SlideShare a Scribd company logo
SOPC DO : M: L
HC
Design and Implementationof IntelligentControl
System forAutonomousHumanoid Robot based
on SOPC Technology
-. 9. 121	 1.
/. 121	 2 0 2
.
2018/7/27 1Control	System	Lab,	Dept.	of	EE.	,	YZU
Agenda
• Chapter 1 Introduction
• Chapter 2 Mechanism and Hardware of the Humanoid Robot
• Chapter 3 Modeling and Reference Trajectories Planning of
Humanoid Robot
• Chapter 4 Adaptive CMAC-BasedDynamic-Balancingand ZMP
CompensationDesign
• Chapter 5 Simulation and Experimental Results
• Chapter 6 Conclusions and Future Works
2018/7/27 2Control	System	Lab,	Dept.	of	EE.	,	YZU
Chapter 1 Introduction
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 3
Why do people make robot?
– An aging society is coming
– To avoid human being doing high risk tasks
– To replace duplicating jobs
– For education
– Entertainments: pets
– Robot will soon become part of our day to day,
Bill gates said.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 4
Why makes humanoid robot?
– Advantages
• A humanoid robot has a structure similar to human’s leg
and has higher mobility than conventionalwheeled
robots.
• Involve numerous field and only one platform relates to
wild areas
– Disadvantagesfor designer
• Balance should be concerned
• Complicated to design mechanism
• Has complex dynamics and many non-linear factors.
• It is very difficult to move a robot stably.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 5
Introduction	of	SOPC
• System	on	Programmable	chip	(SOPC)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 6
FPGA
- Nios II Plus All Peripherals Written In HDL
- Can Be TargetedFor All Altera FPGAs
- Synthesis Using Quartus II Integrated Synthesis
Avalon	Switch	Fabric
UART
GPIO
Timer
SPI
SDRAM
Controller
On-Chip
ROM
On-Chip
RAM
Nios	II
CPU
Debug
Cache
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 7
Chapter 2 Mechanism and Hardware of the
Humanoid Robot
Design	of	Mechanism	Criterion	I
• Different link length will cause displacementof COG (Center
of Gravity)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 8
COG Displacement
r
r
2r
r
r
2r
h1
h2
21 hh ≠21 hh =
h1
h2
Chapter 2 Mechanism andHardware of the HumanoidRobot
Design	of	Mechanism	Criterion	II
• Different leg length will cause large displacement whiling
COG moving to sole of the foot.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 9
COG COG COG
Chapter 2 Mechanism andHardware of the HumanoidRobot
The	Hardware	of	the	Robot
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 10
Chapter 2 Mechanism andHardware of the HumanoidRobot
Actuators
• The whole trunk of robot is composed by 27 servo motors with
different size based on requested torque.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 11
Chapter 2 Mechanism andHardware of the HumanoidRobot
TYPE Torque
(kg/cm)
Speed
(sec/60°)
Operate
range(°)
Communic
ation	
method
KRS-
4014HV
40.8 0.19 270 PWM
KRS-
2350HV
29.5 0.13 180 PWM
NARO 0.7 0.12 180 PWM
PICO 1.4 0.19 180 PWM
Processor
• Collects information
• Computes robot dynamic
• Performs human brain
• High hardware acceleration
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 12
Chapter 2 Mechanism andHardware of the HumanoidRobot
Nios II	
Processor	1
Nios II	
Processor	2
Avalon	bridge
Hardware	
Mutex
Shared
Memory
DDR	SDRAM
Controller
SSRAM
Controller
FLASH
Controller
On-Chip	
Ram
HSMC
User	Define
Interface
Timer
UART
SSRAM
DDR	
SDRAM
FLASH
External	circuits
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 13
Chapter 2 Mechanism andHardware of the HumanoidRobot
Power	management	circuitData	Acquisition	circuit
peripheral	circuits
Isolation	circuit
Accelerometers	and	gyroscopes
• The accelerometer has been converted to an acceleration that
varies between –1 g and +1 g,
• TheADXRS300 is a complete angular rate sensor (gyroscope)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 14
Chapter 2 Mechanism andHardware of the HumanoidRobot
Force-sensing	resistor
• Exhibits a decrease in resistance with an increase in force
applied normal to the device surface
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 15
Chapter 2 Mechanism andHardware of the HumanoidRobot
CMOS	sensor
• In practical situation high speed module without hyper speed
processor will be in vain.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 16
Chapter 2 Mechanism andHardware of the HumanoidRobot
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 17
Chapter 3 Modeling and Reference Trajectories
Planning of Humanoid Robot
Kinematics	Analysis
• Forward kinematics for position/orientation
– determinethe position and orientation of the end effector
given the values for the joint variables of the robot
• Inverse kinematics for position/orientation
– determinethe values for the joint variables given the end
effector’s position and orientation
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 18
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
Forward	kinematics
• The position sense of the twist angle and the joint angle
are shown as below:
• The four principal homogeneous transforms are involved:
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 19
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
iθiα
ix ia
Joint axis i
Joint 1+i
iO
iα
1−ix
id
1−iz
iz
Normal 1−i
Joint axis 1−i
Joint i
1−iO
iθ
Normal i
iiiiiiii αxraxtdztθzr
i
i ,,,,
1
11
HHHHH −−
=−
(3.1)
Forward	kinematics
• Homogeneous transform parameters are defined in appendix C
and is shown as
• For simplicity, the homogeneous transform denotes as .
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 20
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
−
−
=
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
= ××− −
1000
cossin0
sincossincoscossin
cossinsinsincoscos
1000
0
0
0
1000
0
0
1000
0
0
1000
0
0
0
,3333,1 1
iii
iiiiiii
iiiiiii
αx
i
i
θzi
i
dαα
θaθαθαθ
θaθαθαθ
a
d
iiii
RUUR
H
i
i
i AH =−1
(3.2)
Forward	kinematics
• The end-link expressed by the homogeneous transform is
where
• The D-H Parameters of a Leg-Part of Humanoid Robot are
shown in Table 3.1.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 21
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
nn
n
nn qqq AAAHHHqH !! 21
1
2
1
21
0
1
0
)()()()( == −
[ ]T
nqqq 21 !=q (3.4)
(3.3)
Forward	kinematics
• leg-part of humanoid robot is given by
• The D-H parameters form is shown as:
• where
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 22
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
654321
5
6
4
5
3
4
2
3
1
2
0
1
0
6 )()()()()()()( AAAAAAHHHHHHqH 654321 == qqqqqq
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=
1000
)(0
6
zzzz
yyyy
xxxx
paon
paon
paon
qH
(3.6)
(3.5)
(3.4)
6234165152341 )( ssccsssccnx +−−=
6234165152341 )( ssscccscsny ++−=
623465234 sccssnz −−=
6234165152341 )( cscscssccox ++=
(3.7)
(3.8)
(3.9)
Forward	kinematics
• whenever convenient shorthand notation defines as
for trigonometricfunctions.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 23
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
6234165152341 )( csssccscsoy +−=
623465234 ccsssoz −=
5152341 sscccax +−=
5152341 scccsay −−=
5234csaz −=
)()( 232321623411651523411 cacacsscaccssccapx ++++−=
)()( 232321623411651523411 cacassssacccscsapy ++++−=
2323262341652341 sasascacssapz ++−−=
θsθ sin=
)cos( φψc φψ +=+
(3.14)
(3.15)
(3.16)
(3.17)
(3.10)
(3.11)
(3.12)
(3.13)
Inverse	kinematics
• One subchain which comprises joint variables , ,
in which denotes the two argument arctangent
function.
• Applying the cosine theorem to obtain
• Hence, is given by
• Similarly is given as
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 24
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
),(Atan21 cc xyθ =
32
2
3
2
2
222
3
2
cos
aa
aazyx
θ ccc −−++
=
)cos,cos1(Atan2 33
2
3 θθθ −±=
)cos,sin(Atan2),(Atan2 32332
22
2 θaaθayxzθ ccc +++=
1θ 2θ 3θ
),(Atan2 xy
3θ
2θ
(3.20)
(3.19)
(3.18)
(3.21)
Inverse	kinematics
• Hence, is given by
• Then and are given respectively as
• It will get 8 different solutions. Then, preserve the one solution
by determining movablerange.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 25
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
),(Atan2 33232323113231332323231132314 rsrcsrccrcrssrscθ +++−−=
),(Atan2 2111112211216 rcrsrcrsθ +−−=
))(1,(Atan2 2
2311312311315 rcrsrcrsθ −−±−=
4θ 6θ
5θ
(3.25)
(3.26)
(3.27)
Zero	Moment	Point
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 26
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
Center-of-Gravity Shift
Load Point (ZMP)
Center of Gravity
Load Point (ZMP)
Center of Gravity
Gravity
Inertial Force
Total Inertial Force
Out In
Fig. 3.2 The center of gravity shifting
N
M
P
Fig. 3.3 Concept of the ZMP
ZMP
• If ZMP is in the stable region for double support phase and
single support phase, then the robot will not go falling down
situation.
• where represents the ZMP vector, is the each
link
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 27
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
∑
∑ ∑
=
= =
−
−−−
= n
i
zii
n
i
n
i
ixiiizii
zmp
gzm
zgxmxgzm
x
1
1 1
)(
)()(
!!
!!!!
∑
∑ ∑
=
= =
−
−−−
= n
i
zii
n
i
n
i
ixiiizii
zmp
gzm
zgymygzm
y
1
1 1
)(
)()(
!!
!!!!
[ ]T
zyx ppp ,,=P im
(3.28)
(3.29)
Actual	ZMP
• Thus	the	actual	ZMP	can	be	computed	by	
• To	realize	the	actual	ZMP	via	FSR	measurement	each	sensor	
reaction	is	shown	as
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 28
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
∑
∑
=
=
= n
i
i
n
i
ii
ZMP
f
1
1
r
r
P
1f
2f
3f
5f6f
7f 8f
4f
x
y
o
1r
2r
3r 4r
5r
6r
7r
8r
Fig. 3.4 The vector of FSR located in sole of feet
(3.30)
Walking	Analysis
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 29
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
Movement of
Center of Gravity
Sole of Foot
Movement of
Center of Gravity
Sole of Foot
Fig. 3.5 Walking pattern: (a): static walking; (b): dynamic walking.
Static	walking		&	Dynamic	walking
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 30
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
Gravity
Inertial Force
Total Inertial Force
Floor Reaction
Load Point (ZMP) Load Point (ZMP) Load Point (ZMP)
Fig. 3.6 The walking floor reaction of total inertial force
Linear	inverted	pendulum	model
• To extract a dominant feature which is high-order and
nonlinear and to use this dominant factor to explain the
dynamics of the system
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 31
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
X
Y
Z
m
C
LIPM
• The position of the body can be calculated via the moment
of mass equation:
where is the position of the k-th particle, is the total
mass.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 32
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
cr
∑=
=
n
k
kkc mm
1
rr
kr ∑=
=
n
k
kmm
1
1m
nm
km
CoM
m
cr
kr
x y
o
z
(3.31)
LIPM
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 33
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
• The dynamics equations of the inverted pendulum can be
derived as follows:
• To attain linear equations assume the z-coordinates of the
inverted pendulum is assumed to be constant
)(
)(
gcm
ccmcgcm
p
z
zxxz
x
−
−−
=
!!
!!!!
)(
)(
gcm
ccmcgcm
p
z
zyyz
y
−
−−
=
!!
!!!!
x
c
xx c
g
z
cp !!−=
y
c
yy c
g
z
cp !!−=
(3.33)
(3.32)
(3.34)
(3.35)
Table-cart	model
• The moment around the ZMP must be zero the following
condition hold.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 34
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
0=ZMPτ
O
mg−
xp
xm !!
x
cz
0)( =−−= cxzmp zxmpxmg !!τ (3.36)
Fig. 3.9 Table-cart model
Ideal	ZMP
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 35
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
0Τ 02Τ 03Τ 04Τ 05Τ
ref
xP
ref
yP
0Τ 02Τ 03Τ 04Τ 05Τ
t
t
L
L2
L3
L4
L5
B
B−
Dotted : Single SupportPhase
Solid : Double SupportPhase
ref
xP
ref
yP
Single Support Phase
Double SupportPhase
Step Position
L L2 L3 L4 L5
B
B−
Fourier	approximation	CoM trajectories
• The ZMP reference trajectories can be expressed as follows.
• Finally, the CoM can be obtained by applying inverse Laplace
transformations as follows.
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 36
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
∑
∞
=
−=
1
0 )()(
k
ref
x kTtuLtp
∑
∞
=
−⋅−+⋅=
1
0 )()1(2)()(
K
Kref
y kTtuBtuBtp
[ ] )(1)(cosh1)( 00 kTtkTtωLtc
k
nx −⋅−−= ∑
∞
[ ] )(1)(cosh1)1(2)( 00 kTtkTtωBtc
k
n
k
x −⋅−−−= ∑
∞
(3.42)
(3.41)
(3.45)
(3.46)
Fourier	approximation	CoM trajectories
• Assuming the reference trajectory of CoM has the form by
using Fourier series.
• As a result, the x-directionalreferencetrajectory of CoM can
be found as follows:
• the y-directionalreferencetrajectory of CoM can be found in a
similar manner as follows:
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 37
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
∑
∞
=
⎥
⎦
⎤
⎢
⎣
⎡
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
+
+⎟
⎠
⎞
⎜
⎝
⎛
−=
1 0
2222
0
22
00
0
sin
)(
)cos1(
2
)(
n n
nref
x t
T
nπ
πnωTnπ
nπωLTT
t
T
L
tc
∑
∞
=
⎥
⎦
⎤
⎢
⎣
⎡
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
−
=
1 0
2222
0
22
0
sin
)(
)cos1(2
)(
n n
nref
y t
T
nπ
πnωTnπ
nπωBT
tc
(3.47)
(3.48)
Swing	Foot	Reference	Trajectories
• The hip joint fix on the same height. The movement
trajectories show in below:
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 38
Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
Hip trajectory
Foot trajectory
),( hh zx
),( ff zx
fh
oh
L L
⎥
⎦
⎤
⎢
⎣
⎡
−= )2sin(2)(
ss
f
T
t
π
T
t
π
π
L
tx
Btyf ±=)(
⎥
⎦
⎤
⎢
⎣
⎡
−= )2cos(1
2
)(
s
f
f
T
t
π
h
tz
Fig. 3.14 The swing foot trajectories
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 39
Chapter 4 Adaptive CMAC-Based Dynamic-
Balancing and ZMP Compensation
Design
CMAC
• CMAC-based	adaptive	control	system
– Self-learning	control	parameter
– Simple	computation
– Better	control	performance
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 40
Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
RCMAC
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 41
Input Space
Receptive-Field
Space
Weight Memory
Space
Association Memory
Space
Recurrent Unit
k1
φ
nk
φ
∑
∑
Output Space
kow ! !
-
∑
∑
kpw! ! !
anp
1p k1µ
kna
µ
kφ
ikr Tikr T
Ono
1o
sI
sA
sR
sW
sO
Input Space
Receptive-Field
Space
Weight Memory
Space
Association Memory
Space
Recurrent Unit
k1
φ
nk
φ
∑
∑
Output Space
kow ! !
-
∑
∑
kpw! ! !
anp
1p k1µ
kna
µ
kφ
ikr Tikr Tikr TTikr T
Ono
1o
sI
sA
sR
sW
sO
Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
⎥
⎦
⎤
⎢
⎣
⎡ −−
= 2
2
)(
ik
iki
ik
v
cp
expµ
Association	Memory	Space:
Receptive-Filed	Space:
)()()( Ttrtptp ikikirik −+= µ
Recurrent	Unit:
⎥
⎦
⎤
⎢
⎣
⎡ −−
== ∑∏ ==
aa n
i ik
ikrik
n
i
ikkkkk
v
cp
exp
1
2
2
1
)(
),,,( µφ rvcp
∑=
==
dn
k
kkp
T
pp wo
1
φΦw
Output	Space:
a
a
nT
nppp ℜ∈= ],,,[ 21 !p
Input	Space:
Architecture	of	an	RCMAC
Adaptive	CMAC	Control	System
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 42
Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
Humanoid RobotSystem
CMACAdaptiveLaws
Adaptation
PropagationLaw dt
d
truckδ
Inverse
Kinematics
WalkingPattern
Generator ∑+
CMACAdaptiveLaws
Adaptation
PropagationLaw dt
d
1
1 −
− z
eΔ
ZMPδ
ZMP
Computation
ZMP
Planner
∑+
_
∑
+
_
∑
+
+
+
ω
ZMPCompensatorvia ACMAC
Dynamic-BalancingController based AdaptiveCMAC
*
dReference
Model
md
if
oτ
trunke
ZMPe
ZMPp
d
ZMPU
HipU
drdvdmdw ,η,η,ηη
zrzvzmzw ,η,η,ηη
zzz vmw ˆ,ˆ,ˆ
ddd vmw ˆ,ˆ,ˆ
τ
OPP
ACMAC-Based Dynamic-Balancing
• The tracking error of dynamic-balancing controller is defined
as
• And the output of the ACMAC-based dynamic-balancing is
• The total desired is defined as
• The tracking error of dynamic-balancing controller is defined
as
• And the output of the ACMAC-based dynamic-balancing is
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 43
Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
dde mtruck −=
HipU
Hipo U+=ττ
ZMPZMPZMP pde −=
ZMPU
ACMAC-Based ZMP Compensator
• The total desired hip trajectories is defined as
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 44
ZMPo UPP +=
Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
Online	Learning	Algorithm
• The energy function, E, is defined as
• with the energy function , the error term to be propagated is
given by
• based on backpropagation method can be derived as
2018/7/27 45
Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
22
2
1
)(
2
1
mm eddE =−=
ZMP
m
mZMP
ZMP
U
d
d
e
e
E
U
E
δ
∂
∂
∂
∂
∂
∂
−=
∂
∂
−=
kZMPzw
z
ZMP
ZMP
zw
z
zwz δη
w
U
U
E
η
w
E
ηw φ−=
∂
∂
∂
∂
−=
∂
∂
−=Δ
2
)(2
ik
ikrik
kzZMPzm
ik
ik
ik
k
k
ZMP
ZMP
zmik
v
mp
wδη
m
µ
µ
U
U
E
ηm
−
−=
∂
∂
∂
∂
∂
∂
∂
∂
−= φ
φ
φ
Δ
3
2
2
ik
ikrik
kzZMPzv
ik
ik
ik
k
k
ZMP
ZMP
zvik
v
)m(p
wδη
v
µ
µ
U
U
E
ηv
−
−=
∂
∂
∂
∂
∂
∂
∂
∂
−= φ
φ
φ
Δ
)(
2
2
Ttµ
v
)p(m
wδη
r
µ
µ
U
U
E
ηr ik
ik
rikik
kzZMPzr
ik
ik
ik
k
k
ZMP
ZMP
zrik −
−
−=
∂
∂
∂
∂
∂
∂
∂
∂
−= φ
φ
φ
Δ
(4.13)
(4.14)
(4.15)
(4.16)
(4.17)
(4.18)
Online	Learning	Algorithm
• cannot be computer if the plant model is unknown, an
adaptationpropagation law is given by
• The connective weights, means and variance can now be
updated according to the following equation
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 46
ZMPUd ∂∂ /
Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
mmmmZMP eeddddδ +=−+−≅ Δ)()( !!
)(Δ)()1( NwNwNw zzz +=+
)(Δ)()1( NmNmNm ikikik +=+
)(Δ)()1( NvNvNv ikikik +=+
)(Δ)()1( NrNrNr ikikik +=+
(4.20)
(4.21)
(4.22)
(4.23)
(4.19)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 47
Chapter 5 Simulation and Experimental Results
Experimental	environment
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 48
Digital
Oscilloscope
DC Power Supply
12V/18A
FPGACyclone III
Starter boardMonitor
Vision System
Emergency
Bottom
FSRs
Internal Circuits
and Sensors
Chapter 5 Simulationand Experimental Results
Trajectories	planning-ZMP
• ZMP	trajectories
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 49
Chapter 5 Simulationand Experimental Results
0 1 2 3 4 5 6 7 8
-2
0
2
4
6
8
10
12
Time (sec)
(a)
X-direction[cm]
ref
xc ref
yp
1.95 2 2.05 2.1 2.15 2.2 2.25 2.3
20
22
24
26
28
30
32
ref
ypideal
0 1 2 3 4 5 6 7 8
-8
-6
-4
-2
0
2
4
6
8
Time (sec)
(b)
Y-direction[cm]
3.8 4 4.2 4.4 4.6 4.8 5
36
38
40
42
44
46
48
50
52
ref
yp
ref
ypideal
ref
xc
0 1 2 3 4 5 6 7 8 9 10
-6
-4
-2
0
2
4
6
X-direction [cm](c)
Y-direction[cm]
57.1 57.2 57.3 57.4 57.5 57.6 57.7 57.8
35
35.5
36
36.5
37
37.5
38
38.5
39
39.5
ref
xc
ref
ypideal
ref
yp
Fig.	5.2	ZMP	and	COM	reference	(a)	x-direction	(b)	y-direction	(c)	x-y	plane
Trajectories	planning-Swing	foot
• Swing foot trajectories:
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 50
0 0.5 1 1.5 2 2.5 3 3.5 4
0
2
4
6
8
10
12
Time (sec)
(a)
X-direction[cm]
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.5
1
1.5
2
2.5
3
Time (sec)
(b)
Z-direction[cm]
0 2 4 6 8 10 12
0
0.5
1
1.5
2
2.5
3
X-direction [cm]
(c)
Z-direction[cm]
Fig.	5.3	Swing	foot	reference	trajectories	(a)	x-direction	(b	)y-direction	(c)	x-z	plane
Digital	Filter
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 51
Chapter 5 Simulationand Experimental Results
0 1 2 3 4 5 6 7 8 9 10
-50
-40
-30
-20
-10
0
10
20
30
40
50
Angle(deg)
Pitch anglewithout filter
(a)
Time (sec)
0 1 2 3 4 5 6 7 8 9 10
-20
-15
-10
-5
0
5
10
15
20
Angularvelocity(deg/sec)
Pitch angular velocitywithoutKalmanfilter
Noise
measurement
Time (sec)
(d)
0 1 2 3 4 5 6 7 8 9 10
-50
-40
-30
-20
-10
0
10
20
30
40
50
Angle(deg)
Pitch anglewith filter
(c)
Time (sec)
0 1 2 3 4 5 6 7 8 9 10
-20
-15
-10
-5
0
5
10
15
20
Time (sec)
Angularvelocity(deg/sec)
Pitch angular velocitywith Kalmanfilter
Kalman estimate
with Q=0.0005
(f)
Fig. 5.4 Pitch angle and angular velocity signals: (a) original pitch angle. (c) pitch angle pass through 1K
Hz cut-off frequency complementary filter. (d) original pitch angular velocity. (f) pitch angular velocity
pass through Q=0.0005 Kalman filter.
Experimental	Results
• Dynamic balancing
– Condition (i): without dynamic balancingcontroller
– Condition (ii): with dynamic balancing controller
• Dynamic walking
– Condition (i): walking on surface without ZMP compensator
– Condition (ii): walking on surface with ZMP compensator
– Condition (iii): walking on uphill with ZMP compensator
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 52
Chapter 5 Simulationand Experimental Results
Dynamic	balancing	for	condition(i)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 53
Chapter 5 Simulationand Experimental Results
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
(a)
Time (sec)
Angle(deg)
Pitch angle
Inverse
disturbance
Forward
disturbance
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
Rollangle
Time (sec)
(c)
Angle(deg)
Forward
disturbance
Inverse
disturbance
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
Pitch angular velocity
Angularvelocity(deg/sec)
Time (sec)
(b)
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
(d)
Time (sec)
Angularvelocity(deg/sec)
Roll angular velocity
Fig.	5.7	Snapshot	of	dynamic	balancingFig.	5.6	Dynamic	balancing	for	condition	(i)
Dynamic	Balancing	Demonstration
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 54
Chapter 5 Simulationand Experimental Results
Dynamic	balancing	for	condition(ii)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 55
Chapter 5 Simulationand Experimental Results
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
(a)
Time (sec)
Angle(deg)
Pitch angle
Inverse
disturbance
Forward
disturbance
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
Rollangle
Time (sec)
(d)
Angle(deg)
Forward
disturbance
Inverse
disturbance
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
Pitch angular velocity
Angularvelocity(deg/sec)
Time (sec)
(b)
0 1 2 3 4 5 6 7
-15
-10
-5
0
5
10
15
(e)
Time (sec)
Angularvelocity(deg/sec)
Roll angular velocity
0 1 2 3 4 5 6 7
-10
-8
-6
-4
-2
0
2
4
6
8
10
Controleffort ofvirtualpitch angle
Angle(deg)
Time (sec)
(c)
0 1 2 3 4 5 6 7
-10
-8
-6
-4
-2
0
2
4
6
8
10
Angle(deg)
Time (sec)
Controleffort of virtualrollangle
(f)
Fig.	5.8	Dynamic	balancing	for	condition	(ii)
Dynamic	walking	for	condition	(i)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 56
Chapter 5 Simulationand Experimental Results
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
Joint Angle2
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
Joint Angle3
Angle(deg)
Time (sec)
Actual
Desired
0 2 4 6 8 10 12 14 16
-60
-40
-20
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
Joint Angle4
Angle(deg)
Time (sec)
Actual
Desired
0 2 4 6 8 10 12 14 16
-60
-40
-20
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
Joint Angle5
Angle(deg)
Time (sec)
Actual
Desired
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle6
Angle(deg)
Time (sec)
Actual
Desired
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle11
Angle(deg)
Time (sec)
Actual
Desired
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle10
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
0 2 4 6 8 10 12 14 16
10
20
30
40
50
60
70
Joint Angle9
Angle(deg)
Time (sec)
Actual
Desired
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
0 2 4 6 8 10 12 14 16
10
20
30
40
50
60
70
Joint Angle8
Angle(deg)
Time (sec)
Actual
Desired
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle7
Angle(deg)
Time (sec)
Actual
Desired
Fig. 5.10 Joint angle of left legFig. 5.9 Joint angle of right leg
Dynamic	walking	for	condition	(i)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 57
Chapter 5 Simulationand Experimental Results
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Time (sec)
Angle(deg)
Pitch angle
(a)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Time (sec)
Angle(deg)
Rollangle
(c)
0 2 4 6 8 10 12 14 16
-5
0
5
10
15
20
25
Time (sec)
ZMPx-coordinate(cm)
(b)
Stableregion
0 2 4 6 8 10 12 14 16
-8
-6
-4
-2
0
2
4
6
8
Time (sec)
ZMPy-coordinate(cm)
(d)
Stable region
-2 0 2 4 6 8 10 12 14 16 18
-8
-6
-4
-2
0
2
4
6
8
ZMP x-coordinate (cm)
ZMPy-coordinate(cm)
(e)
Fig.	5.11	(a),(c)	Attitude	of	humanoid	robot	without	ZMP	compensator	for	condition	
(i).	(b),(d)-(e)	 Actual	ZMP	for	condition	(i)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU
58
Chapter 5 Simulationand Experimental Results
Dynamic	walking	for	condition	(ii)
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
Joint Angle2
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
Joint Angle3
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-60
-40
-20
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
Joint Angle4
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-60
-40
-20
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
Joint Angle5
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle6
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle11
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle10
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
0 2 4 6 8 10 12 14 16
10
20
30
40
50
60
70
Joint Angle9
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
0 2 4 6 8 10 12 14 16
10
20
30
40
50
60
70
Joint Angle8
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle7
Angle(deg)
Time (sec)
Desired
Actual
Fig. 5.13 Joint angle of left leg Fig. 5.13 Joint angle of left leg
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 59
Chapter 5 Simulationand Experimental Results
Dynamic	walking	for	condition	(ii)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Time (sec)
Angle(deg)
Pitch angle
(a)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Time (sec)
Angle(deg)
Rollangle
(d)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Controleffort ofvirtualpitch angle
Angle(deg)
Time (sec)
(b)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Angle(deg)
Time (sec)
Controleffort ofvirtualrollangle
(e)
0 2 4 6 8 10 12 14 16
-5
0
5
10
15
20
25
Time (sec)
ZMPx-coordinate(cm)
(c)
Stableregion
0 2 4 6 8 10 12 14 16
-8
-6
-4
-2
0
2
4
6
8
Time (sec)
ZMPy-coordinate(cm)
(f)
Time (sec)
ZMPy-coordinate(cm)
Stable region
-2 0 2 4 6 8 10 12 14 16 18
-8
-6
-4
-2
0
2
4
6
8
ZMP x-coordinate (cm)
ZMPy-coordinate(cm)
(g)
Fig. 5.14 (a),(d) Attitude of humanoid robot for condition (ii). (b),(e) control effort of virtual angle for condition (iii).
(c),(f)-(g) Actual ZMP for condition (ii)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 60
Chapter 5 Simulationand Experimental Results
Dynamic	walking	for	condition	(iii)
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
Joint Angle2
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
Joint Angle3
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-60
-40
-20
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
Joint Angle4
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-60
-40
-20
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
Joint Angle5
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle6
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle11
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-50
-40
-30
-20
-10
0
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle10
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
0 2 4 6 8 10 12 14 16
10
20
30
40
50
60
70
Joint Angle9
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
0 2 4 6 8 10 12 14 16
10
20
30
40
50
60
70
Joint Angle8
Angle(deg)
Time (sec)
Desired
Actual
0 2 4 6 8 10 12 14 16
-30
-20
-10
0
10
20
30
Joint Angle7
Angle(deg)
Time (sec)
Desired
Actual
Fig. 6.15 Joint angle of right leg Fig. 5.16 Joint angle of left leg
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 61
Chapter 5 Simulationand Experimental Results
Dynamic	walking	for	condition	(iii)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Time (sec)
Angle(deg)
Pitch angle
(a)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Time (sec)
Angle(deg)
Rollangle
(d)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Controleffort ofvirtualpitch angle
Angle(deg)
Time (sec)
(b)
0 2 4 6 8 10 12 14 16
-10
-8
-6
-4
-2
0
2
4
6
8
10
Angle(deg)
Time (sec)
Virtualrollangle
(e)
0 2 4 6 8 10 12 14 16
-5
0
5
10
15
20
25
Time (sec)
ZMPx-coordinate(cm)
(c)
Stableregion
0 2 4 6 8 10 12 14 16
-8
-6
-4
-2
0
2
4
6
8
Time (sec)
ZMPy-coordinate(cm)
(f)
Time (sec)
ZMPy-coordinate(cm)
Stable region
-2 0 2 4 6 8 10 12 14 16 18
-8
-6
-4
-2
0
2
4
6
8
ZMP x-coordinate (cm)
ZMPy-coordinate(cm)
(g)
Fig. 5.17 (a),(d) Attitude of humanoid robot for condition (iii). (b),(e) control effort of virtual angle for condition (iii).
(c),(f)-(g) Actual ZMP for condition (iii)
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 62
Chapter 5 Simulationand Experimental Results
Dynamic	walking- Siggital
Dynamic	walking-Frontal
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 63
Chapter 5 Simulationand Experimental Results
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 64
Chapter 6 Conclusions and Future Works
Conclusions
• Robot system has been designedand implementedsuccessfully
– Mechanism design
– Multi-sensors
– External circuit
– SOPC
• Trajectoriesplanning
– Swing foot trajectories
– CoM and ZMP trajectories
• Digital filter
– Kalman filter
– Complementaryfilter
• Dynamic balancingbasedon ACMAC
– Online learning algorithm
– Gradient descent method
– Virtual angle
• ACMAC-based ZMP compensator
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 65
Chapter 6 Conclusions and Future Works
Future	Research
• Advanced particle swarm optimization for finding the optimal
learning rate
• Impendencecontrol
• Fast dynamic walking
• Build up middle size humanoid robot
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 66
Chapter 6 Conclusions and Future Works
Thanks for your attention
2018/7/27 Control	System	Lab,	Dept.	of	EE.	,	YZU 67

More Related Content

PPTX
Walking Control Algorithm of Biped Humanoid Robot on Even, Uneven and Incline...
PPT
Software testing
PPT
Basics of Software Testing
PDF
Mobile Robot Vechiles
PDF
Achieve iso 26262 certification
PPTX
Gesture Controlled Car.pptx
PPT
Basic software-testing-concepts
PDF
Seminar on Software Testing
Walking Control Algorithm of Biped Humanoid Robot on Even, Uneven and Incline...
Software testing
Basics of Software Testing
Mobile Robot Vechiles
Achieve iso 26262 certification
Gesture Controlled Car.pptx
Basic software-testing-concepts
Seminar on Software Testing

Similar to Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan Chen (20)

PPTX
Design of Control System for Humanoid Robot
PDF
Humanoid robotics
PPTX
Humanoid Robots
PPTX
humanoid robort.pptx
PDF
Resume
PDF
IRJET- Human Hand Movement Training with Exoskeleton ARM
PPTX
Humanoid robot gesture control with wifi gesture.pptx
PPS
Humanoids 10
PPSX
final review_sri
PPTX
Ieee css 2015 04-03
PPTX
KJ Workshop 2016
PDF
Design and control of a compact hydraulic manipulator for quadruped robots
PDF
Thesis-4709354-ECTE953 PDF full
PDF
Sarda_uta_2502M_12076
PDF
Robots and Humans - Oussama Khatib
PDF
simuliton of biped walkinng robot using kinematics
PDF
Thesis dissertation: Humanoid Robot Control of Complex Postural Tasks based o...
PDF
Atlas robotics assignment
PDF
A Mimicking Human Arm with 5 DOF Controlled by LabVIEW
PPTX
Humanoid robot
Design of Control System for Humanoid Robot
Humanoid robotics
Humanoid Robots
humanoid robort.pptx
Resume
IRJET- Human Hand Movement Training with Exoskeleton ARM
Humanoid robot gesture control with wifi gesture.pptx
Humanoids 10
final review_sri
Ieee css 2015 04-03
KJ Workshop 2016
Design and control of a compact hydraulic manipulator for quadruped robots
Thesis-4709354-ECTE953 PDF full
Sarda_uta_2502M_12076
Robots and Humans - Oussama Khatib
simuliton of biped walkinng robot using kinematics
Thesis dissertation: Humanoid Robot Control of Complex Postural Tasks based o...
Atlas robotics assignment
A Mimicking Human Arm with 5 DOF Controlled by LabVIEW
Humanoid robot
Ad

Recently uploaded (20)

PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
A Presentation on Artificial Intelligence
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Encapsulation theory and applications.pdf
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PPTX
Chapter 5: Probability Theory and Statistics
PPTX
TLE Review Electricity (Electricity).pptx
PPTX
1. Introduction to Computer Programming.pptx
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PPTX
OMC Textile Division Presentation 2021.pptx
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
Encapsulation_ Review paper, used for researhc scholars
Building Integrated photovoltaic BIPV_UPV.pdf
A comparative analysis of optical character recognition models for extracting...
Web App vs Mobile App What Should You Build First.pdf
Univ-Connecticut-ChatGPT-Presentaion.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
A Presentation on Artificial Intelligence
Enhancing emotion recognition model for a student engagement use case through...
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Encapsulation theory and applications.pdf
Accuracy of neural networks in brain wave diagnosis of schizophrenia
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Chapter 5: Probability Theory and Statistics
TLE Review Electricity (Electricity).pptx
1. Introduction to Computer Programming.pptx
Hindi spoken digit analysis for native and non-native speakers
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
OMC Textile Division Presentation 2021.pptx
SOPHOS-XG Firewall Administrator PPT.pptx
Ad

Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan Chen

  • 1. SOPC DO : M: L HC Design and Implementationof IntelligentControl System forAutonomousHumanoid Robot based on SOPC Technology -. 9. 121 1. /. 121 2 0 2 . 2018/7/27 1Control System Lab, Dept. of EE. , YZU
  • 2. Agenda • Chapter 1 Introduction • Chapter 2 Mechanism and Hardware of the Humanoid Robot • Chapter 3 Modeling and Reference Trajectories Planning of Humanoid Robot • Chapter 4 Adaptive CMAC-BasedDynamic-Balancingand ZMP CompensationDesign • Chapter 5 Simulation and Experimental Results • Chapter 6 Conclusions and Future Works 2018/7/27 2Control System Lab, Dept. of EE. , YZU
  • 3. Chapter 1 Introduction 2018/7/27 Control System Lab, Dept. of EE. , YZU 3
  • 4. Why do people make robot? – An aging society is coming – To avoid human being doing high risk tasks – To replace duplicating jobs – For education – Entertainments: pets – Robot will soon become part of our day to day, Bill gates said. 2018/7/27 Control System Lab, Dept. of EE. , YZU 4
  • 5. Why makes humanoid robot? – Advantages • A humanoid robot has a structure similar to human’s leg and has higher mobility than conventionalwheeled robots. • Involve numerous field and only one platform relates to wild areas – Disadvantagesfor designer • Balance should be concerned • Complicated to design mechanism • Has complex dynamics and many non-linear factors. • It is very difficult to move a robot stably. 2018/7/27 Control System Lab, Dept. of EE. , YZU 5
  • 6. Introduction of SOPC • System on Programmable chip (SOPC) 2018/7/27 Control System Lab, Dept. of EE. , YZU 6 FPGA - Nios II Plus All Peripherals Written In HDL - Can Be TargetedFor All Altera FPGAs - Synthesis Using Quartus II Integrated Synthesis Avalon Switch Fabric UART GPIO Timer SPI SDRAM Controller On-Chip ROM On-Chip RAM Nios II CPU Debug Cache
  • 7. 2018/7/27 Control System Lab, Dept. of EE. , YZU 7 Chapter 2 Mechanism and Hardware of the Humanoid Robot
  • 8. Design of Mechanism Criterion I • Different link length will cause displacementof COG (Center of Gravity) 2018/7/27 Control System Lab, Dept. of EE. , YZU 8 COG Displacement r r 2r r r 2r h1 h2 21 hh ≠21 hh = h1 h2 Chapter 2 Mechanism andHardware of the HumanoidRobot
  • 9. Design of Mechanism Criterion II • Different leg length will cause large displacement whiling COG moving to sole of the foot. 2018/7/27 Control System Lab, Dept. of EE. , YZU 9 COG COG COG Chapter 2 Mechanism andHardware of the HumanoidRobot
  • 11. Actuators • The whole trunk of robot is composed by 27 servo motors with different size based on requested torque. 2018/7/27 Control System Lab, Dept. of EE. , YZU 11 Chapter 2 Mechanism andHardware of the HumanoidRobot TYPE Torque (kg/cm) Speed (sec/60°) Operate range(°) Communic ation method KRS- 4014HV 40.8 0.19 270 PWM KRS- 2350HV 29.5 0.13 180 PWM NARO 0.7 0.12 180 PWM PICO 1.4 0.19 180 PWM
  • 12. Processor • Collects information • Computes robot dynamic • Performs human brain • High hardware acceleration 2018/7/27 Control System Lab, Dept. of EE. , YZU 12 Chapter 2 Mechanism andHardware of the HumanoidRobot Nios II Processor 1 Nios II Processor 2 Avalon bridge Hardware Mutex Shared Memory DDR SDRAM Controller SSRAM Controller FLASH Controller On-Chip Ram HSMC User Define Interface Timer UART SSRAM DDR SDRAM FLASH
  • 13. External circuits 2018/7/27 Control System Lab, Dept. of EE. , YZU 13 Chapter 2 Mechanism andHardware of the HumanoidRobot Power management circuitData Acquisition circuit peripheral circuits Isolation circuit
  • 14. Accelerometers and gyroscopes • The accelerometer has been converted to an acceleration that varies between –1 g and +1 g, • TheADXRS300 is a complete angular rate sensor (gyroscope) 2018/7/27 Control System Lab, Dept. of EE. , YZU 14 Chapter 2 Mechanism andHardware of the HumanoidRobot
  • 15. Force-sensing resistor • Exhibits a decrease in resistance with an increase in force applied normal to the device surface 2018/7/27 Control System Lab, Dept. of EE. , YZU 15 Chapter 2 Mechanism andHardware of the HumanoidRobot
  • 16. CMOS sensor • In practical situation high speed module without hyper speed processor will be in vain. 2018/7/27 Control System Lab, Dept. of EE. , YZU 16 Chapter 2 Mechanism andHardware of the HumanoidRobot
  • 17. 2018/7/27 Control System Lab, Dept. of EE. , YZU 17 Chapter 3 Modeling and Reference Trajectories Planning of Humanoid Robot
  • 18. Kinematics Analysis • Forward kinematics for position/orientation – determinethe position and orientation of the end effector given the values for the joint variables of the robot • Inverse kinematics for position/orientation – determinethe values for the joint variables given the end effector’s position and orientation 2018/7/27 Control System Lab, Dept. of EE. , YZU 18 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot
  • 19. Forward kinematics • The position sense of the twist angle and the joint angle are shown as below: • The four principal homogeneous transforms are involved: 2018/7/27 Control System Lab, Dept. of EE. , YZU 19 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot iθiα ix ia Joint axis i Joint 1+i iO iα 1−ix id 1−iz iz Normal 1−i Joint axis 1−i Joint i 1−iO iθ Normal i iiiiiiii αxraxtdztθzr i i ,,,, 1 11 HHHHH −− =− (3.1)
  • 20. Forward kinematics • Homogeneous transform parameters are defined in appendix C and is shown as • For simplicity, the homogeneous transform denotes as . 2018/7/27 Control System Lab, Dept. of EE. , YZU 20 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ − − = ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = ××− − 1000 cossin0 sincossincoscossin cossinsinsincoscos 1000 0 0 0 1000 0 0 1000 0 0 1000 0 0 0 ,3333,1 1 iii iiiiiii iiiiiii αx i i θzi i dαα θaθαθαθ θaθαθαθ a d iiii RUUR H i i i AH =−1 (3.2)
  • 21. Forward kinematics • The end-link expressed by the homogeneous transform is where • The D-H Parameters of a Leg-Part of Humanoid Robot are shown in Table 3.1. 2018/7/27 Control System Lab, Dept. of EE. , YZU 21 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot nn n nn qqq AAAHHHqH !! 21 1 2 1 21 0 1 0 )()()()( == − [ ]T nqqq 21 !=q (3.4) (3.3)
  • 22. Forward kinematics • leg-part of humanoid robot is given by • The D-H parameters form is shown as: • where 2018/7/27 Control System Lab, Dept. of EE. , YZU 22 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot 654321 5 6 4 5 3 4 2 3 1 2 0 1 0 6 )()()()()()()( AAAAAAHHHHHHqH 654321 == qqqqqq ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ = 1000 )(0 6 zzzz yyyy xxxx paon paon paon qH (3.6) (3.5) (3.4) 6234165152341 )( ssccsssccnx +−−= 6234165152341 )( ssscccscsny ++−= 623465234 sccssnz −−= 6234165152341 )( cscscssccox ++= (3.7) (3.8) (3.9)
  • 23. Forward kinematics • whenever convenient shorthand notation defines as for trigonometricfunctions. 2018/7/27 Control System Lab, Dept. of EE. , YZU 23 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot 6234165152341 )( csssccscsoy +−= 623465234 ccsssoz −= 5152341 sscccax +−= 5152341 scccsay −−= 5234csaz −= )()( 232321623411651523411 cacacsscaccssccapx ++++−= )()( 232321623411651523411 cacassssacccscsapy ++++−= 2323262341652341 sasascacssapz ++−−= θsθ sin= )cos( φψc φψ +=+ (3.14) (3.15) (3.16) (3.17) (3.10) (3.11) (3.12) (3.13)
  • 24. Inverse kinematics • One subchain which comprises joint variables , , in which denotes the two argument arctangent function. • Applying the cosine theorem to obtain • Hence, is given by • Similarly is given as 2018/7/27 Control System Lab, Dept. of EE. , YZU 24 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot ),(Atan21 cc xyθ = 32 2 3 2 2 222 3 2 cos aa aazyx θ ccc −−++ = )cos,cos1(Atan2 33 2 3 θθθ −±= )cos,sin(Atan2),(Atan2 32332 22 2 θaaθayxzθ ccc +++= 1θ 2θ 3θ ),(Atan2 xy 3θ 2θ (3.20) (3.19) (3.18) (3.21)
  • 25. Inverse kinematics • Hence, is given by • Then and are given respectively as • It will get 8 different solutions. Then, preserve the one solution by determining movablerange. 2018/7/27 Control System Lab, Dept. of EE. , YZU 25 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot ),(Atan2 33232323113231332323231132314 rsrcsrccrcrssrscθ +++−−= ),(Atan2 2111112211216 rcrsrcrsθ +−−= ))(1,(Atan2 2 2311312311315 rcrsrcrsθ −−±−= 4θ 6θ 5θ (3.25) (3.26) (3.27)
  • 26. Zero Moment Point 2018/7/27 Control System Lab, Dept. of EE. , YZU 26 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot Center-of-Gravity Shift Load Point (ZMP) Center of Gravity Load Point (ZMP) Center of Gravity Gravity Inertial Force Total Inertial Force Out In Fig. 3.2 The center of gravity shifting N M P Fig. 3.3 Concept of the ZMP
  • 27. ZMP • If ZMP is in the stable region for double support phase and single support phase, then the robot will not go falling down situation. • where represents the ZMP vector, is the each link 2018/7/27 Control System Lab, Dept. of EE. , YZU 27 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot ∑ ∑ ∑ = = = − −−− = n i zii n i n i ixiiizii zmp gzm zgxmxgzm x 1 1 1 )( )()( !! !!!! ∑ ∑ ∑ = = = − −−− = n i zii n i n i ixiiizii zmp gzm zgymygzm y 1 1 1 )( )()( !! !!!! [ ]T zyx ppp ,,=P im (3.28) (3.29)
  • 28. Actual ZMP • Thus the actual ZMP can be computed by • To realize the actual ZMP via FSR measurement each sensor reaction is shown as 2018/7/27 Control System Lab, Dept. of EE. , YZU 28 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot ∑ ∑ = = = n i i n i ii ZMP f 1 1 r r P 1f 2f 3f 5f6f 7f 8f 4f x y o 1r 2r 3r 4r 5r 6r 7r 8r Fig. 3.4 The vector of FSR located in sole of feet (3.30)
  • 29. Walking Analysis 2018/7/27 Control System Lab, Dept. of EE. , YZU 29 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot Movement of Center of Gravity Sole of Foot Movement of Center of Gravity Sole of Foot Fig. 3.5 Walking pattern: (a): static walking; (b): dynamic walking.
  • 30. Static walking & Dynamic walking 2018/7/27 Control System Lab, Dept. of EE. , YZU 30 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot Gravity Inertial Force Total Inertial Force Floor Reaction Load Point (ZMP) Load Point (ZMP) Load Point (ZMP) Fig. 3.6 The walking floor reaction of total inertial force
  • 31. Linear inverted pendulum model • To extract a dominant feature which is high-order and nonlinear and to use this dominant factor to explain the dynamics of the system 2018/7/27 Control System Lab, Dept. of EE. , YZU 31 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot X Y Z m C
  • 32. LIPM • The position of the body can be calculated via the moment of mass equation: where is the position of the k-th particle, is the total mass. 2018/7/27 Control System Lab, Dept. of EE. , YZU 32 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot cr ∑= = n k kkc mm 1 rr kr ∑= = n k kmm 1 1m nm km CoM m cr kr x y o z (3.31)
  • 33. LIPM 2018/7/27 Control System Lab, Dept. of EE. , YZU 33 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot • The dynamics equations of the inverted pendulum can be derived as follows: • To attain linear equations assume the z-coordinates of the inverted pendulum is assumed to be constant )( )( gcm ccmcgcm p z zxxz x − −− = !! !!!! )( )( gcm ccmcgcm p z zyyz y − −− = !! !!!! x c xx c g z cp !!−= y c yy c g z cp !!−= (3.33) (3.32) (3.34) (3.35)
  • 34. Table-cart model • The moment around the ZMP must be zero the following condition hold. 2018/7/27 Control System Lab, Dept. of EE. , YZU 34 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot 0=ZMPτ O mg− xp xm !! x cz 0)( =−−= cxzmp zxmpxmg !!τ (3.36) Fig. 3.9 Table-cart model
  • 35. Ideal ZMP 2018/7/27 Control System Lab, Dept. of EE. , YZU 35 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot 0Τ 02Τ 03Τ 04Τ 05Τ ref xP ref yP 0Τ 02Τ 03Τ 04Τ 05Τ t t L L2 L3 L4 L5 B B− Dotted : Single SupportPhase Solid : Double SupportPhase ref xP ref yP Single Support Phase Double SupportPhase Step Position L L2 L3 L4 L5 B B−
  • 36. Fourier approximation CoM trajectories • The ZMP reference trajectories can be expressed as follows. • Finally, the CoM can be obtained by applying inverse Laplace transformations as follows. 2018/7/27 Control System Lab, Dept. of EE. , YZU 36 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot ∑ ∞ = −= 1 0 )()( k ref x kTtuLtp ∑ ∞ = −⋅−+⋅= 1 0 )()1(2)()( K Kref y kTtuBtuBtp [ ] )(1)(cosh1)( 00 kTtkTtωLtc k nx −⋅−−= ∑ ∞ [ ] )(1)(cosh1)1(2)( 00 kTtkTtωBtc k n k x −⋅−−−= ∑ ∞ (3.42) (3.41) (3.45) (3.46)
  • 37. Fourier approximation CoM trajectories • Assuming the reference trajectory of CoM has the form by using Fourier series. • As a result, the x-directionalreferencetrajectory of CoM can be found as follows: • the y-directionalreferencetrajectory of CoM can be found in a similar manner as follows: 2018/7/27 Control System Lab, Dept. of EE. , YZU 37 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot ∑ ∞ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + + +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −= 1 0 2222 0 22 00 0 sin )( )cos1( 2 )( n n nref x t T nπ πnωTnπ nπωLTT t T L tc ∑ ∞ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + − = 1 0 2222 0 22 0 sin )( )cos1(2 )( n n nref y t T nπ πnωTnπ nπωBT tc (3.47) (3.48)
  • 38. Swing Foot Reference Trajectories • The hip joint fix on the same height. The movement trajectories show in below: 2018/7/27 Control System Lab, Dept. of EE. , YZU 38 Chapter 3 Modelingand Reference Trajectories Planningof HumanoidRobot Hip trajectory Foot trajectory ),( hh zx ),( ff zx fh oh L L ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −= )2sin(2)( ss f T t π T t π π L tx Btyf ±=)( ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −= )2cos(1 2 )( s f f T t π h tz Fig. 3.14 The swing foot trajectories
  • 39. 2018/7/27 Control System Lab, Dept. of EE. , YZU 39 Chapter 4 Adaptive CMAC-Based Dynamic- Balancing and ZMP Compensation Design
  • 40. CMAC • CMAC-based adaptive control system – Self-learning control parameter – Simple computation – Better control performance 2018/7/27 Control System Lab, Dept. of EE. , YZU 40 Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
  • 41. RCMAC 2018/7/27 Control System Lab, Dept. of EE. , YZU 41 Input Space Receptive-Field Space Weight Memory Space Association Memory Space Recurrent Unit k1 φ nk φ ∑ ∑ Output Space kow ! ! - ∑ ∑ kpw! ! ! anp 1p k1µ kna µ kφ ikr Tikr T Ono 1o sI sA sR sW sO Input Space Receptive-Field Space Weight Memory Space Association Memory Space Recurrent Unit k1 φ nk φ ∑ ∑ Output Space kow ! ! - ∑ ∑ kpw! ! ! anp 1p k1µ kna µ kφ ikr Tikr Tikr TTikr T Ono 1o sI sA sR sW sO Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −− = 2 2 )( ik iki ik v cp expµ Association Memory Space: Receptive-Filed Space: )()()( Ttrtptp ikikirik −+= µ Recurrent Unit: ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −− == ∑∏ == aa n i ik ikrik n i ikkkkk v cp exp 1 2 2 1 )( ),,,( µφ rvcp ∑= == dn k kkp T pp wo 1 φΦw Output Space: a a nT nppp ℜ∈= ],,,[ 21 !p Input Space: Architecture of an RCMAC
  • 42. Adaptive CMAC Control System 2018/7/27 Control System Lab, Dept. of EE. , YZU 42 Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign Humanoid RobotSystem CMACAdaptiveLaws Adaptation PropagationLaw dt d truckδ Inverse Kinematics WalkingPattern Generator ∑+ CMACAdaptiveLaws Adaptation PropagationLaw dt d 1 1 − − z eΔ ZMPδ ZMP Computation ZMP Planner ∑+ _ ∑ + _ ∑ + + + ω ZMPCompensatorvia ACMAC Dynamic-BalancingController based AdaptiveCMAC * dReference Model md if oτ trunke ZMPe ZMPp d ZMPU HipU drdvdmdw ,η,η,ηη zrzvzmzw ,η,η,ηη zzz vmw ˆ,ˆ,ˆ ddd vmw ˆ,ˆ,ˆ τ OPP
  • 43. ACMAC-Based Dynamic-Balancing • The tracking error of dynamic-balancing controller is defined as • And the output of the ACMAC-based dynamic-balancing is • The total desired is defined as • The tracking error of dynamic-balancing controller is defined as • And the output of the ACMAC-based dynamic-balancing is 2018/7/27 Control System Lab, Dept. of EE. , YZU 43 Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign dde mtruck −= HipU Hipo U+=ττ ZMPZMPZMP pde −= ZMPU
  • 44. ACMAC-Based ZMP Compensator • The total desired hip trajectories is defined as 2018/7/27 Control System Lab, Dept. of EE. , YZU 44 ZMPo UPP += Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign
  • 45. Online Learning Algorithm • The energy function, E, is defined as • with the energy function , the error term to be propagated is given by • based on backpropagation method can be derived as 2018/7/27 45 Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign 22 2 1 )( 2 1 mm eddE =−= ZMP m mZMP ZMP U d d e e E U E δ ∂ ∂ ∂ ∂ ∂ ∂ −= ∂ ∂ −= kZMPzw z ZMP ZMP zw z zwz δη w U U E η w E ηw φ−= ∂ ∂ ∂ ∂ −= ∂ ∂ −=Δ 2 )(2 ik ikrik kzZMPzm ik ik ik k k ZMP ZMP zmik v mp wδη m µ µ U U E ηm − −= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ −= φ φ φ Δ 3 2 2 ik ikrik kzZMPzv ik ik ik k k ZMP ZMP zvik v )m(p wδη v µ µ U U E ηv − −= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ −= φ φ φ Δ )( 2 2 Ttµ v )p(m wδη r µ µ U U E ηr ik ik rikik kzZMPzr ik ik ik k k ZMP ZMP zrik − − −= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ −= φ φ φ Δ (4.13) (4.14) (4.15) (4.16) (4.17) (4.18)
  • 46. Online Learning Algorithm • cannot be computer if the plant model is unknown, an adaptationpropagation law is given by • The connective weights, means and variance can now be updated according to the following equation 2018/7/27 Control System Lab, Dept. of EE. , YZU 46 ZMPUd ∂∂ / Chapter 4 Adaptive CMAC-Based Dynamic-BalancingandZMP CompensationDesign mmmmZMP eeddddδ +=−+−≅ Δ)()( !! )(Δ)()1( NwNwNw zzz +=+ )(Δ)()1( NmNmNm ikikik +=+ )(Δ)()1( NvNvNv ikikik +=+ )(Δ)()1( NrNrNr ikikik +=+ (4.20) (4.21) (4.22) (4.23) (4.19)
  • 47. 2018/7/27 Control System Lab, Dept. of EE. , YZU 47 Chapter 5 Simulation and Experimental Results
  • 48. Experimental environment 2018/7/27 Control System Lab, Dept. of EE. , YZU 48 Digital Oscilloscope DC Power Supply 12V/18A FPGACyclone III Starter boardMonitor Vision System Emergency Bottom FSRs Internal Circuits and Sensors Chapter 5 Simulationand Experimental Results
  • 49. Trajectories planning-ZMP • ZMP trajectories 2018/7/27 Control System Lab, Dept. of EE. , YZU 49 Chapter 5 Simulationand Experimental Results 0 1 2 3 4 5 6 7 8 -2 0 2 4 6 8 10 12 Time (sec) (a) X-direction[cm] ref xc ref yp 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 20 22 24 26 28 30 32 ref ypideal 0 1 2 3 4 5 6 7 8 -8 -6 -4 -2 0 2 4 6 8 Time (sec) (b) Y-direction[cm] 3.8 4 4.2 4.4 4.6 4.8 5 36 38 40 42 44 46 48 50 52 ref yp ref ypideal ref xc 0 1 2 3 4 5 6 7 8 9 10 -6 -4 -2 0 2 4 6 X-direction [cm](c) Y-direction[cm] 57.1 57.2 57.3 57.4 57.5 57.6 57.7 57.8 35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 ref xc ref ypideal ref yp Fig. 5.2 ZMP and COM reference (a) x-direction (b) y-direction (c) x-y plane
  • 50. Trajectories planning-Swing foot • Swing foot trajectories: 2018/7/27 Control System Lab, Dept. of EE. , YZU 50 0 0.5 1 1.5 2 2.5 3 3.5 4 0 2 4 6 8 10 12 Time (sec) (a) X-direction[cm] 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 Time (sec) (b) Z-direction[cm] 0 2 4 6 8 10 12 0 0.5 1 1.5 2 2.5 3 X-direction [cm] (c) Z-direction[cm] Fig. 5.3 Swing foot reference trajectories (a) x-direction (b )y-direction (c) x-z plane
  • 51. Digital Filter 2018/7/27 Control System Lab, Dept. of EE. , YZU 51 Chapter 5 Simulationand Experimental Results 0 1 2 3 4 5 6 7 8 9 10 -50 -40 -30 -20 -10 0 10 20 30 40 50 Angle(deg) Pitch anglewithout filter (a) Time (sec) 0 1 2 3 4 5 6 7 8 9 10 -20 -15 -10 -5 0 5 10 15 20 Angularvelocity(deg/sec) Pitch angular velocitywithoutKalmanfilter Noise measurement Time (sec) (d) 0 1 2 3 4 5 6 7 8 9 10 -50 -40 -30 -20 -10 0 10 20 30 40 50 Angle(deg) Pitch anglewith filter (c) Time (sec) 0 1 2 3 4 5 6 7 8 9 10 -20 -15 -10 -5 0 5 10 15 20 Time (sec) Angularvelocity(deg/sec) Pitch angular velocitywith Kalmanfilter Kalman estimate with Q=0.0005 (f) Fig. 5.4 Pitch angle and angular velocity signals: (a) original pitch angle. (c) pitch angle pass through 1K Hz cut-off frequency complementary filter. (d) original pitch angular velocity. (f) pitch angular velocity pass through Q=0.0005 Kalman filter.
  • 52. Experimental Results • Dynamic balancing – Condition (i): without dynamic balancingcontroller – Condition (ii): with dynamic balancing controller • Dynamic walking – Condition (i): walking on surface without ZMP compensator – Condition (ii): walking on surface with ZMP compensator – Condition (iii): walking on uphill with ZMP compensator 2018/7/27 Control System Lab, Dept. of EE. , YZU 52 Chapter 5 Simulationand Experimental Results
  • 53. Dynamic balancing for condition(i) 2018/7/27 Control System Lab, Dept. of EE. , YZU 53 Chapter 5 Simulationand Experimental Results 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 (a) Time (sec) Angle(deg) Pitch angle Inverse disturbance Forward disturbance 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 Rollangle Time (sec) (c) Angle(deg) Forward disturbance Inverse disturbance 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 Pitch angular velocity Angularvelocity(deg/sec) Time (sec) (b) 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 (d) Time (sec) Angularvelocity(deg/sec) Roll angular velocity Fig. 5.7 Snapshot of dynamic balancingFig. 5.6 Dynamic balancing for condition (i)
  • 55. Dynamic balancing for condition(ii) 2018/7/27 Control System Lab, Dept. of EE. , YZU 55 Chapter 5 Simulationand Experimental Results 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 (a) Time (sec) Angle(deg) Pitch angle Inverse disturbance Forward disturbance 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 Rollangle Time (sec) (d) Angle(deg) Forward disturbance Inverse disturbance 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 Pitch angular velocity Angularvelocity(deg/sec) Time (sec) (b) 0 1 2 3 4 5 6 7 -15 -10 -5 0 5 10 15 (e) Time (sec) Angularvelocity(deg/sec) Roll angular velocity 0 1 2 3 4 5 6 7 -10 -8 -6 -4 -2 0 2 4 6 8 10 Controleffort ofvirtualpitch angle Angle(deg) Time (sec) (c) 0 1 2 3 4 5 6 7 -10 -8 -6 -4 -2 0 2 4 6 8 10 Angle(deg) Time (sec) Controleffort of virtualrollangle (f) Fig. 5.8 Dynamic balancing for condition (ii)
  • 56. Dynamic walking for condition (i) 2018/7/27 Control System Lab, Dept. of EE. , YZU 56 Chapter 5 Simulationand Experimental Results 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 Joint Angle2 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 Joint Angle3 Angle(deg) Time (sec) Actual Desired 0 2 4 6 8 10 12 14 16 -60 -40 -20 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 Joint Angle4 Angle(deg) Time (sec) Actual Desired 0 2 4 6 8 10 12 14 16 -60 -40 -20 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 Joint Angle5 Angle(deg) Time (sec) Actual Desired 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle6 Angle(deg) Time (sec) Actual Desired 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle11 Angle(deg) Time (sec) Actual Desired 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle10 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 0 2 4 6 8 10 12 14 16 10 20 30 40 50 60 70 Joint Angle9 Angle(deg) Time (sec) Actual Desired 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 0 2 4 6 8 10 12 14 16 10 20 30 40 50 60 70 Joint Angle8 Angle(deg) Time (sec) Actual Desired 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle7 Angle(deg) Time (sec) Actual Desired Fig. 5.10 Joint angle of left legFig. 5.9 Joint angle of right leg
  • 57. Dynamic walking for condition (i) 2018/7/27 Control System Lab, Dept. of EE. , YZU 57 Chapter 5 Simulationand Experimental Results 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Time (sec) Angle(deg) Pitch angle (a) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Time (sec) Angle(deg) Rollangle (c) 0 2 4 6 8 10 12 14 16 -5 0 5 10 15 20 25 Time (sec) ZMPx-coordinate(cm) (b) Stableregion 0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8 Time (sec) ZMPy-coordinate(cm) (d) Stable region -2 0 2 4 6 8 10 12 14 16 18 -8 -6 -4 -2 0 2 4 6 8 ZMP x-coordinate (cm) ZMPy-coordinate(cm) (e) Fig. 5.11 (a),(c) Attitude of humanoid robot without ZMP compensator for condition (i). (b),(d)-(e) Actual ZMP for condition (i)
  • 58. 2018/7/27 Control System Lab, Dept. of EE. , YZU 58 Chapter 5 Simulationand Experimental Results Dynamic walking for condition (ii) 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 Joint Angle2 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 Joint Angle3 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -60 -40 -20 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 Joint Angle4 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -60 -40 -20 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 Joint Angle5 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle6 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle11 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle10 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 0 2 4 6 8 10 12 14 16 10 20 30 40 50 60 70 Joint Angle9 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 0 2 4 6 8 10 12 14 16 10 20 30 40 50 60 70 Joint Angle8 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle7 Angle(deg) Time (sec) Desired Actual Fig. 5.13 Joint angle of left leg Fig. 5.13 Joint angle of left leg
  • 59. 2018/7/27 Control System Lab, Dept. of EE. , YZU 59 Chapter 5 Simulationand Experimental Results Dynamic walking for condition (ii) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Time (sec) Angle(deg) Pitch angle (a) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Time (sec) Angle(deg) Rollangle (d) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Controleffort ofvirtualpitch angle Angle(deg) Time (sec) (b) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Angle(deg) Time (sec) Controleffort ofvirtualrollangle (e) 0 2 4 6 8 10 12 14 16 -5 0 5 10 15 20 25 Time (sec) ZMPx-coordinate(cm) (c) Stableregion 0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8 Time (sec) ZMPy-coordinate(cm) (f) Time (sec) ZMPy-coordinate(cm) Stable region -2 0 2 4 6 8 10 12 14 16 18 -8 -6 -4 -2 0 2 4 6 8 ZMP x-coordinate (cm) ZMPy-coordinate(cm) (g) Fig. 5.14 (a),(d) Attitude of humanoid robot for condition (ii). (b),(e) control effort of virtual angle for condition (iii). (c),(f)-(g) Actual ZMP for condition (ii)
  • 60. 2018/7/27 Control System Lab, Dept. of EE. , YZU 60 Chapter 5 Simulationand Experimental Results Dynamic walking for condition (iii) 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 Joint Angle2 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 Joint Angle3 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -60 -40 -20 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 Joint Angle4 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -60 -40 -20 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 Joint Angle5 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle6 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle11 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -50 -40 -30 -20 -10 0 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle10 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 0 2 4 6 8 10 12 14 16 10 20 30 40 50 60 70 Joint Angle9 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 0 2 4 6 8 10 12 14 16 10 20 30 40 50 60 70 Joint Angle8 Angle(deg) Time (sec) Desired Actual 0 2 4 6 8 10 12 14 16 -30 -20 -10 0 10 20 30 Joint Angle7 Angle(deg) Time (sec) Desired Actual Fig. 6.15 Joint angle of right leg Fig. 5.16 Joint angle of left leg
  • 61. 2018/7/27 Control System Lab, Dept. of EE. , YZU 61 Chapter 5 Simulationand Experimental Results Dynamic walking for condition (iii) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Time (sec) Angle(deg) Pitch angle (a) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Time (sec) Angle(deg) Rollangle (d) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Controleffort ofvirtualpitch angle Angle(deg) Time (sec) (b) 0 2 4 6 8 10 12 14 16 -10 -8 -6 -4 -2 0 2 4 6 8 10 Angle(deg) Time (sec) Virtualrollangle (e) 0 2 4 6 8 10 12 14 16 -5 0 5 10 15 20 25 Time (sec) ZMPx-coordinate(cm) (c) Stableregion 0 2 4 6 8 10 12 14 16 -8 -6 -4 -2 0 2 4 6 8 Time (sec) ZMPy-coordinate(cm) (f) Time (sec) ZMPy-coordinate(cm) Stable region -2 0 2 4 6 8 10 12 14 16 18 -8 -6 -4 -2 0 2 4 6 8 ZMP x-coordinate (cm) ZMPy-coordinate(cm) (g) Fig. 5.17 (a),(d) Attitude of humanoid robot for condition (iii). (b),(e) control effort of virtual angle for condition (iii). (c),(f)-(g) Actual ZMP for condition (iii)
  • 62. 2018/7/27 Control System Lab, Dept. of EE. , YZU 62 Chapter 5 Simulationand Experimental Results Dynamic walking- Siggital
  • 65. Conclusions • Robot system has been designedand implementedsuccessfully – Mechanism design – Multi-sensors – External circuit – SOPC • Trajectoriesplanning – Swing foot trajectories – CoM and ZMP trajectories • Digital filter – Kalman filter – Complementaryfilter • Dynamic balancingbasedon ACMAC – Online learning algorithm – Gradient descent method – Virtual angle • ACMAC-based ZMP compensator 2018/7/27 Control System Lab, Dept. of EE. , YZU 65 Chapter 6 Conclusions and Future Works
  • 66. Future Research • Advanced particle swarm optimization for finding the optimal learning rate • Impendencecontrol • Fast dynamic walking • Build up middle size humanoid robot 2018/7/27 Control System Lab, Dept. of EE. , YZU 66 Chapter 6 Conclusions and Future Works
  • 67. Thanks for your attention 2018/7/27 Control System Lab, Dept. of EE. , YZU 67