Internet Of Things A Hardware Development Perspective Mohammad Ayoub Khan
Internet Of Things A Hardware Development Perspective Mohammad Ayoub Khan
Internet Of Things A Hardware Development Perspective Mohammad Ayoub Khan
Internet Of Things A Hardware Development Perspective Mohammad Ayoub Khan
1. Internet Of Things A Hardware Development
Perspective Mohammad Ayoub Khan download
https://ebookbell.com/product/internet-of-things-a-hardware-
development-perspective-mohammad-ayoub-khan-48681516
Explore and download more ebooks at ebookbell.com
2. Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Internet Of Things A Handson Approach 2015th Edition Arshdeep Bahga
https://ebookbell.com/product/internet-of-things-a-handson-
approach-2015th-edition-arshdeep-bahga-24155314
Internet Of Things A To Z Technologies And Applications Qusay F Hassan
https://ebookbell.com/product/internet-of-things-a-to-z-technologies-
and-applications-qusay-f-hassan-43749850
Internet Of Things A Case Study In Africa 1st Fadele Ayotunde Alaba
https://ebookbell.com/product/internet-of-things-a-case-study-in-
africa-1st-fadele-ayotunde-alaba-89582490
Internet Of Things A To Z Qusay F Hassan Qusay F Hassan
https://ebookbell.com/product/internet-of-things-a-to-z-qusay-f-
hassan-qusay-f-hassan-23685874
3. Internet Of Things A To Z Technologies And Applications 1st Qusay F
Hassan Editor
https://ebookbell.com/product/internet-of-things-a-to-z-technologies-
and-applications-1st-qusay-f-hassan-editor-7422120
Internet Of Things A To Z Technologies And Applications Qusay F Hassan
https://ebookbell.com/product/internet-of-things-a-to-z-technologies-
and-applications-qusay-f-hassan-11083142
Internet Of Things A Case Study In Africa
https://ebookbell.com/product/internet-of-things-a-case-study-in-
africa-89582596
Integration Of Wsns Into Internet Of Things A Security Perspective
Sudhir Kumar Sharma Bharat Bhushan Raghvendra Kumar Aditya Khamparia
Narayan C Debnath
https://ebookbell.com/product/integration-of-wsns-into-internet-of-
things-a-security-perspective-sudhir-kumar-sharma-bharat-bhushan-
raghvendra-kumar-aditya-khamparia-narayan-c-debnath-26081726
Micropython For The Internet Of Things A Beginners Guide To
Programming With Python On Microcontrollers Charles Bell
https://ebookbell.com/product/micropython-for-the-internet-of-things-
a-beginners-guide-to-programming-with-python-on-microcontrollers-
charles-bell-38548020
7. Prospects in Networking and Communications – P-NetCom
Series Editor: Mohammad M. Banat
Internet of Things
A Hardware Development Perspective
Mohammad Ayoub Khan
For more information about this series, please visit: https://www.routledge.
com/Prospects-in-Networking-and-Communications/book-series/NETCOM
8. Internet of Things
A Hardware Development
Perspective
Edited by
Mohammad Ayoub Khan
10. This work is dedicated to my wonderful parents, who always
trusted me and allowed me do anything I wanted. I owe all I
have today to God. This work is also dedicated to my wonderful
wife, son, and little angel Amira Fatimah, who have been a
huge source of encouragement for me to go farther in life.
Mohammad Ayoub Khan
12. vii
Contents
Preface.......................................................................................................................ix
About the Author.......................................................................................................xi
PART I Formal Design Flow for IoT Hardware
Chapter 1 Scalable Design and Processor Technology for IoT Applications........3
Mohammad Ayoub Khan and Amit Kumar
Chapter 2 Design Methods and Approaches for IoT Hardware...........................13
Ali Nezaratizadeh
Chapter 3 IoT Solution Reference Architectures.................................................39
Vinay Chowdary, Tiyasa Bera, and Arpit Jain
PART II
Simulation, Modeling, and Programming
Framework
Chapter 4 Hardware Architecture of IoT and Wearable Devices........................55
Manoj Sharma
Chapter 5 Cache Memory Design for the Internet of Things..............................75
Reeya Agrawal and Neetu Faujdar
Chapter 6 Investigation of Deep Learning Models for IoT Devices..................107
Swagata Bhattacharya and Debotosh Bhattacharjee
PART III Communication Technologies and Trends
Chapter 7 Communication Technologies for M2M and IoT Domain................ 133
Manoj Kumar and Sushil Kumar
Contributors ........................................................................................................... xiii
13. viii Contents
Chapter 8 Security Challenges and Solutions in IoT Networks for the
Smart Cities....................................................................................... 161
A. Procopiou and T.M. Chen
Chapter 9 Internet of Vehicles: Design, Architecture, and Security
Challenges.........................................................................................205
Abdullah Alharthi, Qiang Ni, and Richard Jiang
PART IV Use Cases
Chapter 10 A Case Study on the Smart Streetlighting Solution Based
on 6LoWPAN....................................................................................223
Manoj Kumar, Prashant Pandey, and Salil Jain
Chapter 11 IoT-Enabled Real-Time Monitoring of Assembly Line
Production.........................................................................................239
Maneesh Tewari and Devaki Nandan
Chapter 12 IoT-Enabled Hazardous Gas Leakage Detection System
for Citizen’s Safety............................................................................257
Prerna Sharma and Latika Kharb
Index....................................................................................................................... 271
14. ix
Preface
The Internet of Things (IoT) is the fastest growing technology that is being adapted
by market and many industries to improve operational expenses, product life, and
health. The IoT is a hot topic that combines hardware, embedded software, web
services, and electronics to create cutting-edge devices that can be used in many
applications like industry, retail, smart home, smart cities, and healthcare. However,
there is no standard hardware for IoT. The IoT is based on the customized architec-
ture and infrastructures to address needs in application-specific domains such as
transportation, traffic, health, and environment. This book focuses on the hardware
architecture, protocols, communication patterns, architectures, and interoperable
issues important to IoT.
The book has 12 chapters. It starts with the fundamental of hardware and design
flow for an IoT system. We have three chapters on these topics covering “Scalable
Design and Processor Technology for IoT,” “Design Methods and Approaches for IoT
Hardware,” and “IoT Solution Reference Architectures.” The second part of the book
consists of three chapters about the “Hardware Architecture of IoT and Wearable
Devices,” “Cache Memory Design for the Internet of Things,” and “Investigation of
Deep Learning Models for IoT Devices.” In the third part, we have three chapters
on “Communication Technologies for M2M and IoT Domain,” “Security Challenges
and Solutions in IoT Networks for the Smart Cities,” and “Internet of Vehicles:
Design, Architecture, and Security Challenges.” The last part contains the case
studies on real-life system that includes “A Case Study on the Smart Streetlighting
Solution Based on 6LoWPAN,” “An IoT-Enabled Real-Time Monitoring of Assembly
Line Production,” and “IoT-Enabled Hazardous Gas Leakage Detection System for
Citizen’s Safety.”
This book will be a good resource for industry practitioners, research scholars,
and academicians to develop new ideas for the IoT.
16. xi
About the Author
Mohammad Ayoub Khan is working as a research associate professor at University
of Bisha, Saudi Arabia with interests in Internet of Things, blockchain, RFID,
wireless sensors networks, ad hoc network, smart cities, industrial IoT, and signal
processing, NFC, routing in network-on-chip, real time and embedded systems.
He has more than 14 years of experience in his research area. He has published
more than 70 research papers and books in the reputed journals and international
IEEE conferences. He is contributing to the research community by various vol-
unteer activities. He has served as the conference chair in various reputed IEEE/
Springer international conferences. He is a senior member of professional bodies
of IEEE, ACM, ISTE, and EURASIP society. He may be reached at ayoub.khan@
ieee.org.
18. xiii
Contributors
Reeya Agrawal
Department of Electronics
Communication Engineering
GLA University
Mathura, India
Abdullah Alharthi
School of Computing Communication
Lancaster University
Lancaster, United Kingdom
Tiyasa Bera
Department of Electrical and
Electronics
University of Petroleum and Energy
Studies
Dehradun, India
Debotosh Bhattacharjee
Department of Computer Science
Engineering
Jadavpur University
Kolkata, India
Swagata Bhattacharya
Department of Electronics and
Communication Engineering
Guru Nanak Institute of Technology
Kolkata, India
T.M. Chen
Department of Electrical Engineering
University of London
London, United Kingdom
Vinay Chowdary
Department of Electrical and
Electronics
University of Petroleum and Energy
Studies
Dehradun, India
Neetu Faujdar
Department of Computer Engineering
Applications
GLA University
Mathura, India
Arpit Jain
Department of Electrical and
Electronics
University of Petroleum and Energy
Studies
Dehradun, India
Richard Jiang
School of Computing
Communication
Lancaster University
Lancaster, United Kingdom
Mohammad Ayoub Khan
Department of Information Technology
College of Computing and Information
Technology
University of Bisha
Bisha, Kingdom of Saudi Arabia
Latika Kharb
Department of Information Technology
Jagan Institute of Management
Studies (JIMS)
Delhi, India
Amit Kumar
School of Computational Science and
Engineering
Georgia Institute of Technology
Atlanta, Georgia
Sushil Kumar
Telecommunication Engineering Center
(TEC)
New Delhi, India
19. xiv Contributors
Manoj Kumar
STMicroelectronics
Noida, India
Devaki Nandan
Industrial and Production Engineering
College of Technology
Pantnagar, India
Ali Nezaratizadeh
Department of Electrical Engineering
Shahid Rajaee Teacher Training
University
Tehran, Iran
Qiang Ni
School of Computing
Communication
Lancaster University
Lancaster, United Kingdom
Prashant Pandey
STMicroelectronics
Noida, India
A. Procopiou
Department of Computer Science
Centre for Software Reliability
University of London
London, United Kingdom
Salil Jain
STMicroelectronics
Noida, India
Manoj Sharma
Department of Electronics and
Communications Engineering
Bharati Vidyapeeth’s College of
Engineering
New Delhi, India
Prerna Sharma
Department of Information
Technology
Jagan Institute of Management
Studies (JIMS)
Delhi, India
Maneesh Tewari
Department of Industrial and
Production Engineering
College of Technology
Pantnagar, India
22. 3
DOI: 10.1201/9781003122357-2
Scalable Design and
Processor Technology
for IoT Applications
Mohammad Ayoub Khan
University of Bisha
Bisha, Kingdom of Saudi Arabia
Amit Kumar
Georgia Institute of Technology
Atlanta, Georgia
CONTENTS
1.1 Introduction.......................................................................................................3
1.2 High-Level IoT Characteristics and Architectures............................................4
1.2.1 Heterogeneity.........................................................................................5
1.2.2 Scalability..............................................................................................6
1.2.3 Real Time..............................................................................................6
1.2.4 Intelligence in IoT Devices....................................................................7
1.2.5 Complexity.............................................................................................7
1.3 Applications of IoT............................................................................................7
1.3.1 Smart Home Appliances........................................................................8
1.3.2 Smart Agriculture..................................................................................8
1.3.3 Smart Healthcare...................................................................................8
1.3.4 Smart Cities...........................................................................................9
1.3.5 Smart Industry.......................................................................................9
1.3.6 Smart Retail...........................................................................................9
1.4 Reconfiguration of IoT Processors....................................................................9
1.5 Conclusion.......................................................................................................10
References.................................................................................................................10
1.1 INTRODUCTION
Internet of Things (IoT) has extended in various sectors of life including healthcare,
industry, security, and communication [1–4]. IoT and cloud-based technologies have
led to the growth of connected devices, products with a wide array of functions, and
increased computing capacity [5–7]. In turn, this has increased the level of sophistica-
tion of product design for engineers. The complexity of choosing resources for one of
these devices becomes especially apparent. The issue is that engineers not only have
1
23. 4 Internet of Things
to satisfy an increasing variety of apparently contradictory design requirements such
as low power operation and high performance but also a variety of other processing
options have to do so. This is true that all the network devices fulfill certain basic and
universal functions that processing architectures can handle for general purpose. It is
now necessary for IoT to be able to perform certain specific tasks including machine
learning, speech or gesture recognition, and security [8–10]. These requirements have
led to designers turning to a rising and changing accelerator class. The demands of
the market make the designer’s work even harder such as shorter cycles and lower
development costs, making the process selection even more important.
Design practices of IoT are evolving day by day. It used to be that develop-
ers just looked at far-reaching processes, but now we monitor them in real time
[11–13]. This has led to an improvement in the size of the IoT network. This
can lead to several challenges when it comes to network paths for cloud servers
with IoT devices that rely on Internet access: high latencies, low bandwidths, and
reduced response time. The trends have brought new topologies in IoT networks,
including fog computing. The deployment of cloud components at the edge of
the network eliminates latencies while avoiding bandwidth bottlenecks. The edge
networks and fog computing require high-performance computing, storage, and
networking services in order to achieve these objectives. There are three major
challenges in the design of IoT processors:
1. Design scalability and the reliability of the IoT processors.
2. Architectural flexibility and configurability.
3. Design IoT processors with minimum latency and highest throughput.
Though Intel offers a broad variety of processors that help designers accommo-
date all design scenarios in terms of scaling hardware and software. Most pro-
cessors in this class also have an integrated graphics processing unit (GPU) that
improves overall computing performance. Intel® has Quark™, Core™, Atom®, and
Xeon® processor families that can be used in IoT. These four families of processors
provide excellent speed, low power consumption, and improved bandwidth without
increasing latency. With the growth in IoT, the architectural complexities have also
increased. These problems can be solved with an Intel processor. The specifica-
tions of the IoT industry for various levels of power are requiring a wide variety of
processes of power. Businesses recognize the necessity of computing and analytics
being located in the cloud (Figure 1.1) [14, 15].
Edge devices are now being used to process information and react more quickly
and precisely because of advanced microprocessors. Because of this rising need,
edge computing is applied in new applications. Table 1.1 presents the summary of
different processors, manufacturers, technologies, and power consumption.
1.2 HIGH-LEVEL IoT CHARACTERISTICS AND ARCHITECTURES
The characteristics of IoT demand new designs and optimization methods for
processors that are deployed in IoT devices. The main characteristics of IoT are
classified as shown in Figure 1.2 [16].
24. 5
Scalable Design and Processor Technology for IoT Applications
1.2.1 Heterogeneity
Heterogeneity refers to the multiple architectures, hardware, protocols, and plat-
forms of IoT devices. The IoT has a high degree of heterogeneity that features many
different kinds of devices, applications, and contexts [16]. The processor must be
FIGURE 1.1 Intel processor family suitable for IoT [14, 15].
TABLE 1.1
Summary of Processors for IoT
Processors Manufacturers Technology Support
Power
Consumption
Quark™, Atom®
and Xeon®
Intel Corporation Quark SoC X1000—Clanton/
Galileo Gen 2, Processor
E3900 series, Intel Celeron™
Processor N3350, Intel Xeon
Processor E5-2600 v4 Product
Family with Intel C612 Chipset
Low
MediaTek MT3620 Microsoft worked with
MediaTek
ARMCortex-M4F core,
500-MHz Cortex-A7 apps
processor, Azure Sphere, Cloud
High
ON Semi RSL10 ON Semiconductor ARM Cortex-M3 Low
ETA Compute Tensai ETA ARM Cortex-M3 Ultra-low
Microchip SAM R34/35 Microchip Technology
STMicroelectronics
SAM R34/35 and LoRa
transceiver
Low
NXP i.MX-RT600 NXP Semiconductors ARM Cortex-M33, Low
Renesas Electronics
RZ/A2M
Renesas DRP, ARM Cortex-A9 Low
Ambiq Apollo3 Blue Ambiq Cortex-M4, BLE 5radio Low
STM32H7 STMicroelectronics ARM Cortex M-7 Low
Quectel BG96 Quectel Wireless
Communications
QUALCOMM MDM9206,
NB-IoT
Low
25. 6 Internet of Things
designed to achieve heterogeneity at chip level by incorporating different cores.
Also, the IoT devices must be able to integrate and communicate seamlessly.
1.2.2 Scalability
The scalability refers to the ability to scale the performance in the proportion of
a number of devices that are increased. The scalability in IoT can be in sensors,
networks, and the cloud. The sensor devices collect raw data from the environment
that may include a variety of data such as temperature, pressure of water flow, or
humidity readings. As the amount of data increases, it requires to stack multiple
sensors which shall be scalable. The network of sensors must be scalable to achieve
throughput and robustness. Next, scalability at cloud is applied since the data
are sent to cloud servers for analysis and actions. The cloud should be able to serve
multiple requests from these sensors while maintaining the turnaround time and
throughput. The scalability must be efficient in terms of cost, energy, and area.
An example is illustrated in Figure 1.3 to understand the relationship of tools and
libraries for IoT deployment [15].
The Intel sensor library has about 300 commercial sensors that can work with
many developments’ environment and OS with real-time performance [15]. A com-
pany like Honeywell and many IoT giants are continuously contributing by the addi-
tion of many sensors. Intel Corporation has integrated many hardware and software
that include sensor drivers, Intel boards, datasheets, and protocols thus saving large
amount of time and costs for developers [15].
1.2.3 Real Time
All the IoT devices work in a real-time environment; therefore, they have many
real-time constraints. One of the most important constraints is to meet the deadline
for the task. The task execution must adhere to stringent deadlines. Therefore, the
FIGURE 1.2 Characteristics of IoT [16].
26. 7
Scalable Design and Processor Technology for IoT Applications
processors shall be able to dynamically determine and adhere to deadlines based on
the application characteristics and quality of service (QoS).
1.2.4 Intelligence in IoT Devices
Nowadays, every device needs intelligence akin to human thinking. The objective
is to minimize the reliance on human intervention during the data acquisition from
the environment. The data reception and processing from the environment must be
autonomous to take the right action. The processor should be able to adapt to execu-
tion scenarios and exceptions [17, 18].
1.2.5 Complexity
Complexity refers to the high degree of management of large numbers of heteroge-
neous architectures and applications [19]. The architecture should be able to execute
a variety of applications. In IoT, many applications are processor-centric while some
are memory-centric. The processor has to manage the behaviors of such applications.
1.3 APPLICATIONS OF IoT
The IoT has a huge potential for a variety of application domains such as healthcare,
logistics, agriculture, smart home, and environment. The main goal of the IoT is to
equip edge devices with sufficient computing resources that can perform fast com-
putations, otherwise shall be assigned or transferred to a high-performance device.
Based on the many applications, the IoT application can be broadly classified as
shown in Figure 1.4.
There are many more applications of IoT, but we have discussed some of them in
the next subsections.
FIGURE 1.3 Tools and technologies for IoT deployment [15].
27. 8 Internet of Things
1.3.1 Smart Home Appliances
This area is not new but with the advent of IoT it has geared up. In home automation,
the system monitors home appliances, entertainment system, lighting, and climate,
and takes the right decision based on the predefined parameters. Home automation
makes our life easier by following all of the predefined instructions. Presently, there
are many products for home automation from companies such as Nest, Ecobee, Ring,
and August, to name a few, which will become household brands and are planning to
deliver a never seen before experience [19].
1.3.2 Smart Agriculture
This one is the less addressed area in IoT. The rapid growth in world’s population
has increased the demand for food supply. The state agencies are helping farmers
to use advanced techniques and research to increase food production [19]. Farming
operations are generally based in remote locations and require a lot of effort to
maintain the large number of livestock; all of this can be monitored by the IoT
system. The IoT can change the way farmers operate on a daily basis to make it
smoother. However, as noted earlier, smart agriculture is unaddressed and the idea
is yet to reach a large-scale attention. Therefore, smart farming has a lot of potential
to become an important application field, specifically in the agricultural-product
exporting countries [19].
1.3.3 Smart Healthcare
Smart healthcare is a very important application area of IoT that has a variety of
applications in medical field [19]. Smart healthcare helps in remote patient moni-
toring tools to advance and smart sensors to equipment integration in medical
health which has the potential to improve the way medical practitioners deliver
care [19]. This enables patients to spend more time interacting with the doctors
that can enhance patient engagement and satisfaction level. The IoT brings new
tools and technology in the ecosystem that helps in creating better healthcare
experience [1].
FIGURE 1.4 Taxonomy of IoT.
28. 9
Scalable Design and Processor Technology for IoT Applications
1.3.4 Smart Cities
Smart city refers to the city which uses smart technologies to enhance the citizen’s
experience. Smart city is an application of IoT producing interest among world’s
population such as smart surveillance, automated transportation, children tracking,
smarter energy management systems, water distribution, urban security and envi-
ronmental monitoring, smart garbage/waste management using CrAN (Crowd-
Associated Network), and green and clean environment [19]. IoT can helps in
solving some of the critical issues such as pollution, traffic congestion, and shortage
of energy supplies. The GPS system and other smart sensors can send information
from drivers’ cell phones so that smart stopping arrangements can decide if the
parking areas are available or reachable and make an ongoing stopping map [19].
Based on the information received, it is easy to find out a parking space faster rather
than aimlessly driving around [19].
1.3.5 Smart Industry
Smart industry is one of the areas that can improve productivity, supply chain, and
logistics. The industrial Internet connects machines and devices in industries such as
electricity generation, oil, gas, and healthcare [19]. The smart industry takes appro-
priate actions beforehand where unplanned downtime and system failures can result
in life-threatening situations. In a smart industry, industrial devices embedded with
the IoT tend to encompass gadgets such as monitoring sensors and actuators.
1.3.6 Smart Retail
The IoT has a huge potential in the retail sector as well. The IoT can provide a new
opportunity for retailers to connect with the customers that enhances the in-store
experience. Smartphones can be the one way for retailers to remain connected with
their consumers even out of store [19]. The retailer can track the consumer’s path
through a store and can improve the store’s layout and place premium products in
high-traffic areas [19].
1.4 RECONFIGURATION OF IoT PROCESSORS
The right configuration of a processor for a specific application plays an important
role. It is one of the major challenges for IoT processor designers to determine the best
processor configurations that can meet the execution requirements of the applications.
Table 1.2 presents the configuration of IoT processors in terms of the number of cores,
CPU/GPU/DSP, on-chip/off-chip memory, power consumption, and pipeline.
In Table 1.2, we have presented examples of specific state-of-the-art processors
to understand the configurations, though these configurations are for representative
purpose only. The trade-off performance, area, and cost must be considered while
selecting the processor for IoT application. Also, one must know the degree of
reconfigurability or ability to adapt to the changes of configuration during the run-
time by heterogeneous processors that provide a variety of processing resources for
executing the applications.
29. 10 Internet of Things
In processors, many things can be configured such as instruction queue [20], buffer
reorder [21], pipelines [22], and register files [23].
Among these, memory is one of the most important components that governs the
performance and energy.
An IoT processor shall be equipped with many features like spatial and temporal
locality of the IoT applications. The advanced reconfiguration of memory techniques
can reduce power consumption up to 62% [24]. The cache memory parameters can
be specified or changed during the run-time based on the application. There are
some challenges in reconfigurability such as augmenting cache memory, algorithm
tuning, and cache tuning.
1.5 CONCLUSION
IoT has proven to be one of the important needs for all sectors. The growth of IoT
applications also demands scalable processor architectures. Because the technology
is changing quickly, it is very difficult to meet the architectural requirements for
these cases. IoT designers are able to measure both hardware and software to sat-
isfy these design targets of processor products. In this chapter, we have presented a
detailed discussion on the architecture along with the characteristics. Intel and ARM
processors are the highly popular low-power processors. We have also presented a
sample configuration of processors widely used in IoT applications.
REFERENCES
1. M. A. Khan, “An IoT Framework for Heart Disease Prediction Based on MDCNN
Classifier,” in IEEE Access, vol. 8, pp. 34717–34727, 2020, doi: 10.1109/ACCESS.2020.
2974687.
2. M. A. Khan and K. A. Abuhasel, “Advanced Metameric Dimension Framework for
Heterogeneous Industrial Internet of Things,” in Computational Intelligence, vol. 37,
pp. 1367–1387, 2021, https://doi.org/10.1111/coin.12378.
TABLE 1.2
Sample Configuration of Processors Widely Used in IoT Applications
Parameters
Configurations
1 2 3 4
CPU/GPU Arm Cortex-A7 Arm Cortex-A15 Microchip SAM
R34/35
STM32H7
Frequency 500 MHz 1.9 GHz 2.4 GHz 550 MHz
Cores 2 4 1–4 2
Pipeline 4 15 4 –
Cache 32 KB L1,
1 MB L2
32 KB L1,
2 MB L2
256 KB Flash 16 KB L1,
16 KB L2
Memory 2 GB RAM 1 TB RAM 40 KB RAM 1 MB RAM
Execution In-order Out-of-order Out-of-order Out-of-order
30. 11
Scalable Design and Processor Technology for IoT Applications
3. M. A. Khan and K. A. Abuhasel, “An Evolutionary Multi-hidden Markov Model
for Intelligent Threat Sensing in Industrial Internet of Things,” in Journal of
Supercomputing, vol. 77, pp. 6236–6250, 2021, https://doi.org/10.1007/s11227-020-
03513-6.
4. M.A.KhanandN.S.Alghamdi,“ANeutrosophicWPM-BasedMachineLearningModel
for Device Trust in Industrial Internet of Things,” in Journal of Ambient Intelligence
and Humanized Computing, 2021, https://doi.org/10.1007/s12652-021-03431-2.
5. N. S. Alghamdi and M. A. Khan, “Energy-Efficient and Blockchain-Enabled Model for
Internet of Things (IoT) in Smart Cities,” in Computers, Materials Continua, vol. 66,
no. 3, pp. 2509–2524, 2021.
6. Mahmoud Khalifa, Fahad Algarni, Mohammad Ayoub Khan, Azmat Ullah and Khalid
Aloufi, “A Lightweight Cryptography (LWC) Framework to Secure Memory Heap in
Internet of Things,” in Alexandria Engineering Journal, vol. 60, no. 1, pp. 1489–1497,
2021, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2020.11.003.
7. W. U. Khan, X. Li, A. Ihsan, M. A. Khan, V. G. Menon and M. Ahmed, “NOMA-
Enabled Optimization Framework for Next-Generation Small-Cell IoV Networks
Under Imperfect SIC Decoding,” in IEEE Transactions on Intelligent Transportation
Systems, doi: 10.1109/TITS.2021.3091402.
8. S. Nandy, M. Adhikari, M. A. Khan, V. G. Menon and S. Verma, “An Intrusion Detection
Mechanism for Secured IoMT Framework Based on Swarm-Neural Network,” in IEEE
Journal of Biomedical and Health Informatics, doi: 10.1109/JBHI.2021.3101686.
9. A. Munusamy et al., “Edge-Centric Secure Service Provisioning in IoT-Enabled
Maritime Transportation Systems,” in IEEE Transactions on Intelligent Transportation
Systems, doi: 10.1109/TITS.2021.3102957.
10. S. Verma, S. Kaur, M. A. Khan and P. S. Sehdev, “Toward Green Communication in
6G-Enabled Massive Internet of Things,” in IEEE Internet of Things Journal, vol. 8,
no. 7, pp. 5408–5415, April 1, 2021, doi: 10.1109/JIOT.2020.3038804.
11. L. Xu, X. Zhou, M. A. Khan, X. Li, V. G. Menon and X. Yu, “Communication Quality
Prediction for Internet of Vehicle (IoV) Networks: An Elman Approach,” in IEEE
Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2021.3088862.
12. A. Munusamy et al., “Service Deployment Strategy for Predictive Analysis of FinTech
IoT Applications in Edge Networks,” in IEEE Internet of Things Journal, doi: 10.1109/
JIOT.2021.3078148.
13. A. Mukherjee, P. Goswami, M. A. Khan, L. Manman, L. Yang and P. Pillai, “Energy-
Efficient Resource Allocation Strategy in Massive IoT for Industrial 6G Applications,”
in IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5194–5201, April 1, 2021, doi:
10.1109/JIOT.2020.3035608.
14. https://www.intel.com/content/www/us/en/products/details/processors.html.
15. B. Joseph, “Scaling for IoT Market Demands,” https://www.digit.in/features/apps/
scaling-for-iot-market-demands-34645.html, published on March 15, 2017.
16. C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos, “Context Aware
Computing for the Internet of Things: A Survey,” in IEEE Communications Surveys
Tutorials, vol. 16, no. 1, pp. 414–454, 2014.
17. K. Ashton, “That ‘internet of things’ thing,” in RFiD Journal, vol. 22, no. 7, pp. 97–114,
2009.
18. V.S.Gopinath,J.SprinkleandR.Lysecky,“ModelingofDataAdaptableReconfigurable
Embedded Systems,” in 2011 18th IEEE International Conference and Workshops on
Engineering of Computer Based Systems (ECBS), pp. 276–283, 2011.
19. M. A. Khan, M. T. Quasim, F. Algarni and A. Alharthi, “Internet of Things: On the
Opportunities, Applications and Open Challenges in Saudi Arabia,” in 2019 Inter
national Conference on Advances in the Emerging Computing Technologies (AECT),
pp. 1–5, 2020, doi: 10.1109/AECT47998.2020.9194213.
31. 12 Internet of Things
20. D. Folegnani and A. González, “Energy-Effective Issue Logic,” in ACM SIGARCH
Computer Architecture News, vol. 29, pp. 230–239, 2001.
21. Y. Kora, K. Yamaguchi and H. Ando, “MLP-Aware Dynamic Instruction Window
Resizing for Adaptively Exploiting Both ILP and MLP,” in Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 37–48, 2013.
22. J. Abella and A. González, “On Reducing Register Pressure and Energy in Multiple-
Banked Register Files,” in Proceedings of the 21st International Conference on
Computer Design, 2003, pp. 14–20, IEEE, 2003.
23. A. Efthymiou and J. D. Garside, “Adaptive Pipeline Structures for Speculation Control,”
in Proceedings of the Ninth International Symposium on Asynchronous Circuits and
Systems, 2003, pp. 46–55, 2003.
24. A. Gordon-Ross, F. Vahid and N. D. Dutt, “Fast Configurable-Cache Tuning with a
Unified Second-Level Cache,” in IEEE Transactions on Very Large-Scale Integration
(VLSI) Systems, vol. 17, no. 1, pp. 80–91, 2009.
32. 13
DOI: 10.1201/9781003122357-3
Design Methods
and Approaches
for IoT Hardware
Ali Nezaratizadeh
Shahid Rajaee Teacher Training University
Tehran, Iran
CONTENTS
2.1 Introduction..................................................................................................... 14
2.1.1 IoT Network Topologies.......................................................................15
2.1.1.1 Point to Point.........................................................................15
2.1.1.2 Bus........................................................................................15
2.1.1.3 Star........................................................................................ 16
2.1.1.4 Ring....................................................................................... 17
2.1.1.5 Mesh...................................................................................... 17
2.1.1.6 Hybrid................................................................................... 17
2.2 Architecture of IoT Network........................................................................... 18
2.2.1 Mainboard............................................................................................ 18
2.2.2 Gateways.............................................................................................. 18
2.2.3 Links.................................................................................................... 18
2.2.4 Communication Protocols...................................................................19
2.2.4.1 Wired-Modbus Protocol.......................................................19
2.2.4.2 Wireless-IEEE 802.11 Standards..........................................20
2.2.5 Serial/Parallel Communication...........................................................20
2.2.6 Physical Layer Standard......................................................................21
2.2.6.1 TIA/EIA 232, RS-232........................................................... 21
2.2.6.2 TIA/EIA 422, RS-422..........................................................22
2.2.6.3 TIA/EIA 485, RS-485..........................................................23
2.2.6.4 Power Line Communication Using RS-485.........................24
2.2.6.5 Wireless.................................................................................25
2.2.7 Recommendation for IoT Serial Communication................................27
2.2.8 Sensors and Actuators Nodes..............................................................28
2.2.8.1 Sensors..................................................................................28
2.2.8.2 Actuators...............................................................................28
2.2.9 Summarizing IoT Block Diagram.......................................................30
2
33. 14 Internet of Things
2.3 A Scenario of Switching an IoT Light State....................................................30
2.3.1 The Initialization Step of Powering Up the Node and Connect
It to the Mainboard..............................................................................30
2.3.2 Ending Data from the Sensor to the Mainboard..................................30
2.3.3 Blue Color Blocks................................................................................ 31
2.3.4 Step 1: Smart Switch Sends Data to the Mainboard............................ 31
2.3.5 Step 2: Mainboard Sends Data to the Actuator................................... 31
2.3.6 Step 3: Actuator Acts and Sends an Optional Report to the Mainboard...32
2.3.7 Step 4 (Optional)..................................................................................32
2.4 IoT Basic Circuit Design..................................................................................32
2.4.1 From Analog to Digital Signal............................................................32
2.5 A Practical Example of an IoT Hardware........................................................36
2.5.1 Wired...................................................................................................36
2.5.2 Wireless...............................................................................................36
2.6 Conclusion.......................................................................................................36
References.................................................................................................................37
2.1 INTRODUCTION
Using energy and material as efficiently as possible in today’s world is a challenge.
With the help of the Internet and computer networks, it is possible to dedicate an IP
address to the equipment. For example, an energy monitoring system can calculate
the amount of energy that the user consumes. By analyzing the output report of this
system, the user can choose better time scheduling for turning ON and OFF the
lighting system to curtail the use of energy.
In this chapter, after explaining conceptual Internet of Things (IoT) hardware
design, each sub-part is analyzed in subsequent sections. Firstly, a block diagram
of the whole system is explained. After that mainboard, sensors, and actuators are
explained which are the sub-parts of the main block diagram. In both sensor and
actuator sections, apart from the IoT application, some required basic knowledge of
electronics is mentioned. Finally, by explaining a scenario of switching an IoT light
state context is reviewed in a practical simple system.
An important question can be “What is the aim of using IoT device network
dispite the extensive use of a powerful computer network architecture? In other
words, what are the factors that lead to the new IoT network design?”
Firstly, for evaluating a network there are several criteria, which are called quality
of service (QoS). This term provides predictable and consistent data transfer services
while network resources are used as efficiently as possible. A computer network is
something general but IoT devices are mostly optimized for specific domains. For
instance, in an industry, reliability is of importance but for a simple smart lock,
security is a non-negligible feature. Second, in IoT networks, another vital factor is
the cost of the devices. IoT hardware can be designed a lot cheaper than computer
network hardware. In one system engineers need to have redundancy, in another one
the need of real-time communication is vital. Sometimes, the electronic required
power and the costs would matter in mass production. As a result of these factors,
developing a custom computer network for IoT devices is essential. Briefly, IoT
34. 15
Design Methods and Approaches for IoT Hardware
communication is a simplified form of a computer network in which the engineers
strengthen required parts according to the system requirements.
2.1.1 IoT Network Topologies
Network topologies define how physically IoT nodes connect. Figure 2.1 shows a
schematic representation of an IoT device of number x. That is named as node x. This
specific node needs four wires to connect to a network. Two wires dedicate to data
communication and remaining are used as power supply wires.
In Figure 2.2 above node is simplified to a simpler representation that utilizes
extensively in physical network topology diagrams.
2.1.1.1 Point to Point
Two nodes are connected by one dedicated link. An example is connecting the
mobile phone to a laptop for transmitting data or screen sharing. Figure 2.3 shows
the point-to-point network topology.
2.1.1.2 Bus
The message is transmitted and delivered to all nodes. Nodes need to process delivered
messages and catch their own by matching addresses. This topology has some draw-
backs namely single point of failure, all nodes process broadcasted data which increases
overhead computing. Moreover, security can be an issue in this system because all nodes
have access to other nodes’ data. Figure 2.4 shows the bus topology.
FIGURE 2.1 An IoT node x symbol and its output communication wire.
FIGURE 2.2 Simplified IoT node x.
FIGURE 2.4 Bus topology.
FIGURE 2.3 Point-to-point network topology.
35. 16 Internet of Things
This topology is extensively used in building management systems (BMS) because of
the cost and simplicity of implementation. The mentioned drawbacks of bus topology
can be accepted in BMS as specific application. Firstly, the size of data is relatively
small, as a result, the processing overhead is negligible take switching lamp state as an
example. The second challenge is a single point of failure, which can be alleviated by
using a second redundancy network. And concerning the security, using a dedicated
secure transmission medium is suggested, namely burglar systems or smart locks.
Figure 2.5 shows the proposed bus topology for BMS secure and unsecure nodes.
2.1.1.3 Star
In this topology, all nodes are connected to the central hub. This topology like the
bus topology is a single point of failure because of the central hub. This type is
mostly applied to IoT wireless nodes. An access point works as a central hub that
connects all wireless nodes to the mainboard as controller. Figure 2.6 shows star
topology in which N1–N4 can have communication through N3.
In the case of using wired nodes, the cost of the network implementation in the
star topology is much more than the bus topology. In Figure 2.7, both types of topolo-
gies are compared. Each node, connect to the central node (mainboard) via Gateway
(GW). In wireless type because of the coverage area of antenna, it is possible to
reduce the number of network equipment.
FIGURE 2.5 Proposed bus topology for building management system for secure and unse-
cure nodes.
FIGURE 2.6 Star topology.
FIGURE 2.7 Comparison of star topology for wired and wireless BMS network.
36. 17
Design Methods and Approaches for IoT Hardware
2.1.1.4 Ring
In this topology, data travel from one node to another node until it reaches the desti-
nation (N4). This topology has several advantages such as one direction of data flow
leads to a reduction of data collusion; The problem with this network is that if one
of the nodes loses its connection to the rest of the network, the performance of the
whole network will be disrupted. Figure 2.8 shows the ring topology.
2.1.1.5 Mesh
Each node is connected to another node and the cost of implementation is high. This
topology is mostly used for wireless networks. Figure 2.9 shows the mesh topology.
2.1.1.6 Hybrid
In this topology, two or more different networks are used. For example, in a smart
home network, one might prefer to use wireless and wired nodes together. As a
result, it is possible to cover the weaknesses of a network with other network fea-
tures. In Figure 2.10, N1–N4 are wireless nodes and N5 is wired node. Figure 2.11
also presents hybrid wireless and wired network block diagram.
FIGURE 2.8 Ring topology.
FIGURE 2.9 Mesh topology.
FIGURE 2.10 Hybrid topology.
37. 18 Internet of Things
2.2 ARCHITECTURE OF IoT NETWORK
In general, IoT hardware is divided into four parts—mainboard, gateways, nodes,
and links. Firstly, Firstly, each part will be described, and finally, using these parts,
a simple scenario of turning a lamp on and off will be described.
2.2.1 Mainboard
The mainboard is responsible for managing this network, it is also named controller.
All sensors and actuators are connected to the mainboard via gateways. Mainboard
obtains sensors’ data then by considering pre-defined rules, mainboard decides to
activate a specific actuator. This mainboard also provides a graphic user interface
that helps the user to control the system manually, define rules, and scenarios.
Mainboard hardware is usually a small single-board computer like Raspberry Pi.
Figure 2.12 shows Raspberry Pi 4. This small computer has enough capabilities for
managing an IoT nodes of a BMS. Its price starts from 35$. USB ports are mostly
used for connecting the gateways to the Pi, and by a Wi-Fi hotspot, a mobile phone
can be used to connect to the BMS controller web app.
2.2.2 Gateways
Gateways are the interface that converts different mediums to standard understand-
able mediums for the mainboard. For example, there are ten IoT nodes in one IoT
network and five of them are wired and remaining are wireless type. The gateway
must standardize these two to a USB standard port.
2.2.3 Links
Links connect nodes, gateways, and mainboards for communication such as a wire.
FIGURE 2.11 IoT network block diagram.
38. 19
Design Methods and Approaches for IoT Hardware
2.2.4 Communication Protocols
A communication protocol is a set of rules that allow nodes to communicate via
links. The development of widely used IEEE 802.11 and 802.3 (“Wireless LAN
Medium Access Control [MAC] and Physical Layer [PHY] Specifications” 2018;
“IEEE Standard for Ethernet” 2020) standards makes it a proper choice for wire-
less and wired IoT nodes. Many companies now use their non-standard closed
protocol to meet their network topology needs. In this chapter, Modbus standard
protocol is described.
2.2.4.1 Wired-Modbus Protocol
Modbus was firstly used by Modicon in 1996 for linking programmable logic con-
trollers. After several years, Modbus has become an open protocol and several
industrial and home automation systems are based on Modbus protocol. There are
two types of Modbus transmission modes: ASCII and RTU. The ASCII mode uses
ASCII characters for creating a transmission data frame. Table 2.1 details Modbus
ASCII message frame (Modicon 1996), which contains necessary data for the master
to connect to nodes. It contains the address of the node, function, and the data. The
FIGURE 2.12 Raspberry Pi 4.
TABLE 2.1
Modbus ASCII Message Frame
Start Address Function Data
LRC
Check End
1 Char 2 Chars 2 Chars n Chars 2 Chars
2 Chara
CRLF
39. 20 Internet of Things
RTU mode uses binary coding and there is CRC error checking. This protocol uses
RS-232, RS-485, or RS-422 as a physical layer. RS-232 can connect only two nodes.
For more than two nodes, RS-485 and RS-422 can make proper connection.
Figure 2.13 shows how data transmit from master node M1 to slave S2. Firstly,
the master generates a message frame. After that, this message is broadcasted to all
slaves. Only one of them, which matches to the address of the message frame, starts
to compute the message although all other nodes receive the same message. Next,
if the message is received successfully, message is sent back from the slave to the
master to confirm the successful receipt.
2.2.4.2 Wireless-IEEE 802.11 Standards
IEEE 802 standards are available in the IEEE GET 802™ program (“GET 802(R)
Standards” n.d.). These standards have been published in PDF for six months.
Table 2.2 summarizes the standards number and their titles. Many low-cost Wi-Fi
modules like ESP32 are based on IEEE 802.11. This module has many capabili-
ties that make it a proper choice for IoT wireless nodes. ESP32 is a single 2.4 GHz
Wi-Fi-and-Bluetooth combo chip designed with the TSMC ultra-low-power 40-nm
technology (“ESP32 Series Datasheet” 2021).
2.2.5 Serial/Parallel Communication
After creating a data frame, for sending data from the transmitter to receiver, there
are two possibilities: parallel or serial communications. In a parallel communica-
tion, 8 bits are sent simultaneously in one clock by 8 wires. Sending massive data
FIGURE 2.13 Modbus protocol sending data from master (M1) to slave (S2).
TABLE 2.2
IEEE 802 Standards
IEEE Standard Title
IEEE 802(R) Overview and Architecture
IEEE 802.1 Bridging and Management
IEEE 802.3 Ethernet
IEEE 802.11 Wireless LANs
IEEE 802.15 Wireless PANs
IEEE 802.16 Broadband Wireless MANs
IEEE 802.19 TV White Space Coexistence Methods
IEEE 802.21 Media Independent Handover Services
IEEE 802.22 Wireless Regional Area Networks
40. 21
Design Methods and Approaches for IoT Hardware
in a short time is a characteristic of parallel communication, for example, reading
data from DDR3 RAM. But in a serial communication, 1 bit is sent in one clock by
just one I/O pin. The data rate is also less than the parallel type but sufficient for IoT
communication. And the cost of copper wire and I/O pins are high. As a result, serial
communication is the proper choice for wired IoT devices. Figure 2.14 shows both
serial and parallel communications.
2.2.6 Physical Layer Standard
According to the OSI (Open Systems Interconnection) model, a physical layer has
different components. But in this section, only the medium is described. As men-
tioned in previously for IoT devices, serial communication is preferred. For serial
communication, different standards are used. Each standard and its networking
requirements determine the number of communication wires. For example, for send-
ing differential serial data, each IoT node needs two twisted-pair copper wires as a
transmission which is driven by line driver ICs.
In the following context, RS-232, RS-422, and RS-485 standards are described.
In contradiction of complete interface standards, which define functional data frame
specifications, these are electrical-only standards. Between these three, only RS-485
standards can satisfy the needs of IoT daisy-chain or bus network. Moreover, using
power lines to transmit the data is explained and the wireless type is briefly described.
Finally, the recommendations for IoT serial communication are suggested.
2.2.6.1 TIA/EIA 232, RS-232
The CMOS TTL voltages are typically in the 3.3–5 V range, while the RS-232 can be
12 V. To meet the voltage requirement of RS-232, it is possible to convert +5 V TTL
available voltage to 12 V
± by circuit named “dc-dc converter,” which has different
types. MAX-232 IC converts TTL to RS-232 data in which there is an integrated
charge pump boost converter to increase +5 V input voltage to RS-232 required level.
Figure 2.15(a) shows that TTL data amplitude ranges from 0 V to +5 V, which is
converted to RS-232 standard at the output. Figure 2.15(b) shows two blue probs
FIGURE 2.14 (a) Parallel communication and (b) serial communication.
41. 22 Internet of Things
voltage waveforms. For each logic 1 TTL level (+5 V) as input, output goes to −12 V,
and for logic 0 TTL level (0 V), the output goes to +12 V.
As illustrated in Figure 2.16, the data go in one direction. For implementing
full-duplex communication (sending and receiving), this block diagram should be
repeated in the inverse direction. Portable and handheld apparatus use RS-232 stan-
dard. This standard is suitable for low data rates, low range, and short-run applica-
tions. If one needs a higher data rate, longer distance, and more than one receiver
node, RS-422 could be the appropriate choice.
2.2.6.2 TIA/EIA 422, RS-422
RS-422 is referred as a balanced differential signaling standard. In this type, data are
transmitted by two twisted-pair copper wires. Because of the differential signaling,
common-mode noise, which is induced to twisted pair copper wire, will be canceled.
Data line can be as long as 4,000 feet with a data rate of around 100 kbps. And for
short distance, the data transfer speed can be up to 10 Mbps.
Figure 2.17 illustrates RS-422 half-duplex differential signaling. In this diagram,
TTL digital data are converted into differential signals and then feed to the transmis-
sion line. In the receiver, these two differential signals convert to TLL data again.
This standard can provide service up to ten receivers. However, this type is half-
duplex for overcoming all limitations, thus RS-485 is introduced in the next section.
FIGURE 2.15 TTL to RS-232 (a) block diagram and (b) waveform.
FIGURE 2.16 Single-ended, unidirectional, half duplex.
42. 23
Design Methods and Approaches for IoT Hardware
2.2.6.3 TIA/EIA 485, RS-485
In this standard, serialized input data change to differential pair A and B, which is
similar to RS-422. Figure 2.18 shows the ADM485 block diagram in which enable pins
(RE and DE) are key elements to have a bidirectional network. A and B pins are three-
stated gates controlled by RE and DE pins. These pins’ functionality can be changed
to input, output, or high impedance. By enable pins, the working modes of the chip can
be set to receiver or driver (transmitter). Thus, by MCU software programming, the
direction of the data flow can easily change. In most applications, RE and DE pins are
tied together as RE is an “active-low enable pin” and DE is inverse. In RS-485, only
one driver can be active on the bus at any time and other nodes are in receiver mode.
This process must be controlled through software to avoid any data collision.
Here, Table 2.3 summarizes ADM485 pin function descriptions.
For sending “Logic 1” A = 1, B = 0 and for “Logic 0” A = 0 and B = 1. Inversely
in the receiver, by differentiating A and B pins voltage, serial data can be generated.
According to Table 2.4, if the receiver VIA − VIB ≥ 200 mV output serial is “1” and
if VIA − VIB ≤ 200 mV the output is “0.”
In the industry, TIA/EIA-485-A transmission line standard is widely used such as
Profibus and Modbus (Marais 2008; “Interface Circuits for TIA/EIA-485 (RS-485)”
2007). Differential signaling rejects common-mode noise, which makes it suitable
FIGURE 2.17 RS-422 half-duplex differential signaling.
FIGURE 2.18 ADM485 block diagram.
43. 24 Internet of Things
for long-distance communication (~1 km) (2011). ADM485 can only drive 32 nodes
and for more, it needs a repeater. Figure 2.19 shows cable length versus data rate for
RS-485. As cable length is increased, a lower data rate can be transmitted.
2.2.6.4 Power Line Communication Using RS-485
IoT nodes need power supply to power up, which adds two additional wires to the
RS-485 data wire. Thus, each node needs four wires to work properly. By consider-
ing the power supply as DC signal and RS-485 data as AC signal, it is feasible to
reduce the number of wires to just two by feeding both AC and DC signal in two
wires. “Power Line Communication Using RS-485 Simulation Reference Design”
(2018) establishes a simulation model for implementing RS-485 communication over
power cabling.
TABLE 2.3
ADM485 Pin Function Descriptions
Pin No. Mnemonic Function
1 RO Receiver output. When enabled, if A is greater than B
by 200 mV, RO is high. If A is less than B by 200 mV,
RO is low.
2 RE Receiver output enable. A low level enables the
receiver output, RO. A high level places it in a high
impedance state.
3 DE Driver output enable. A high level enables the driver
differential outputs, A and B. A low level places it in
a high impedance state.
4 DI Driver input. When the driver is enabled, a logic low on DI
forces A low and B high, while a logic high on DI forces
A high and B low.
5 GND Ground connection, 0 V.
6 A Noninverting receiver input A/driver output A.
7 B Inverting receiver input B/driver output B.
8 VCC Power supply, 5 V ± 5%.
Source: “ADM485 Datasheet | Analog Devices” (n.d.).
TABLE 2.4
Differential Receiver Truth Table
RE A − B (Inputs) RO
0 ≥+200 mV 1
0 ≤−200 mV 0
0 −200 mV ≤ (A − B) ≤ +200 mV X
1 X High-Z
44. 25
Design Methods and Approaches for IoT Hardware
2.2.6.5 Wireless
For wireless communication, engineers, by using Maxwell equation, send data to
free space impedance
/ 733
0 0 0
η = µ = Ω (Pozar 2011) via an antenna. The digital
data are firstly modulated to high-frequency signals. This frequency can be as high
as Wi-Fi 2.4 GHz or as low as AM radiofrequency. As the frequency increases, the
antenna size decreases, which is important in portable devices. ASK RF modules
accept digital data at the input terminal of the transmitter and in the receiver module,
RF data after demodulation is converted into digital data. Figure 2.20 shows the
ASK module block diagram. Figure 2.21 shows the signal waveform of ASK modu-
lating. As it is illustrated, carrier frequency and digital data are multiplied with each
other to generate an output ASK signal.
ASK modules in the market have two different carrier frequencies: 433 and
315 MHz. These modules only send digital data and do not take into account whether
the data are received correctly. As a result, software should do many other tasks such
as adding CRC to the digital data frame or check if space is not occupied by another
RF transmitter to send data. These modules mostly are used for simple two-node
communication such as car RF remote controller. Figure 2.22 shows the transmitter
and receiver of Chinese ASK modules.
For more complex networks, designers prefer to use Wi-Fi modules that are based
on IEEE 802.11 standard. Moreover, other equipment such as Wi-Fi access points
are already available in the market at a reasonable price. For example, Espressif
Systems is one of the prominent companies in this area. ESP32 is a low-cost, low-
power system on a chip microcontroller with integrated Wi-Fi and dual-mode
Bluetooth. Thus, this module is capable of running a software algorithm, changing
the status of output I/O pins, and also sending data wirelessly. This module has a
different board version. One of them uses a patch (microstrip) antenna to decrease
FIGURE 2.19 Cable length versus data rate for RS-485. (From Kugelstadt 2008.)
FIGURE 2.20 ASK module block diagram.
45. 26 Internet of Things
the size of the PCB. Many approaches are used to miniaturize planar-type antennas
such as microstrip (Balanis 2016). Figure 2.23 shows ESP32 Wi-Fi module with its
golden 2.4 GHz microstrip antenna and U. FL connector for external antenna. All
in all, one can use this module for IoT devices without thinking about wireless com-
munication, data loss, node collision, and many other complex RF requirements in
designing RF wireless nodes from scratch.
FIGURE 2.21 ASK modulation.
FIGURE 2.22 Chinese ASK modules.
46. 27
Design Methods and Approaches for IoT Hardware
2.2.7 Recommendation for IoT Serial Communication
RS-232, RS-422, and RS-485 are three famous serial communication electrical stan-
dards, which have different features and limitations such as signaling techniques,
communication modes, and network complexity. For low-cost, long-run, reliable,
low-data rate communication and networking, RS-232 and RS-485 are preferred to
use. Table 2.5 compares three serial communication standards. RS-485 daisy-chain
network is preferred to use in an IoT wired network because of higher distance,
number of nodes, and data rate (Marais 2008; “Interface Circuits for TIA/EIA-
485 (RS-485)” 2007; Hazen 2003; “AN-914 Understanding Power Requirements in
RS-232 Applications” 2013).
For long-run IoT devices, wired communication is preferred. Since wireless node
quality depends on many criteria such as weather. In a rainy environment, RF signal
TABLE 2.5
RS-232, RS-422, and RS-485 Comparison
RS-232 RS-232 RS-422 RS-485
Signaling Technique Single-Ended
(unbalanced)
Differential (balanced) Differential (balanced)
Drivers and Receivers
on Bus
1 Driver 1 Receiver 1 Driver 10 Receivers 32 Drivers 32 Receivers
Maximum Cable
Length
50 feet 4000 feet 4000 feet
Original Standard
Maximum Data Rate
20 kbps 10 Mbps down to
100 kbps
10 Mbps down to
100 kbps
Source: Hazen (2003).
FIGURE 2.23 ESP32 and microstrip antenna.
47. 28 Internet of Things
attenuation is high and nodes might lose their connections. Moreover, if the security
of the system is important, someone can more easily access the wireless node than a
local wired node. Another point is the aging of electronic components that has much
more effect on transmitting power of RF node than wired node.
2.2.8 Sensors and Actuators Nodes
Figures 2.24 and 2.25 show sensors and actuators block diagrams. These two are
briefly explained as follows.
2.2.8.1 Sensors
Sensor nodes can send measurement data to the mainboard by a communication
link. This part firstly describes the definition of sensors and their tasks; after
that, a story starts from an analogue simple sensor and finishes to a complex
digital one.
A sensor is a device that reacts to physical or chemical actions or states. For
example, light-dependent resistor (LDR) sensors can change their electrical proper-
ties by exposing their surface to the light.
2.2.8.2 Actuators
Mainboard sends data to actuator nodes for performing specific tasks such as turn
the light ON or OFF. In smart homes and industry, actuators can be a mechanical
relay or contactor, or solid-state relay. These two devices can switch power lines to
drive even a high-power motor. In general, inside each node, there is an MCU. The
FIGURE 2.24 Sensors block diagram.
FIGURE 2.25 Actuators block diagram.
48. 29
Design Methods and Approaches for IoT Hardware
output pins are not capable of providing high current to drive a relay. As a result,
a small circuit that accepts low current low voltage at the input and provides high
voltage high current at the output pin is required. Figure 2.26 shows a block dia-
gram of driving a mechanical relay using an MCU. “STM32 GPIO Configuration
for Hardware Settings and Low-Power Consumption” (2017) describes ST 32-bit
microcontroller general-purpose for input/output pins. The maximum output current
by any I/O is 25 mA and the sum of all I/O current is 80 mA.
One can use a simple common emitter transistor and fast diode for driving a
mechanical relay. Relay driver integrated circuit (IC) such as ULN2803 also
performs the task well. The ULN2803A device is a 50 V, 500 mA Darlington
transistor array. The device consists of eight NPN Darlington pairs that feature high-
voltage outputs with common-cathode clamp diodes for switching inductive loads
(“ULN2803A Darlington Transistor Arrays” 2017). Figure 2.27 shows the ULN2803
FIGURE 2.26 Driving mechanical relay by the microcontroller block diagram.
FIGURE 2.27 ULN2803A logic diagram.
49. 30 Internet of Things
logic diagram. 1B to 8B are input and 1C to 8C are high voltage and current outputs,
which can connect to relay to turn it ON and OFF.
2.2.9 Summarizing IoT Block Diagram
Briefly, an IoT network consists of four parts: mainboard, gateways, nodes, and links.
Mainboard is the most complex part and is preferred to be bought from the market
such as Raspberry Pi or using fanless mini-PC. Gateways are the interface that con-
nects serial nodes to available ports (USB, Ethernet) of Raspberry Pi (Figure 2.28).
2.3 A SCENARIO OF SWITCHING AN IoT LIGHT STATE
For simplicity, a scenario of switching an IoT light state is described, which can be
generalized to a more complex system. In this scenario, it is assumed that the data
are transmitted and received by nodes without any loss. Figure 2.30 shows the block
diagram of switching an IoT light state ON or OFF. It contains four steps. The dashed
sections are optional and can be varied in different architectures. The blue blocks
of all steps are similar to each other which is related to wired communication links.
Figure 2.29 shows the bus network topology of switching an IoT light state. In this
figure, the pushbutton and actuator node connect to the gateway via wire and com-
municate to each other by the mainboard.
2.3.1 The Initialization Step of Powering Up the Node
and Connect It to the Mainboard
After powering up, an IoT node tries to connect to the mainboard with its previous
node address that is stored in its EEPROM. If this node address is already occupied
in the address table of the mainboard (simple DHCP of the ethernet), the mainboard
sends another free address to the node and the node starts to send data by the new
dedicated address.
2.3.2 Ending Data from the Sensor to the Mainboard
Nodes can have different types of communication to the mainboard. For example,
one node can send data after a specific time interval. Another node sends its state just
FIGURE 2.28 Summarizing IoT block diagram.
FIGURE 2.29 Bus network topology of switching an IoT light state.
50. 31
Design Methods and Approaches for IoT Hardware
after an event is fired for instance, when the PIR sensor node detects the human IR.
Sending real-time data in both wired and wireless networks occupies the transmis-
sion medium, that is why, data should be sent in a specific time interval. Since ther-
mal conduction in the environment is slow, the temperature sensor needs to monitor
the temperature every 5 minutes. However, the water valve of the smart garden needs
a more high-speed communication link.
2.3.3 Blue Color Blocks
The blue color blocks in Figure 2.30 take care of data collision in the medium.
Before sending data over the line, they check that the line is not occupied by other
nodes or mainboard. After initializing and presenting the node successfully to the
mainboard, step 1 starts.
2.3.4 Step 1: Smart Switch Sends Data to the Mainboard
Firstly, IoT smart switch node pushbutton is pressed. Its state is read by an MCU pin
and a proper data frame is created to send this event to the mainboard. 0 checks and
sends data by wired medium to the mainboard.
2.3.5 Step 2: Mainboard Sends Data to the Actuator
In the mainboard after receiving the data frame completely and correctly, data frame
chunks are processed and the receiver node ID and its message are extracted. Then,
the mainboard checks pre-defined rules according to extracted data. These rules
FIGURE 2.30 The block diagram of switching an IoT light state.
51. 32 Internet of Things
relate the switch node state to its actuator node. After that, mainboard makes another
data frame to send to the actuator node, which is performed by blue color blocks.
2.3.6
Step 3: Actuator Acts and Sends an Optional Report
to the Mainboard
After the mainboard sends the data to the actuator successfully, the actuator ana-
lyzes the data and extracts its state. Then, it sets the light state according to main-
board message.
2.3.7 Step 4 (Optional)
This step is optional; in some systems, it might require making a closed-loop control
system that reports to the mainboard whether the light turns on successfully or not.
2.4 IoT BASIC CIRCUIT DESIGN
2.4.1 From Analog to Digital Signal
Analog sensors, as their name suggests, have an analog output. A well-known exam-
ple of an analog sensor is LDR. Figure 2.31 shows the real sensor that has two output
pins.
The resistor of these two terminals is varying by changing the light intensity.
Figure 2.32 chart illustrates LDE resistance vs. light intensity. In a dark area, resis-
tors are intended to increase sharply.
Most of the electronic integrated circuits need voltage or current at their input ter-
minals to operate. Thus, a converter that accepts a resistor at its input and generates
acceptable voltage output is required. Figure 2.33 is the whole process of converting
light intensity to voltage. The second block can be as simple as a voltage divider.
However, Figure 2.34 shows a more precise measurement of LDR, and (2.1) shows
the transform function.
FIGURE 2.31 Light-dependent resistor (LDR) or photo resistor. (From “Simple Ambient
Light Sensor Circuit | Analog Devices” n.d.)
52. 33
Design Methods and Approaches for IoT Hardware
=
Ω
−
+
LDR
V
V
OUT
IN
49.4k
1
(2.1)
The next sensor is more complex; this one is an IC. In an IC many features can be
added that just a simple LDR can’t have. For example, a closed-loop circuit that has
FIGURE 2.32 Sensor resistance vs. light intensity.
FIGURE 2.33 Light intensity to a voltage block diagram.
FIGURE 2.34 Simple circuit measures light intensity. (From “Simple Ambient Light Sensor
Circuit | Analog Devices” n.d.)
53. 34 Internet of Things
stable functionality in different situations or even a filter. Take NTC, for example, as
a temperature-dependent resistor (Thermistor); for reading out this simple register as
mentioned previously, we need to convert resistance to voltage to be acceptable for
the next stage of the circuit. In this regard, an operation amplifier can do this task per-
fectly. It is possible to integrate the sensor and converter circuit into a single chip. This
chip, apart from having a smaller size, consumes less power and is more affordable.
LM35 is an analog integrated temperature sensor. This sensor can easily mea-
sure environmental temperature with just three external components. The analog
output of the sensor varies 10 mV per Celsius degree. Figure 2.35 shows LM35 IC
inner circuit.
Up to here, two environmental parameters, light intensity and temperature change
to an analog voltage. This analog signal needs to be converted into digital signals
by analog to digital converter (ADC) so that it is acceptable for the IoT digital cir-
cuits. As a result, this part can also add another block to Figure 2.36 as an analog
temperature sensor and convert it into a mixed-signal integrated circuit below the
block diagram clarifying new digital temperature sensors. Figure 2.37 shows a block
diagram of a digital integrated circuit temperature sensor.
FIGURE 2.35 LM35 functional block diagram.
FIGURE 2.36 Analog sensors block diagram.
FIGURE 2.37 Digital temperature sensor block diagram.
54. 35
Design Methods and Approaches for IoT Hardware
Figure 2.38 SHT3x-DIS, a mixed-signal integrated circuit made by Sensirion com-
pany. As it is clear in the block diagram besides the ADC part, many other blocks
enable this sensor to measure temperature to be intended to have 0.1°C precision for
temperature and 1.5% RH for humidity.
Table 2.6 summarizes the pin assignment of SHT3x-DIS. Pins 1 and 2 accept
digital data for communication. Figure 2.39 shows the sensor transparent top view.
One might use an internal ADC microcontroller. The results can be acceptable if high
precision does not matter. If the voltage or current temperature signal is transmitted
FIGURE 2.38 Functional block diagram of the SHT3x-DIS. The sensor signals for
humidity and temperature are factory calibrated, linearized, and compensated for tempera-
ture and supply voltage dependencies. (From “SHT3x (RH/T)—Digital Humidity Sensor
| Sensirion” n.d.)
TABLE 2.6
SHT3x-DIS Pin Assignment
Pin Name Comments
1 SDA Serial data; input/output
2 ADDR Address pin; input; connect to either the logic high
or low, do not leave floating
3 ALERT Indicates alarm condition; output; must be left floating
if unused
4 SCL Serial clock; input/output
5 VDD Supply voltage; input
6 nRESET Reset pin active low; input; if not used it is recommended
to be left floating; can be connected to VDD with a
series a resistor of R ≥2 Kω
7 R No electrical function; to be connected to VSS
8 VSS Ground
56. Mein verehrter Freund, Dr. A. Weisbach hat mehrere der in den
oben beschriebenen Gräbern gefundenen Schädel untersucht und
genau gemessen, und zwar die beiden von Kojetitz, einen von
Schallan und einen von Saaz. Die Resultate seiner Untersuchung
laufen darauf hinaus, dass „diese vier Gräberschädel vor denen der
heutigen Deutschen und Czechen durch g r o ß e L ä n g e ,
g e r i n g e B r e i t e u n d b e d e u t e n d e H ö h e , d u r c h f a s t
e x t r e m e D o l i c h o k e p h a l i e a u s g e z e i c h n e t s i n d [246],
und in dieser Beziehung den Schädeln von Ecker, besonders dessen
Reihengräberschädeln, und dem Hochbergtypus von His vollkommen
gleichen.“ Schlüsse auf den Volksstamm, dem sie angehören, sind
bei dem geringen Material noch zu gewagt. Leider gelang es uns
trotz aller Bemühung noch nicht, auch aus den sub 2b angeführten
Gräbern von Nehasitz und Morawes Schädel zur Vergleichung zu
erhalten. So war ich, als ich persönlich auf dem Todtenfelde von
Nehasitz nachgraben ließ, nicht so glücklich, ein nur halbwegs
erhaltenes Exemplar, sondern in zwei Fällen nur Fragmente von
Schädeln zu finden. Gut erhaltene Exemplare werden von den
Arbeitern, wenn eben kein Sachverständiger zugegen ist, entweder
zerschlagen, oder eiligst wieder verscharrt. Doch scheinen auch die
Nehasitzer und Moraweser Schädel, nach den wenigen Fragmenten
zu urtheilen, einen denn oben beschriebenen ähnlichen Typus zu
haben.
Auch in der k. Kreisstadt Saaz wurde im Laufe des Jahres 1867
bei Gelegenheit der Grundgrabung zu einem Hausbau in der Prager
Vorstadt, zwei Klafter tief in der Erde, ein viereckiges Skelettgrab
aufgedeckt. Dasselbe war in Lehm gestochen, nicht mit Steinen
ausgelegt, das Skelett gänzlich aufgelöst. Als Beigaben fand man ein
kleines, aus grauem Thon gearbeitetes, aber an der inneren und
äusseren Fläche mit Graphit geschwärztes Näpfchen, 5 Centim.
hoch, an der oberen Oeffnung 8,4 Centim., am Boden 3 Centim. im
Durchmesser haltend, mit Erde und Asche gefüllt; einen kleinen, 3
Centim. im Durchmesser haltenden Bronzering mit s-förmigem
Verschlusse; eine aus gebogenem Bronzedraht eigenthümlich
verschlungen geformte Kleiderhafte, Fig. 4; endlich ein eisernes, 16
57. Cent. langes Messer; der 8 Centim. lange, aus Holz oder Horn
gefertigte Griff war mit Bronzeplättchen geschmückt. Dabei lag noch
eine kleine Kugel von gebranntem Thon. Das Grab scheint ziemlich
spät und der Form des Ringes, wie der Hafte nach slavisch zu sein.
In Rudolfi (bei Petersburg, Saazer Kreis) wurde im Jahre 1867
wieder ein Grabhügel, und zwar in der Waldflur Knežehaj
aufgedeckt. Er war den in diesen Blättern[247] beschriebenen
Rudolfer Hügeln ganz conform, vorwiegend aus Steinen aufgebaut,
hatte eine Höhe von 5 Fuß bei einem Umfang von 20 W. Klaftern,
und enthielt in der Mitte ein auf platten Steinen s i t z e n d
b e s t a t t e t e s , noch ziemlich wohl erhaltenes Skelett, d e m
j e d o c h d e r K o p f f e h l t e . Trotz der mühsamsten
Nachforschung gelang es mir nicht, die geringsten Schädeltheile,
nicht einmal die Zähne, die sich doch sonst meist noch gut erhalten
zeigen, aufzufinden. Der Kopf scheint also abgeschnitten und
verbrannt worden zu sein. Auch aus Mähren, Thüringen, Luxemburg
etc. sind ähnliche Fälle in Hügelgräbern bekannt[248]. Außer einem
kleinen Aschentöpfchen traf ich keine weiteren Beigaben in diesem
Grabhügel. Die massigen, derben Knochen, sowie die Form des
Beckens lassen auf ein männliches Individuum schließen; die Länge
des vollständig erhaltenen Oberschenkelknochens (femur) 47,7
Centim. weist auf einen erwachsenen, großen Mann hin. Dr. A.
Weisbach hat auch den in derselben Waldflur 1866 in einem andern
Grabhügel gefundenen (weiblichen) Schädel gemessen; derselbe
gehört unter die extremst dolichokephalen Schädel, da seine Länge
22 Centim., seine Breite 12,8 Centim. (= 1000: 581) ist, wobei
ausdrücklich bemerkt werden muß, daß die Pfeilnaht nicht
verwachsen, sondern in ihrem ganzen Verlauf deutlich ausgeprägt
ist.
W i e n . Dr. J u l . E r n s t F ö d i s c h .
58. Besegnungen.
1) W i l l d w t a u s e n d t g e h a r n a s t e r l e y t ( o d e r
w y e v i l d w j n e i n f e l t ) m a c h e n :
so gee an einem suntag eins morgens früwes auß, ee dy sun(n)
aufget vnd ye lautern es am himel ist, ye pesser es ist. dan so
schlache von einem felber (hs. feler) ein zweil in einem schlach vnd
gee zwe einem pach, der fleust vnd schlach mit dem zwaylin den
pack und sprich dyse wordt: Astaroth mille gemisera vnd thue auff
yelichs wordt drew creyz.
2) W i l l d w m a c h e n d a s m a n d i c h n i t s e c h e n
m a c h :
so nym einen raben vnd schlach jmb das haup(t)[249] veber ein
hauß geswell ab und leg das haup in die sun, da sy haiß hinscheyndt
und las ligen xxx tag den so waxt ein bluemen darauf dye trag pey
dir in der rechten handt u. s. w.
3) D e r W o l f s s e g e n :
sprich also, wen du wild, das man hab, es sey vieh oder lewt,
sprich also: hunt, du muest beint oder heut als loß sein als unser
liebe fraw was da sye jrs lieben trauten suns genas. amen. 3 stunt
(mal) sprich in und 3 pat. n. und 3 ave Maria.
4) W i l d w m a c h e n d a s d i r y e d e r j e d e r m a n h o l t
i s t :
so nym ein hawß (?) der drey jar alt ist vnd stoß in in einem
haffen vnd mach den haffen vol mit lecher und secz in in einen
ameyßhauffen und laß in sten 14 tag, so tragen dy ameyssen ein
stein in das hefflin: den trag pey dir u. s. w.
5) W i l d w a l l e n v n k e u s c h h e y t v e r t r e i b e n v n d
l e s c h e n :
59. so nym ein turteltauben hercz vnd zustoß vnd thue es in ein
wolfen leder und trags pey dir.
6) W i l d w e i n e s e l w e r d e n :
so nym pluet von einem pock vnd schreyst (streichs) vnder die
augen, so wirt du zu einem esel.
7) D a z d i e w e y b e r a u ß d e m p a d l a f f e n u n d
h y e t e n g e r e n e t w a s :
so nym rote amasayr in ain klains sackhl vnd legs in ein warms
wasser i stundt vnd gews auf den offen, so werden sy lauffen und
lustig.
Handschriftliches Arzneibuch, 15. Jahrhundert, in 12., auf der
Regensburger Stadtbibliothek, Nr. 22.
Dr. A . B i r l i n g e r.
60. Zur alten Fischerei.
W i l d u v i s c h f a h e n i n r e y s c h e n
so leg malcz darein, darauß man pier macht oder ein vrhab
knollenweyß. probatum est.
W i l d u v i s c h z w s a m e n p r i n g e n
nym Lüstock vnd stos den vnd truck den durch ain tuechl vnd
nym gaffer vnd meng den darunter vnd bestreich allendthalben
hendt vndt füeß vnd gee also yn das wasser, so samen sich dy visch
zu dir.
W i l d u v i s c h f a c h e n m i t d e n h e n d e n
so nym nessel sam vnd haußwurcz vnd nachtschatten vnd
garben vud mach das in einand vnd schmir dy handt darmit vnd halt
sy in das wasser: do kumen dir dy visch in dy handt.
aliud w i l d u v i s c h f a c h e n i n r e y s c h e n
so nym fauls holcz, das da scheyndt vnd thue es in ein glas vnd
mach(s) es vest zw das kein wasser dorein mag mit wachs und
henges in ein reusen.
Aus obigem Arzneibuch der Regensb. Stadtbibliothek, Nr. 22.
Dr. A . B i r l i n g e r.
61. Zu den Rechtsalterthümern.
Die gefürstete Aebtissin zu Lindau am Bodensee hatte ehemals
das Recht, während ihrer Regierung einen vom dasigen Magistrat
zum Tode verurtheilten Missethäter durch eigenhändige
Abschneidung des Strickes von des Scharfrichters Hand zu befreien.
Dies ward noch a. 1780 den 27. October also vollzogen. Die Fürstin
war mit ihrem Gefolge am sog. Baumgarten. Auf Geheiß des
Geistlichen bat der arme Sünder fußfällig um Erlösung. Die Fürstin
ergriff sodann den Strick, woran er vom Scharfrichter geführt wurde,
schnitt ihn ab und sagte: „Ich erlöse dich im Namen des
Allerhöchsten und der übergebenedeiten Jungfrau Maria.“ Hierauf
ward der Erlöste mit in’s Stift genommen, gespeist, beschenket und
zur Besserung seines Lebens ermahnt. Der Strick ward ihm, wie
gewöhnlich, um den Leib gebunden und befohlen, solchen
lebenslänglich als ein Denkzeichen zu tragen.
Dr. A . B i r l i n g e r.
(Mit einer Beilage.)
Verantwortliche Redaction: A. E s s e n w e i n . Dr. G. K. F r o m m a n n . Dr. A. v.
E y e .
Verlag der literarisch-artistischen Anstalt des germanischen Museums in Nürnberg.
Sebald’sche Buchdruckerei in Nürnberg.
62. Z. A. f. K. d. d. V. 1868 Nº 12.
Druck v. A. Leykams Erb. in Graz.
❏
GRÖSSERES BILD
63. BEILAGE ZUM ANZEIGER FÜR
KUNDE DER DEUTSCHEN VORZEIT.
1868. Nº 12. December.
Chronik des germanischen
Museums.
Nürnberg, den 15. December 1868.
Die Vorlage an den norddeutschen Bund, deren wir in voriger
Chronik Erwähnung gethan haben, ist nunmehr, wie wir
Zeitungsnachrichten entnehmen, in einer für unsere Anstalt sehr
erfreulichen Weise erledigt. Dabei war vor Allem der Bericht
maßgebend, welchen Herr Prof. Haupt in Folge der im Auftrage Sr.
Excellenz des kgl. preuß. Kultusministers v. Mühler unternommenen
Besichtigung des german. Museums, deren wir bereits in der
Septembernummer gedacht, erstattet hat.
Der Bericht selbst, der für uns so günstige Folge hatte, spricht
sich zwar sehr abweisend über manche Punkte unseres noch immer
aufrecht stehenden älteren Programms, sowie über die Thätigkeit
der Anstalt in früherer Zeit aus, bemerkt aber, daß das Wichtigere
gegenwärtig in der That mehr und mehr in’s Auge gefaßt werde, und
daß das Institut somit einer Unterstützung entschieden würdig sei.
64. Die zur Ergänzung des Verwaltungsausschusses von der
neulichen Jahresconferenz erwählten vier neuen Mitglieder haben
diese Wahl mit höchst dankenswerther Bereitwilligkeit angenommen.
Es sind dies die Herren
Dr. W i l h . v. G i e s e b r e c h t , Universitätsprofessor, in
München.
Dr. T h e o d . G . v. K a r a j a n , Präsident der k. k.
Akademie der Wissenschaften und Custos der k. k.
Hofbibliothek zu Wien,
Dr. E d . F r e i h . v. S a c k e n , Custos des k. k.
Münzkabinets und der Ambraser Sammlung zu Wien,
Dr. E r n s t a u s ’ m W e e r t h , Universitätsprofessor, in
Bonn.
Den Mittheilungen über die angeordnete Abformung von
Grabdenkmalen haben wir noch anzufügen, daß auch Se.
Durchlaucht Fürst C a r l E g o n v. F ü r s t e n b e r g die
freundliche Zusage gemacht hat, den Figurengrabstein eines
Fürstenberg aus Haslach für unsern Kreuzgang abformen zu lassen.
Aus der Zahl der Mitglieder des Gelehrtenausschusses hat das
german. Museum am 6. d. M. den um die Sprachwissenschaft so
verdienten Hofrath und Professor Dr. A u g . S c h l e i c h e r an der
Universität zu Jena durch den Tod verloren.
Neue J a h r e s b e i t r ä g e wurden seit Veröffentlichung des
letzten Verzeichnisses folgende gemeldet.
Von Vereinen: Lohr. Gesangverein 3 fl. 30 kr.
Von Privaten: Ansbach. k. Reg.-Rath Lorenz Braunwart 1 fl., k.
Studienrektor u. Schulrath Elsperger 1 fl. 12 kr., k. Bez.-Ger.-Assessor
Hofmann 1 fl. 12 kr., k. Bez.-Ger.-Assessor Dr. Jul. Meyer 1 fl. 45 kr.,
k. Notar Lor. Schäfer 1 fl. 12 kr., k. Bez.-Arzt Dr. Gustav Schäffer 1 fl.,
Pfarrer Schrader 1 fl. 12 kr. Bamberg. k. Bez.-Amts-Assessor Osann
1 fl. 12 kr. Breslau. Privatdozent Dr. Alwin Schulz 1 fl. 45 kr.
Crefeld. Oberpfarrer Huthmacher 1 fl. 45 kr. Furth a. W.
65. Holzhändler Mich. Dostert 1 fl., Oberzollinspektor Karl Eberhard 1 fl.,
Maschinenführer Georg Harth 1 fl., Ostbahneinnehmer Max Schmid 1
fl. 30 kr., Ostbahnassistent Otto Schmitz 1 fl., Betriebsingenieur
Sigm. Stuttgardter 2 fl., Güterexpeditor Karl Wagner 1 fl. 30 kr.
Halle a. S. Direktor der Zuckersiederei Walter 1 fl. 45 kr.
Hannover. Dr. phil. B. Heisterbergk 1 fl. 45 kr. Havre. kgl. bayer.
Vice-Consul Heinr. Meinel 3 fl. 30 kr. Hofheim. Seligmann Seligstein
in Lendersheim 1 fl. Lindau. Großhändler v. Rupprecht 1 fl. 30 kr.
(statt früher 1 fl. 12 kr.) Linz. Dr. Karl Essenwein 1 fl., Dr. Jul. v.
Pflügl 1 fl. Neu-Ruppin. Dr. med. Pätsch 1 fl. 45 kr. Neustadt a. S.
k. Advokat C. Then 1 fl. Oertelsbruch bei Lehesten. Karl Oertel 1 fl.
45 kr. Rennertshofen. Pfarrer u. Dekan Ant. Paula in Mauern 1 fl.,
Pfarrer Riegg in Wellheim 1 fl., Freih. Theod. v. Tucher auf Geitheim
1 fl., Freih. Aug. v. Tucher auf der Feldmühle 1 fl. Schässburg.
Kaufmann Jos. Benj. Teutsch 1 fl. 10 kr. (statt früher 36 kr.)
Stralsund. Bankdirektor Berg 1 fl. 45 kr., Ger. -Assessor Dr. Fabricius
1 fl. 45 kr. Wolfenbüttel. Staatsanwalt Römcke 1 fl. 45 kr.
E i n m a l i g e r Beiträge wurden folgende gegeben:
Von Privaten: Dobbertin. Stifstdame Fräul. Dorothea von Penz
1 fl. 45 kr. Havre. Ein Ungenannter 3 fl. 30 kr. Neumarkt in
Steyermark. k. k. Gerichts-Adjunkt Dr. Guido Fink 2 fl. 20 kr. Neu-
Ruppin. Dr. med. Pätsch 1 fl. 45 kr. Neustadt a. S. k. Bez.-Ger.-
Rath Kiliani 1 fl. Wien. Lebensl. Mitglied des österr. Oberhauses
Franz Mayr von Melnhof 11 fl. 40 kr.
Unseren Sammlungen giengen ferner folgende Geschenke zu:
I. Für das Archiv.
(Nr. 3844–3846.)
Breslau. P a l m , Oberlehrer am Gymnasium zu Maria
Magdalena, Namens des Primaners Wätzold (dermalen in Berlin):
Urkunde der Anna, Aebtissin zu St. Servatius in Quedlinburg, durch
welche sie je dem ältesten Mitgliede der Familie von Hagenrode und
66. beziehungsweise der Innung der Gewandschneider die Ermächtigung
ertheilt, für die von jener in St. Benedikten-Pfarre gegründete
Kapelle einen Priester in Vorschlag zu bringen. 1448. Pgm. —
München. B a r o n d u P r e l : 262 Regesten aus d. Erpeldinger
Archive, vom Anfange des 15. bis zum Ende des 18. Jahrhunderts.
Dritte Reihe. — N ü r n b e r g . M a i s c h , Strohhutfabrikant:
Spänbrief über eine in der alten Ledergasse zu Nürnberg gelegene
Behausung und Hofrait. 1648. Pgm.
II. Für die Bibliothek.
(Nr. 22,954–23,074.)
Altenburg. G e w e r b e - V e r e i n , n a t u r f o r s c h e n d e
G e s e l l s c h a f t u . b i e n e n w i r t h s c h . V e r e i n : Dies.,
Mittheilungen aus dem Osterlande; Bnd. 18, 3. u. 4. Heft. 1868. 8.
— Altona. C . T h e o d . S c h l ü t e r ’ s V e r l a g : Kurzgefaßte
Geschichte unsres Vaterlandes Schleswig-Holstein. 1864. 8. —
Annweiler. J . F r a n c k , Subrektor: Bericht der Direktion der pfälz.
Eisenbahnen f. d. J. 1867. 1868. 4. — Augsburg. J o s .
W ü r d i n g e r , k. b. Hauptmann: Ders., erster u, zweiter Städtekrieg
in Schwaben, Franken u. am Rhein 1370–1390. 8. — Bamberg.
H i s t o r. V e r e i n f ü r O b e r f r a n k e n : Ders., Archiv; Bnd. X, 3.
1868. 8. Berlin. E r n s t K o r n , Verlaghshandl.: Lüdecke, das
Rathhaus z. Breslau. 1868. gr. 2. F r a n z L o b e c k , Verlagshandl.:
Burger, die Hohenzollern in Bild u. Wahlspruch. 1866. 8. G. Rahn,
Verlagshandl.: Hahn, die Hauptmomente aus d. Geschichte der St.
Petrikirche in Berlin. 1853. 8. — Brandenburg. A d o l p h M ü l l e r ,
Buchhandl.: Wegener, Siegfried u. Chriemhilde. 1867. 8. — Bremen.
J . K ü h t m a n n ’ s Buchhandl.: Ellison, Handbuch der Baumwoll-
Cultur u. Industrie; 2. Ausg. 1869 8. Wiegen-Lieder, Ammen-Reime
u. Kinderstuben-Scherze in plattd. Mundart. 2. Aufl. 8. Christiania.
F o r e n i n g e n t i l N o r s k e F o r t i d s m i n d e s m e r k e r s
B e v a r i n g : Ders., Aarsberetning for 1867. 1868. 8. Krefting, Selje
Klosterlevninger. 1868. 4. Chur. G r u b e n m a n n ’sche Buchhandl.:
67. Röder, Erzählungen aus Zwingli’s Leben. 1834. 8. v. Tscharner, der
Kanton Graubünden. 1842. 8. v. Flugi, Volkssagen aus Graubünden.
1843. 8. v. Flugi, d. Prättigäuer Freiheitskampf. 1844. 8. Papst Pius
IX. u. sein Dogma v. d. unbefleckten Empfängniß d. Jungfrau Maria.
1855. 8. — Erfurt. W. F r e i h . v. Te t t a u , Ober-Regierungsrath:
Erfurt in seiner Vergangenheit und Gegenwart. 1868. 8. — Genf.
J u l e s F i c k , Buchdruckereibes.: Ders., anciens bois de
l’impremerie Fick à Genève. 1863. 2. Bourkard Zink et sa Chronique
d’Augsbourg. 1868. 8. — Görlitz. O b e r l a u s i t z i s c h e
G e s e l l s c h a f t d e r W i s s e n s c h a f t e n : Dies., neues
Lausitzisches Magazin. Bnd. 45, 1. 1868. 8. — Göttingen.
V a n d e n h o e c k u . R u p r e c h t , Verlagshandl.: Müldener,
bibliotheca historica; Jhg. 16, 1. 1868. 8. Müldener, bibliotheca
geographico-statistica; Jhg. 16, 1. 1868. 8. — Güterslohe. C.
B e r t e l s m a n n , Verlagshandl.: Allgem. literar. Anzeiger f. d.
evangel. Deutschland; Nr. 1–12. 1867–68. 8. — Haag am
Hausruck. M. O b e r m a y e r : Mandat Maximilians Pfalzgrafen bei
Rhein. 1610. 2. — Halle. U n i v e r s i t ä t : 3 akadem.
Dissertationen. 8. — Hamburg. C h r. P e t e r s e n , Professor:
Ders., d. Zwölfgöttersystem der Griechen u. Römer. 1868. 4. Meyer,
Joh. Martin Lappenberg. 1867. 8. — Hamm. M. F. E s s e l l e n ,
Hofrath: Ders., Geschichte der Sigambern etc. 1868. 8. —
Hannover. H a h n ’sche Hofbuchhandl.: Guthe, Lehrbuch der
Geographie; 2. Hälfte. 1868. 8. Grote, die Münster’schen Münzen
des Mittelalters. 1856. 8. Sonderabdr. Grote, osnabrück’sche Geld- u.
Münz-Geschichte. 1864. 8. Sonderabdr. Schädel u. Kohlrausch,
mittelhochdeutsches Elementarbuch. 2. Aufl. 1866. 8. Münzstudien,
hgg. v. Grote; Bnd. VII, 1. 1868. 8. Grotefend, Leibnitz-Album 1846.
2. — Hohenleuben. V o i g t l ä n d i s c h e r
a l t e r t h u m s f o r s c h e n d e r V e r e i n : Ders., Mittheilungen,
nebst 38. u. 39. Jahresbericht. 8. — Jena. F r. F r o m m a n n ,
Verlagshandlung: Ortloff, Geschichte der Grumbachischen Händel; 1.
Th. 1868. 8. V e r e i n f ü r t h ü r i n g . G e s c h i c h t e u .
A l t e r t h u m s k u n d e : Ders., Zeitschrift; Bnd. VII. 2. 3. 1868. 8. —
Jever. C. L. M e t t c k e r u . S ö h n e , Buchhandl.: B—n, de
plattdütsche Klenner up dat J. 1867. 1868. 1869. — Kadow
68. (Meklenburg). Dr. C. M. W i e c h m a n n - K a d o w : Ders., Pfahlbau
der Eisenzeit von Vimfow. 1867. 8. Sonderabdr. Gryse’s geistl.
Dichtungen, hgg. v. Wiechmann. 1867. 8. Archiv des Vereins der
Freunde der Naturgeschichte in Meklenburg; 19. Jahr. 1865. 8. —
Kassel. V e r e i n f ü r h e s s i s c h e G e s c h i c h t e u .
L a n d e s k u n d e : Ders., Zeitschrift n. F.; Bnd. II. 1. 2. 1868. 8.
Mittheilungen, Nr. 3. 4. 1868. 8. Königsberg. J o s . M ü l l e r ,
Custos an der k. Bibliothek: Ders., ein Autographon Peter Schöffer’s.
1869. 4. — Kopenhagen. K . n o r d i s k O l d k y n d i g h e d o g
H i s t o r i e : Dies., Aarböger; 1862. II. Hefte. 8. — Leipzig.
D u n c k e r u . H u m b l o t , Verlagshandl.: Lindner, Anno II. d.
Heilige, Erzbischof v. Köln. 1869. 8. G u s t . M a y e r , Verlagshandl.:
Schwab u. Klüpfel, Wegweiser durch die Literatur der Deutschen; 3.
Aufl. 1861. 8. Müller, Vorlesungen über d. Wissenschaft der Sprache.
2. Aufl. 1866. 8. V e i t C o m p . , Verlagshandl.: Droysen,
Geschichte der preußischen Politik; Th. III, 2. 1863. 8. — Lübeck.
Dr. G. E s c h e n b u r g , Advokat u. Notar: Funk, Schiller auf d.
Lübecker Bühne. 1868. 8. — Magdeburg. A l t m ä r k . V e r e i n f.
v a t e r l . G e s c h i c h t e u n d I n d u s t r i e : Ders., 16.
Jahresbericht. 1868. 8. Bartsch, Abschiede der ersten in der Altmark
gehaltenen luther. General-Kirchen- und Schul-Visitationen. 1868. 8.
— Mannheim. F r i e d r. W o l f g . G r a f B e r l i c h i n g e n :
Göthe, Hermann u. Dorothea, in’s Latein. übers. v. Jos. Gr. v.
Berlichingen. 1828. 8. — Marburg. J. A u g . K o c h , Verlagshandl.:
Vilmar, Handbüchlein f. Freunde des deutschen Volksliedes; 2. Aufl.
1868. 8. N. G. E l w e r t ’sche Univers.-Buchhandl.: Heusinger,
Geschichte des Hospitals St. Elisabeth in Marburg. 1868. 8. Koch,
Geschichte des academischen Pädagogiums und nachherigen
Gymnasiums zu Marburg. 1868. 4. U n i v e r s i t ä t : 12 akademische
Schriften. 4. 8. — München. K. b. A k a d e m i e d e r
W i s s e n s c h a f t e n : Dies., Sitzungsberichte; 1868. II. Heft II. 8.
— Norden. D i e d r. S o l t a u , Verlagshandl.: Kern u. Willems,
Ostfriesland, wie es denkt und spricht. 1869. 8. Frerichs, das Spiel.
1868. 8. — Nördlingen. L. M ü l l e r , Studienlehrer: Konradin v.
Hohenstaufen und der Edelherr v. Hürnheim. 1868. 8. — Nürnberg.
R. B e r g a u , Professor a. d. Kunstgewerbschule: Ders., d. alte
69. Marienkirche zu Danzig. 1868. 8. Sonderabdr. M a i s c h ,
Strohhutfabrikant: Instruction, Wessen sich ein Jeder
Gassenhaubtman ... zu verhalten. Anno 1658. Pgm.-Hs. 4. —
Oldenburg. S c h u l z e ’sche Buchhandl.: Verzeichniß der Gemälde
und Gypsabgüsse in d. großherz. Sammlung zu Oldenburg; 2. Aufl.
1868. 8. G e r h a r d S t a l l i n g ’s Verlag: Lübben,
mittelniederdeutsche Gedichte. 1868. 8. Stacke, Abriß der
Geschichte der preuß. Monarchie. 1868. 8. — Paris. C. D a l y ,
Architekt: Ders., Revue générale de l’architecture; vol. 26., Nr. 1–6.
1868. 2. — Rambin. C. D a l m e r , Lic. theol., Pastor: Ders.,
Gedenke des 15. Juni 1168! 1868. 8. — Reichenberg. F r a n z
J a n n a s c h , Buchhandl.: Hallwich, Reichenberg vor dreihundert
Jahren. 1868. 8. — Reutlingen. T h e o p h i l R u p p : Ders., die
kurzen Griffe der Bronzeschwerter. 1868. 8. Sonderabdr. — Riga. J.
B a c m e i s t e r ’s Verlagshandl.: Helmsing, d.
Reformationsgeschichte Livlands. 1868. 8. Müller, d. evang.-luther.
Kirche in Rußland 1868. 8. — Saalfeld. Dr. L. R i c h t e r ,
Gymnasialrektor: Ders., Noch älter. 1868. 8. — Trier. Fr. L i n t z ’sche
Buchhandl.: Marx, Erinnerungen an Trier. 1866. 8. — Hasemüller, d.
Nenniger Inschriften keine Fälschung. 1867. 8. Beck, Beschreibung
des Regierungsbezirkes Trier; I. Bnd. 1868. 8. — Tübingen. H.
L a u p p ’sche Buchhandl.: Fehr, allgem. Geschichte d. Mönchsorden;
2 Bnde. 1845. 8. Preuner, Hestia-Vesta. 1864. 8. Vierordt, badische
Geschichte bis z. Ende des Mittelalters. 1865. 8. Werfer, Ubald der
Landsknecht des Truchseß Georg v. Waldburg. 1865. 8. — Venedig.
R e a l e I s t i t u t o d i s c i e n z e , l e t t e r e e d a r t i : Dass.,
Memorie; vol. XIV. 1868. 4. — Weimar. T. F. A. K ü h n ,
Verlagshandl.: v. Reitzenstein, Briefwechsel des Kurf. Joh. Friedrich
d. Großmüthigen mit sein. Sohne Joh. Wilhelm, Herzog zu Sachsen.
1858. 8. Ders., der schwäb. Bund in Oberfranken oder des Hauses
Sparneck Fall. 1859. 4. — Weissensee. G. F. G r o ß m a n n ’sche
Verlagshandl.: Leitzmann, Wegweiser auf dem Gebiete d. deutschen
Münzkunde; 4. Lief. (Schluß). 1869. 8. — Wernigerode. H a r z -
V e r e i n f ü r G e s c h i c h t e u n d A l t e r t h u m s k u n d e :
Ders., Zeitschrift; I. Jhg., 2. Heft. 1868. 8. — Wien. R u d .
L e c h n e r ’s k. k. Univers.-Buchhandl.: v. Wurzbach, Glimpf und
70. Schimpf in Spruch u. Wort. 2. Ausg. 1866. 8. Q u i r i n L e i t n e r , k.
k. Hauptmann: Ders., d. Waffensammlung des österr. Kaiserhauses;
1. Bnd., 3. u. 4. Lief. gr. 2. — Winterthur. J. M. Z i e g l e r : Ders.,
aus dem künstlerischen Nachlasse von Joh. G e o r g M ü l l e r . gr. 2.
Ders., hypsometrische Karte d. Schweiz. 1866. 2. Ders., zur
Hypsometrie der Schweiz u. zur Orographie der Alpen. 1866. 8.
Ders., Erläuterungen zur neuen Karte der Schweiz etc. 1866. 8.
Neujahrs-Blatt v. d. Bürgerbibliothek in Winterthur; 1865. 1867.
1868. 4. Johann von Winterthur, Chronik, übers. v. Freuler. 1866. 4.
Dändliker, in Winterthur vorkommende deutsche Personen- u.
Familien-Namen nach Entstehung u. Bedeutung. 1867. 4. Hug,
Antiochia u. d. Aufstand des J. 387 n. Chr. 1863. 4. Geilfus, Joachim
von Watt, genannt Vadianus, als geograph. Schriftsteller. 1865. 4.
Geilfus, d. Stadtrechtsbrief, welchen der Graf Rudolf v. Habsburg im
J. 1261 denen v. Winterthur ertheilte. 1864. 4. Geilfus, Briefe v.
Wolfg. Dietr. Sulzer, weiland Stadtschreiber v. Winterthur. 1866. 4.
Grobius, tapfere Handlung D. Martin Luthers uf gehaltem rychstag zu
Wormbs. 1868. 8. Munzinger, ostafrikanische Studien. 1864. 8.
Munzinger, Sitten u. Recht der Bogos. 1859. 8. Wolfflin, Livianische
Kritik u. Livianischer Sprachgebrauch. 1864. 4. — Zittau. H.
K ä m m e l , Gymnasialdirektor: Ders., d. Unterricht im Griechischen.
1867. 8. Sonderabz. Ders., d. Schule in Zittau unter den
Einwirkungen der Reformation. 1868. 4. — Zürich.
S c h a b e l i t z ’sche Buchhandl. (Cäsar Schmidt): Lübke, über d.
alten Glasgemälde der Schweiz. 1866. 8. Fritzsche, die helvet.
Confession. 1866. 8. Böhmert, Beiträge zur Fabrikgesetzgebung.
1868. 8.
III. Für die Kunst- und Alterthumssammlung.
(Nr. 5734–5757.)
Altenburg. Geh. Reg.- Rath Dr. B a c k : Sieges- und
Friedensmedaille zum Wiener Congreß, 1814; Bleiabguß. 132 Papier-
u. Lackabdrücke von Siegeln. — Annweiler. F r a n c k , Subrector:
71. Bolzenspitze von Eisen. — Aschaffenburg. H e r m a n n ,
Uhrmachermeister: Römischer Krug, Vordertheil einer Spange,
Spiralring, Messer und Pfeilspitze von Bronze, Steinhammer. 2
russische Portativ-Altärchen von Messing. Siegelstock der
Aschaffenburger Hafnerzunft von 1693. — Augsburg.
S t a d t m a g i s t r a t : 30 Abdrücke von alten Kupferplatten:
Prospecte, Architekturen u. s. w. — B r a u n s c h w e i g . Frl.
H e l e n a B r i n c k m e i e r : 53 Silber- und 30 Kupfermünzen. —
Breslau. H. P a l m , Gymnasial-Oberlehrer: Siegelabdruck vom
Siegelringe König Karl’s XII. von Schweden. — Dietfurt. K ö h l e r ,
Senior u. Pfarrer: 2 Schriftproben vom 15. Jhdt. — Eisenach.
F a m i l i e des verstorb. Prof. Dr. R e i n : Siegelsammlung desselben.
— Kupferzell. Se. Durchl. Fürst F.-K. v o n H o h e n l o h e -
W a l d e n b u r g : Photographie nach einem Idealporträt des Grafen
Gottfried von Hohenlohe. — Nürnberg. B e r g a u , Professor an der
Kunstgewerbschule: Ohrring von Eisen, gefunden bei Karthaus 6 Fuß
tief neben 2 Schädeln. S. M e r k e l , Apotheker: 7 in Silber gefaßte
Amulette. 15.–16. Jhdt. Schreibstift von Bein für Wachstafeln. —
Regensburg. G. D e n g l e r , Domvikar: Gypsabgüsse nach einer
Crucifixgruppe vom 16. Jahrh. in der St. Peterskirche in Straubing. —
Im Stiege am Harz. A l f r e d J ü r g e n s , Lieutenant: Kleiner, auf
dem Schlachtfelde bei Lutter am Barenberge ausgegrabener Mörser
von Eisen. — Sulzbach. P l a t z e r , k. Landrichter: Silberne Medaille
auf die Erstürmung von Ofen. Venetian. Zechine des Dogen Manin.
Hessisches 20 Kreuzer-Stück, 1764. Brandenburg. 2 Groschen-Stück.
1693. Silbermünze Papst Julius II. und Bronzemünze von K.
Posthumus. — Winterthur. J. M. Z i e g l e r : Physikal. Karte der
Insel Madeira nebst einer Tafel mit Panoramen. — Würzburg.
L o s s e n , Fabrikant: Pfälzer Dukate.
72. Chronik der historischen Vereine.
M e m o r i e d e l R e a l e I s t i t u t o V e n e t o d i s c i e n z e ,
l e t t e r e e d a r t i . Volume decimo quarto. Venezia 1868. 4.
Quadro storico-critico della letteratura germanica nel secolo
nostro, del cav. Tommaso Gar.
M i t t h e i l u n g e n d e r k . k . C e n t r a l - C o m m i s s i o n
z u r E r f o r s c h u n g u n d E r h a l t u n g d e r
B a u d e n k m a l e . XIII Jahrgang. — September u. October. Wien,
1868. 4.
Dürer’s Triumphwagen und sein Antheil am Triumphzuge Kaiser
Maximilian’s I. (Mit 1 Tafel und 3 Holzschnitten.) Von Moriz Thausing.
— Das kaiserliche Lustschloß im Sternthiergarten bei Prag. (Mit 1
Holzschn.) (Dr. Corn. Schäffner.) — Die Filialkirche St. Johann im
Mauernthal. Von Prof. J. F. Keiblinger. — Archäologische Bilder aus
dem südlichen Böhmen. (Mit 7 Holzschnitten.) — Der Wappensaal
des steierischen Landhauses zu Grätz von 1548 bis 1743. (Dr. Fried.
Pichler.) — Kirchliche Alterthümer zu Güns. (L. Iljč; Oriovčanin.) —
Eine neu entdeckte rhäto-etruskische Steininschrift. (Mit 2 Holzschn.)
(Florian Orgler.) — Der Lügen-Veitel. (Mit 1 Holzschn.) (A. R. v. P.) —
Kurze Notizen über etliche vorarlbergische Künstler, besonders über
die Bildhauerfamlie Moll. (Jos. v. Bergmann.) — Vom Alterthums-
Vereine zu Wien. (Mit 10 Holzschnitten.)
S i t z u n g s b e r i c h t e d e r k ö n i g l . b a y e r. A k a d e m i e
d e r W i s s e n s c h a f t e n z u M ü n c h e n . 1868. I. Heft IV; II.
Heft I. II. München. 1868. 8.
Die Eroberung Constantinopels im Jahre 1453 aus einer
venetianischen Chronik. Von Thomas. — Ueber die Thierfabel in
Aegypten. Von Lauth. — Ueber die ursprüngliche Bedeutung des
Wortes brahma (brahman.) Von Haug. — Vergleichung von
73. Salimbenes Zeugniß über Berthold mit der vaticanischen
Originalhandschrift. Von Hofmann. — Ueber die Vossische
Bearbeitung der Gedichte Hölty’s. Von Halm. — Ergänzung des
Jaufre. Von Hofmann.
A r c h i v f ü r G e s c h i c h t e u n d A l t e r t h u m s k u n d e
v o n O b e r f r a n k e n . H e r a u s g e g e b e n v o m
h i s t o r i s c h e n V e r e i n v o n O b e r f r a n k e n z u
B a y r e u t h . Zehnter Band. Drittes Heft. Bayreuth. 1868. 8.
Biographie des Pfarrers Friedrich W. Stadelmann in Marktleuthen.
Von seinem Sohn, Vikar Fr. Gg. Wilh. Stadelmann. — Zug der
Nürnberger nach Lichtenberg im J. 1444. Von Rud. Frhrn. von
Reitzenstein. — Passio Sacerdotum unter der Regierung des
Markgrafen Achilles. Mitgeth. von Consistorialrath Dr. Kraußold. —
Die Abstammung von Eberhard I., Bischof von Bamberg. Von Karl
Chlodw. Frhrn. v. Reitzenstein. — Vereinsangelegenheiten etc.
K i r c h e n s c h m u c k . Ein Archiv für kirchliche
Kunstschöpfungen und christliche Alterthumskunde. Herausgegeben
unter der Leitung d e s c h r i s t l i c h e n K u n s t v e r e i n s d e r
D i ö c e s e R o t t e n b u r g . Redigirt von Pfarrer Laib und
Stadtpfarrer Dr. Schwarz. XXIV. Band, erste Hälfte. Zwölfter
Jahrgang, 1868. Drittes Vierteljahrsheft. Stuttgart. 8.
Auch eine Kirchenbaugeschichte (1743). — Der Prachtteppich mit
dem Stammbaume Christi in Mainzer Dome. — Werth der Urkunden
für die Kunstgeschichte. (Falk.) — Zur Sitte und Sprache der Kirche.
— Hausmarken an der Ellwanger Stiftskirche?
Z e i t s c h r i f t d e s V e r e i n s f ü r h e s s i s c h e
G e s c h i c h t e u n d L a n d e s k u n d e . Neue Folge. Zweiter Band.
Heft 1 u. 2. Kassel, 1868. 8.
Die ältere Geschichte der Stadt Liebenau. Von Oberger.-Ass.
Stölzel. — Beiträge zur Geschichte u. Genealogie des hessischen
Adels. Von G. Schenk zu Schweinsberg. — Etymologische
Spaziergänge durch Hessen. Von Dr. Wilh. Kellner. —
Kirchengeschichtliche Miscellen und Notizen von A. F. C. Vilmar. —
74. Schreiben des Kurfürsten August von Sachsen und der Landgrafen
Wilhelm und Ludwig von Hessen an den Kaiser Maximilian II.,
betreffend die Stadt und das Hochstift Fulda in ihren Bedrängnissen
durch den Abt Balthasar von Dermbach wegen des evangelischen
Glaubens, 1574.
M i t t h e i l u n g e n an die Mitglieder dess. Vereins. Nr. 3. u. 4.
Ausgeg. im April u. August. 1868. 8.
Z e i t s c h r i f t d e s V e r e i n s f ü r t h ü r i n g i s c h e
G e s c h i c h t e u n d A l t e r t h u m s k u n d e . Siebenter Band.
Zweites u. drittes Heft. Jena, Friedrich Frommann. 1868. 8.
Geschichte des Schlosses Tenneberg. Nebst Forst- und Jagd-
Chronik von Tenneberg. Von Dr. C. Polack. — Johannes Drach, ein
thüringischer Reformator. Von dems. — Statuten der Stadt Dornburg
a. d. Saale, vom Jahre 1625. Hrsg. von Dr. jur. Oscar Stickel. —
Miscellen.
M i t t h e i l u n g e n a u s d e m A r c h i v e d e s
v o i g t l ä n d i s c h e n a l t e r t h u m s f o r s c h e n d e n V e r e i n s
i n H o h e n l e u b e n , nebst dem 38. u. 39. J a h r e s b e r i c h t .
Hrsg. von Ferd. Metzner. Weida (1868). 8.
Vortrag über Unechtheit und Fälschung einiger wichtiger
voigtländischer Urkunden von Karl Frhrn. v. Reitzenstein. —
Aberglaube auf dem Frankenwalde. (Franz Harnisch.) — Verzeichniß
von Pfarrern im Voigtlande aus Urkunden. Vom Frhrn. v.
Reitzenstein. Jahresberichte etc.
M i t t h e i l u n g e n a u s d e m O s t e r l a n d e .
Gemeinschaftlich herausgegeben vom G e w e r b e - V e r e i n e ,
v o n d e r n a t u r f o r s c h e n d e n G e s e l l s c h a f t und d e m
b i e n e n w i r t h s c h a f t l i c h e n V e r e i n e z u A l t e n b u r g .
Achtzehnter Band. Drittes und viertes Heft, ausgegeben im August
1868. Auf Kosten der drei Gesellschaften. Altenburg. 1868. 8.
N e u e s L a u s i t z i s c h e s M a g a z i n . Im Auftrage der
O b e r l a u s i t z i s c h e n G e s e l l s c h a f t d e r
75. W i s s e n s c h a f t e n hrsg. von Prof. Dr. E. E. Struve. 44. Band, 2.
u. 3. Heft. Görlitz, 1868. 8.
Kulturgeschichtliche Zeitbilder. Von Dr. theol. Wildenhahn. —
Kriegsdrangsale der Oberlausitz zur Zeit des Hussitenkrieges. Von G.
Korschelt. — Wanderungen eines fahrenden Schülers, des
nachmaligen Pastors zu Reibersdorf, später zu Bertsdorf auf dem
Eigen, Michael Franck, unternommen in den Jahren 1586–1592. Von
Dr. Prof. Knothe. — Kulturgeschichtliche Findlinge. Aus handschriftl.
Annalen mitgeth. von Pastor K. Haupt. — Zweiter Nachtrag zum
Sagenbuche der Lausitz. Nachlese aus handschriftl. Annalen von
demselben: Die Kirche zu Altgolßen im Luckauer Kreise. Von C. R.
Schumann. (Mit 1 Abb.) — Zur allgemeinen vergleichenden
Sprachkunde. (Dritter Beitrag.) Vom Pastor prim. Leopold Haupt. —
Oberlausitzische Volkspoesie. Vom Past. emer. Dornick. —
Kriegsdrangsale der Oberlausitz zur Zeit des dreißigjährigen Krieges.
Von G. Korschelt. — Die Oberlausitzer Schlackenwälle. Vom Pastor
Karl Haupt. — Die ältesten deutschen Liebeslieder des zwölften
Jahrhunderts. In freier Uebertragung von Dr. Otto Richter, —
Gottfried von Neifen als volksthümlicher Dichter. Von dems. — Ein
Manifest Friedrichs des Großen vom 31. August 1793. —
Vereinsangelegenheiten, Bücheranzeigen, Miscellen u. s. w.
45. Band, 1. Doppelheft. Görlitz, 1868. 8.
Die Kreisstadt Guben in der Nieder-Lausitz seit dem Jahre 1815.
Vom Archidiakonus Tschirch. — Eine Studienreise nach Italien
(1563–1565). Vortrag von Prof. Dir. Kämmel. — Gab es zu Görlitz
eine Burg und Burggrafen? Eine kritische Untersuchung von Dr.
Herm. Knothe. — Vasari über Dürer. Von Dr. Alfred von Sallet. — Zur
100jähr. Gedächtnissfeier Wilhelm v. Humboldt’s. Vortrag von Dr.
Theod. Paur. — Langenau im Görlitzer Kreise. Beschrieben von
Pastor Ender. — Jubelfest des Gymnasiums in Luckau. —
Kinderreime und Kinderspiele. Ein Beitrag zur Volkspoesie der
Lausitz, von Karl Haupt, Pastor. — Heidnische Alterthümer aus dem
Lübener Kreise. Ein Beitrag zur Schles. Alterthumskunde von dems.
— Bücheranzeigen, Miscellen etc.
76. S c h l e s i e n s V o r z e i t i n B i l d u n d S c h r i f t .
N e u n t e r B e r i c h t d e s . . . V e r e i n s f ü r d a s M u s e u m
s c h l e s i s c h e r A l t e r t h ü m e r. Mit 2 Bildtafeln. Breslau, 1868.
4.
Karl IV., römischer Kaiser und König von Böhmen. Von Dr. Luchs.
— Schlesiens Antheil an der Verbreitung der Glasmalerei im
Mittelalter und ihrer Wiederbelebung in der Neuzeit. Von Assessor
Knoblich. — Die Breslauer Stadtbaumeister im 16. Jahrhundert. Von
Dr. Alwin Schultz. — Circular des fürstbischöflichen General-Vicariat-
Amtes zu Breslau. — Die Steinschneidekunst in Schlesien. Nach
Traditionen aus dem Riesengebirge. Von Graf Hoverden-Plencken. —
Vereinsangelegenheiten.
Zehnter Bericht (mit 3 lithogr. Bildtafeln u. 3 Holzschnitten): Der
Marienaltar des Museums schlesischer Alterthümer. Gezeichnet und
beschrieben von Dr. Alwin Schultz. — Die Pfarrkirche zu St. Georg in
Reichenbach i. Schl. Von Robert Schück. — Das Schloß Groß-Wilkau
bei Nimptsch. Von H. Strusche. — Das Schloß Vogelgesang bei
Nimptsch. Von Dr. Luchs. — Allerlei.
77. Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com