHform(eV/atom) LiO2 Li2O Li2O2 Source: materialsproject.org 0 0.5 1.0 Equilibrium path: Li2O2 2 Li+ + 2 e− + O2 φeq = − ΔGf (Li2O2 ) 2e = 2.97 V Non-equilibrium topotactic delithiation path: Li2O2 Li2-xO2 + x Li + φ = ΔGf (Li2−x1 O2 )− ΔGf (Li2−x2 O2 ) (x1 − x2 )e
  • 12. Delithiated Li2-xO2 x = 0.25,0.5,0.75 Three intermediate states between Li2O2 and LiO2 are considered: Li1.25O2, Li1.5O2, and Li1.75O2 Aug 12, 2014 ACS 248th National Meeting … … Superoxide Peroxide 2×1×1 supercell orderings 1×1×2 supercell orderings “Layered” configurations Peroxide Superoxide “Channel” configurations
  • 13. The  lowest  energy  structures  are   layered  structures  for  all  Li2-­‐xO2   Formation free energy of off-stoichiometric phases Li2-xO2 referencing to the equil. path 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.2 0.4 0.6 0.8 1.0 ΔGform–ΔGform(eV/O2) x in Li2-xO2 equil ΔGform-ΔGform(eV/ O2) equil x in Lix-2O2 Li2O2   LiO2   Pnnm LiO2 ½ Li2O2 + ½ O2 P63/mmc layered LiO2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 à  Potential  continuous  topotactic   delithiation  path  from  Li2O2  to  LiO2   Li1.5O2 Li1.75O2 Li1.25O2 Li2O2 P63/mmc layered LiO2 Aug 12, 2014 ACS 248th National Meeting Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 14. Voltage profile of kinetically favored non- equilibrium topotactic delithiation path Aug 12, 2014 ACS 248th National Meeting 2.5 2.7 2.9 3.1 3.3 3.5 0.0 0.5 1.0 1.5 2.0 3.34 3.34 3.27 3.40 2.61 Equil. decomposition path (Li2O2 à 2Li+ + 2e− + O2) Φeq= 2.97V Voltagevs.Li/Li+(V) x in Lix-2O2 Overpotential as low as ~0.3–0.4V Predicted metastable voltage of 3.34V consistent with experimentally observed charging voltage plateau at 3.1−3.4V Li2-xO2 can further decompose through oxygen evolution reaction or the ion dissolution in electrolyte Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336
  • 15. Conclusions 1.  Low-energy topotatic delithiation pathway exists for Li2O2èLiO2 2.  Delithiation pathway likely to be kinetically favored 3.  Predicted overpotential of 0.3-0.4V consistent with experimental observations Aug 12, 2014 ACS 248th National Meeting Li2O2 Li2-xO2 + x(Li+ + e−) 2Li+ + 2e− + O2 Li+ O2 or O2 − Li+ Charging Mechanism 1: Topotactic delithiation Charging Mechanism 2: ??
  • 16. Outline 1.  Facile topotatic delithiation of Li2O2 in Li-O2 batteries 2.  Nanoscale Phase Stability of NaxOy Aug 12, 2014 ACS 248th National Meeting
  • 17. The promise of alkali-air batteries A+ + O2 + e− à AxOy AxOy è A+ + O2 + e− Oxygen Reduction Reaction Oxygen Evolution Reaction Equilibrium potential (V) Theoretical specific energy* (kWh/kg) Theoretical energy density* (kWh/L) Li / Li2O2 2.96 3.46 7.99 Na / Na2O 1.96 1.70 3.86 Na / Na2O2 2.33 1.60 4.48 Na / NaO2 2.27 1.10 2.43 metal anode air cathode *based on the mass and volume of discharge product only Aug 12, 2014 ACS 248th National Meeting
  • 18. Discharge product formed has huge impact on Na-O2 battery performance Kim et al. PCCP 2013; Liu et al., ChemComm 2013; Li et al., ChemComm 2013 NaClO4/TEGDME Not rechargeable In NaPF6 or NaClO4/DME Cathode: carbon or GNS NaSO3CF3/DEGDME Cathode: n-doped graphene nanosheet (GNS) Aug 12, 2014 ACS 248th National Meeting Na2O2 as the dominant discharge product è i.  High charging overpotentials (cf. ϕeq = 2.33V) ii.  Negligible cyclability When NaO2 is formed, charging overpotentials is only 0.2V (cf. ϕeq = 2.27V) Hartmann et al. Nature Mat. 2012
  • 19. Question: Under what conditions (temperature, oxygen partial pressure, particle size, etc.) would NaO2 preferentially form instead of Na2O2? To answer this question, we need to construct phase diagram of Na-O system as a function of temperature, pO2 and particle size. Aug 12, 2014 ACS 248th National Meeting (d) Pnnm NaO2 a b c a b c (a) Im3m Na (c) P62m Na2O2 c a b a b c (b) Fm3m Na2O (g) Imm2 NaO3 (e) Pa3 NaO2 a c b (f) R3m NaO2 b c a a c b
  • 20. Oxidation energy corrections for oxides, peroxides,and superoxides Aug 12, 2014 ACS 248th National Meeting Li2O MgO Al2O3 Na2O K2O Li2O2, SrO2 K2O2 Na2O2 CaO KO2 NaO2 RbO2 Correction E (eV/O2) Oxides 1.33 Peroxides 0.85 Superoxides 0.23 O=O bond is broken to different degrees when forming different oxides, requiring different corrections for DFT binding energy error.
  • 21. Phase diagram of bulk Na-O compounds as a function of temperature and pO2 Aug 12, 2014 ACS 248th National Meeting Disordered Pa-3 NaO2 Phase transition from Pnnm NaO2 to Na2O2 at PO2= 1 atm, 230-240 K Phase transition from Fm-3m NaO2 to Na2O2 at T= 300 K, 8.5 atm. Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 22. Calculated surface energy of Na2O2 as a function of oxygen chemical potential Aug 12, 2014 ACS 248th National Meeting O2 Na2O2 Na2O μO NaO2 298 K, 1 atm Na ~30−45 meV/Å2 Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 23. Calculated surface energy of Pa-3 NaO2 as a function of oxygen chemical potential Aug 12, 2014 ACS 248th National Meeting [010] [001] [100] {100} O2 Na2O2 Na2O μO NaO2 298 K, 1 atm Na Stoichiometric {100} surface has the lowest surface energy of 12 meV/Å2 Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 24. Wulff shapes of Na2O2 and Pa-3 NaO2 Aug 12, 2014 ACS 248th National Meeting Na2O2 Pa3 NaO2 μNa O2 Na2O2 Na2O Na μO NaO2 10 15 20 25 30 35 40 45 O2 limit {1100} {1120} {0001} O2 and Na2O2 limits 10 15 20 25 30 35 40 45 {100} γ (meV/Å2) 10 15 20 25 30 35 40 45 Na2O limit 10 15 20 25 30 35 40 45 {1100} {1120} {0001} Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 25. Phase diagram of Na-O nanoparticles as a function of PO2 Aug 12, 2014 ACS 248th National Meeting Surface energy + bulk energy à particle size-dependent ΔGform * Particle size d = (V0)1/3, where V0 is the total volume of the particle Due to the low surface energies, NaO2 nanoparticles are stable over Na2O2 at small particle size When particle size bigger than 6 nm, the low bulk formation energy stabilizes Na2O2 over NaO2 Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 26. Critical nucleation parameters of Na-O nanoparticles as a function of pO2 and ϕ Aug 12, 2014 ACS 248th National Meeting As a function of voltage at pO2 = 1atm As a function of pO2 at voltage = 2.1V NaO2 particles are more likely to nucleate due to smaller nucleation energy barrier and critical nucleus size Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20
  • 27. Conclusions Bulk Na2O2 is stable and NaO2 is metastable at standard conditions. NaO2 has significantly lower surface energy compared to Na2O2 O2 partial pressure determine formation and growth of a particular sodium oxide phase Thermodynamic equilibrium path leads to Na2O2 formation NaO2 stabilized in the nanometer regime where nucleation takes place. At higher O2 pressure, NaO2 nucleation barrier reduced and remains stable up to larger particle sizes Aug 12, 2014 ACS 248th National Meeting
  • 28. Acknowledgements and Publications Grant No. EDCBEE, DE-FG02-96ER45571 FE-PI0000012 Aug 12, 2014 ACS 248th National Meeting Grant No. TG-DMR97008S Publications i.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G.A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries, Chem. Mater., 2013, 25, 3328–3336, doi: 10.1021/cm401720n. ii.  Kang, S.; Mo,Y.; Ong, S. P.; Ceder, G. Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries., Nano Lett., 2014, 14, 1016–20, doi: 10.1021/nl404557w.
  • 29. materiaIs virtuaLab Thank you. Aug 12, 2014 ACS 248th National Meeting