SlideShare a Scribd company logo
Data Processing Challenges Presented by IoT Data
in Distributed Computing
Tom Donoghue
School of Computing
National College of Ireland
Dublin, Ireland
Email: x16103491@student.ncirl.ie
Abstract—The Internet of Things (IoT) growth is charted to
accelerate over the next few years. The nature of IoT is such
that they exist as heterogeneous unfettered devices and sensors,
capable of emitting erratic and unyielding amounts of data. The
challenges of processing unrelenting data from the IoT are similar
to those of earlier Big data and Cloud computing but the scale is
magnified. Streaming masses of disparate data to cloud hubs may
well stifle and overwhelm infrastructure and service capability.
The IoT excel in generating data but possess limited resources
when it comes to data processing. We conduct a literature review
with an interest in how distributed computing may assist in
overcoming some of the challenges of processing IoT data.
I. INTRODUCTION
As the internet continues to evolve, each cycle of growth
appears to consume yet another group of entities capable of
generating more data than the previous set [1]. One such
group of entities is the Internet of Things (IoT). There is
an abundance of descriptions covering what the IoT are and
without an accepted definition it falls down to the setting in
which the IoT are used to obtain clarification [2],[3]. For our
purposes, we adopt an IoT description from [4] who suggest
that IoT objects share an internet connected relationship which,
enables them to converse through the transmission of data
concerning the context of their local environment. In this
paper we review a sample of literature which encompass some
of the challenges associated with processing IoT data and
how distributed computing may relieve certain pinch points?
Distributed computing (referring to compute and storage
services) offered through clouded implementations go some
way to close the gaps encountered in processing IoT data [5].
The literature refers to the estimated extent of IoT growth
as supplied by industrial and vendor research [6],[7]. For
example, a current IoT growth prediction is estimated to be
in the order of 30 billion IoT connected devices by 2020 with
a data footprint of 180 zettabytes being emitted annually by
2025. 1
II. IOT DATA PROCESSING CHALLENGES
The IoT is still a relatively new area and may appear
redolent of the advance of cloud computing. The sheer increase
in IoT deployment and uptake create distinct data processing
1https://www.ibm.com/blogs/internet-of-things/enabling-iot-business-
outcomes/ [Accessed 9 March 2017] [8]
challenges. The figures indicating data emissions may warrant
closer attention by those implementing IoT and their end users
than the figures powerpointed by vendors and commercial
research [9]. The IoT span a vast area and much of it is
beyond the scope of our focus (e.g. data security, privacy and
connectivity concerns which are relevant to IoT have been
precluded) on the data processing challenges mentioned in this
literature review and summarised below.
A. Volume of Data Generated
Each new deployment of an IoT device adds to the amount
of data emitted [4],[9]. The approach to systems architecture
as [7] observe will need to adapt to the demands of processing
IoT data. The IoT data multiplier effect will impact systems
which are not sized for the data profiles they expect to serve
(including built in burst capability to cater for future data
volume requirements) and will be at risk of becoming a point
of failure should ingestion gateways become flooded with data.
B. Uneven Frequency of Emission
Devices may be event driven, always on or a mixture of
both, hence the data generated is not necessarily uniform
which [1],[10] recognise and [1] further elaborate on possible
approaches to manage the irregular profile of IoT data. Another
issue could be related to cost where infrastructure is in place
awaiting data from event driven devices which are infrequently
triggered or as [11] suggest, devices emitting redundant data
to the cloud when it is superfluous to requirements.
C. Speed of Arrival
Devices producing real time or near real time streams as
[6],[9],[12] confer present an additional processing challenge.
Poor throughput and processing blockages will preclude timely
reporting of sensitive information emitted from event driven
sensors. Information which arrives too late may be of little
value [3].
D. Heterogeneity
A plethora of IoT devices producing differing output as
[7],[9],[12],[13] suggest will add to the data processing
burden. Connecting to a clouded infrastructure may relieve
some of the IoT device heterogeneity connectivity concerns
through the concept of the Cloud of Things [5],[11].
However, customised pre-processing may be required to
contend with the variety of flavours and formats of data
emitted [1],[6],[12],[14].
E. Quality
Data quality may be eroded for several reasons as [6]
mention this may be due to missing values, duplication,
unknown meaning and sparse data. The level of impact will
vary depending on the domain. Missing data may be due
to erratic connectivity, device malfunction or failures [6],[9].
Devices may generate data that is rated as poor because of
over dilution with superfluous values which are not part of
the end user requirements [14].
F. Data Locality
Devices generally are incapable of processing their own
data, hence data is transmitted to the cloud for processing
[4],[11],[12]. It is optimal to retain data locality, that the
compute is proximal to the data. For IoT this will require
boosting compute services towards the network edges.
Without the ability to identify, isolate and pre-process the
data the value it may contain could escape unnoticed [14].
Amongst a recent review of IoT literature [6] suggest that
it tends to conduct a broad synopsis of the areas of concern
without addressing the key item impacting IoT, that being how
the handling of data is accomplished. We find literature that
focus on IoT architecture [15] or IoT middleware [3], however,
in general the data element is recognised, but perhaps not to
the rigor desired.
III. DISTRIBUTED PROCESSING OF IOT DATA
The Cloud of Things (CoT) mentioned earlier, is the
confluence of IoT and the Cloud [4],[5],[11],[12]. There are
necessary shared services that IoT implementations obtain
an advantage from which, according to [5] and related
to our focus, is the provision of a substantial processing
resource. However, based on the challenges mentioned above,
dependence on a central clouded resource is unlikely to
perform to the demands placed on it by a disparate
heterogeneous IoT population. What follows is some of the
distributed computing assists which we see in our review of
the literature.
A. Fog Computing
Fog computing, as [11],[16] concur, is the juxtaposition of
cloud services to primarily, but not only, the outer reaches
of the network touching many disparate devices. Bringing
compute closer to the device through the Fog may alleviate
many of the IoT data challenges [11]. Proximal Fog endpoints
which [11] suggest enable data locality, initial inspection,
prejudiced selection of data and processing of high priority real
time data at the edge. Lower priority data (and where necessary
Fog processed data) undergoing a store and forward basis prior
to transmission to the central clouded facilities for downstream
processing. Bringing multiple Fog end points into play across
a wide array of IoT deployments and selective partitioning
of data by priority, leads to data only appearing where it is
needed. It is not apparent how an extensive Fog cloud would
be implemented [4] consider that the Fog lacks the resources
required to conduct lengthy or convoluted data processing, and
advocate the Lambda architectural design [17] that provides
processing and machine learning capabilities from device data.
The provision of storage and processing brought to work in
unison at these Fog edges as [18] recognise creates the setting
for parallelisation through federated mini clouds configured
to suit the local IoT needs, with data coalescing to central
clouded facilities. However, the dispersal of services to the
edge gives rise to issues of command and control of the
diaspora. The eradication of such issues is one of the alluring
factors for the move to the cloud in the first place [18].
B. Contextualising Data
Adding context to IoT data to enable a better understanding
of the data which as [3],[4] suggest has been highlighted due
to the expansion of the IoT. Addition of such context could
be achieved by early simple machine learning in the Fog,
providing the resources are in place. Conducting a cluster
analysis of the IoT data in real time as [1] suggest would
be one such method of bringing meaning to data which could
be distributed across compute. The use of Map Reduce on IoT
real time streams is not suitable as [12] point out and suggest
that a new design pattern which provides parallel processing
of IoT real time streams is long overdue.
IV. CONCLUSION
The IoT present many challenges which are typical of
those witnessed by the surge of Big Data. It appears that
the IoT data footprint is bigger by magnitudes. A review
of the literature associated with the challenges of IoT data
processing and what distributed computing might contribute
to the alleviation of such issues was conducted. The current
approach of a centralised cloud may not be capable of fully
keeping in step with the demands of IoT data processing.
Applying a Fog computing implementation could be designed
to overcome many of the challenges mentioned. Data locality
being a main attraction, hence assisting the introduction of
parallelisation. Obtaining a degree of meaning about the data
through its contextualisation could enable better management
of data volume through partitioning. Both these areas present
opportunities for further research in particular the devolution
of machine learning of real time IoT data processing in the
Fog.
REFERENCES
[1] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive clustering for
dynamic iot data streams,” IEEE Internet of Things Journal, vol. 4, no. 1,
pp. 64–74, 2017.
[2] L. Atzori, A. Iera, and G. Morabito, “A Survey of the Internet of
Things,” Proceedings of the 1st International Conference on E-Business
Intelligence (ICEBI2010), vol. 54, pp. 358–366, 2010.
[3] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middle-
ware for internet of things: A survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, 2016.
[4] M. D´ıaz, C. Mart´ın, and B. Rubio, “State-of-the-art, challenges, and open
issues in the integration of internet of things and cloud computing,”
Journal of Network and Computer Applications, vol. 67, pp. 99–117,
2016.
[5] A. Botta, W. De Donato, V. Persico, and A. Pescap´e, “Integration of
Cloud computing and Internet of Things: A survey,” Future Generation
Computer Systems, vol. 56, pp. 684–700, 2016.
[6] Y. Qin, Q. Z. Sheng, N. J. G. Falkner, S. Dustdar, H. Wang, and A. V.
Vasilakos, “When things matter: A survey on data-centric internet of
things,” Journal of Network and Computer Applications, vol. 64, pp.
137–153, 2016.
[7] T. Chun-Wei, L. Chin-Feng, C. Ming-Chao, and Y. Laurence, “Data
Mining for Internet of Things,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 1, pp. 77–97, 2014.
[8] IBM, “Enabling IoT Platforms to Deliver Business Outcomes.” [Online].
Available: https://www.ibm.com/blogs/internet-of-things/enabling-iot-
business-outcomes
[9] A. Sheth, “Internet of Things to Smart IoT Through Semantic, Cognitive,
and Perceptual Computing,” IEEE Intelligent Systems, vol. 31, no. 2, pp.
108–112, 2016.
[10] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
Aware Computing for The Internet of Things,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014.
[11] M. Aazam and E. N. Huh, “Fog computing and smart gateway based
communication for cloud of things,” Proceedings - 2014 International
Conference on Future Internet of Things and Cloud, FiCloud 2014, pp.
464–470, 2014.
[12] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based Big Data
Storage Systems in Cloud Computing: Perspectives and Challenges,”
IEEE Internet of Things Journal, vol. PP, no. 99, p. 1, 2016.
[13] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-
Oriented Data Storage Framework in Cloud Computing Platform,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1443–1451,
2014.
[14] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, “Data
mining for the internet of things: Literature review and challenges,”
International Journal of Distributed Sensor Networks, vol. 11, no. 8, p.
431047, 2015.
[15] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,”
Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015.
[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
Its Role in the Internet of Things,” Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pp. 13–16, 2012.
[17] N. Marz and J. Warren, Big data: principles and best practices of
scalable realtime data systems. London;Greenwich, Conn;: Manning,
2013.
[18] X. Masip-Bruin, E. Marn-Tordera, G. Tashakor, A. Jukan, and G. J. Ren,
“Foggy clouds and cloudy fogs: a real need for coordinated management
of fog-to-cloud computing systems,” IEEE Wireless Communications,
vol. 23, no. 5, pp. 120–128, October 2016.

More Related Content

PDF
Iot dan cc
PDF
Fog Computing: Issues, Challenges and Future Directions
PDF
Challenges and Proposed Solutions for Cloud Forensic
PDF
A Comparative Study: Taxonomy of High Performance Computing (HPC)
PDF
SURVEY OF CLOUD COMPUTING
PDF
A review on orchestration distributed systems for IoT smart services in fog c...
PPT
Disambiguating Advanced Computing for Humanities Researchers
PDF
ADMINISTRATION SECURITY ISSUES IN CLOUD COMPUTING
Iot dan cc
Fog Computing: Issues, Challenges and Future Directions
Challenges and Proposed Solutions for Cloud Forensic
A Comparative Study: Taxonomy of High Performance Computing (HPC)
SURVEY OF CLOUD COMPUTING
A review on orchestration distributed systems for IoT smart services in fog c...
Disambiguating Advanced Computing for Humanities Researchers
ADMINISTRATION SECURITY ISSUES IN CLOUD COMPUTING

What's hot (19)

PDF
Evaluating Cloud & Fog Computing based on Shifting & Scheduling Algorithms, L...
PDF
The Riisk and Challllenges off Clloud Computtiing
PDF
B1802041217
PDF
Security and privacy issues of fog
PDF
High level view of cloud security
PDF
Security issues associated with big data in cloud computing
PDF
Deep Learning Approaches for Information Centric Network and Internet of Things
PDF
Privacy Issues In Cloud Computing
PDF
A survey of fog computing concepts applications and issues
PDF
Toward a real time framework in cloudlet-based architecture
PDF
Cloud Forensics: Drawbacks in Current Methodologies and Proposed Solution
PDF
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
PDF
A Comparison of Cloud Execution Mechanisms Fog, Edge, and Clone Cloud Computing
PDF
Security and Privacy Issues of Fog Computing: A Survey
PDF
A premeditated cdm algorithm in cloud computing environment for fpm 2
PDF
07 20252 cloud computing survey
PDF
IRJET- A Novel Framework for Three Level Isolation in Cloud System based ...
PDF
International Journal of Engineering Research and Development
Evaluating Cloud & Fog Computing based on Shifting & Scheduling Algorithms, L...
The Riisk and Challllenges off Clloud Computtiing
B1802041217
Security and privacy issues of fog
High level view of cloud security
Security issues associated with big data in cloud computing
Deep Learning Approaches for Information Centric Network and Internet of Things
Privacy Issues In Cloud Computing
A survey of fog computing concepts applications and issues
Toward a real time framework in cloudlet-based architecture
Cloud Forensics: Drawbacks in Current Methodologies and Proposed Solution
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
A Comparison of Cloud Execution Mechanisms Fog, Edge, and Clone Cloud Computing
Security and Privacy Issues of Fog Computing: A Survey
A premeditated cdm algorithm in cloud computing environment for fpm 2
07 20252 cloud computing survey
IRJET- A Novel Framework for Three Level Isolation in Cloud System based ...
International Journal of Engineering Research and Development
Ad

Similar to Internet of Things (IoT) in the Fog (20)

PPTX
nmawdawjndjnejenjgnujnuenfgunennfnn.pptx
PPTX
IOT DATA MANAGEMENT AND COMPUTE STACK.pptx
PPTX
Internet of Things & Big Data
PDF
STEAM++ AN EXTENSIBLE END-TO-END FRAMEWORK FOR DEVELOPING IOT DATA PROCESSING...
PDF
Steam++ An Extensible End-to-end Framework for Developing IoT Data Processing...
PPTX
Why IoT needs Fog Computing ?
PDF
Fog computing and data concurrency
PDF
A Comprehensive Survey on Exiting Solution Approaches towards Security and Pr...
PDF
IOt Based Research on Challenges and Future
PPTX
Internet of Things – Technical landscape (1).pptx
PDF
UCT IoT Deployment and Challenges
PDF
Reconfigurable data intensive service for low latency cyber-physical systems ...
PDF
IOT_MODULE_4.pd easy to understand notes
PDF
Big Data and Internet of Things: A Roadmap For Smart Environments, Fog Comput...
PDF
Fog Computing: A Platform for Internet of Things and Analytics
PDF
IoT: Ongoing challenges and opportunities in Mobile Technology
PDF
[IJCT V3I2P33] Authors: Karandeep Kaur
PDF
A REVIEW PAPER ON “IOT” & FUTURE RESEARCH IN INTERNET APPLICATIONS
PDF
76 s201918
PDF
8. 9590 1-pb
nmawdawjndjnejenjgnujnuenfgunennfnn.pptx
IOT DATA MANAGEMENT AND COMPUTE STACK.pptx
Internet of Things & Big Data
STEAM++ AN EXTENSIBLE END-TO-END FRAMEWORK FOR DEVELOPING IOT DATA PROCESSING...
Steam++ An Extensible End-to-end Framework for Developing IoT Data Processing...
Why IoT needs Fog Computing ?
Fog computing and data concurrency
A Comprehensive Survey on Exiting Solution Approaches towards Security and Pr...
IOt Based Research on Challenges and Future
Internet of Things – Technical landscape (1).pptx
UCT IoT Deployment and Challenges
Reconfigurable data intensive service for low latency cyber-physical systems ...
IOT_MODULE_4.pd easy to understand notes
Big Data and Internet of Things: A Roadmap For Smart Environments, Fog Comput...
Fog Computing: A Platform for Internet of Things and Analytics
IoT: Ongoing challenges and opportunities in Mobile Technology
[IJCT V3I2P33] Authors: Karandeep Kaur
A REVIEW PAPER ON “IOT” & FUTURE RESEARCH IN INTERNET APPLICATIONS
76 s201918
8. 9590 1-pb
Ad

More from Tom Donoghue (7)

PDF
Data warehousing and machine learning primer
PDF
Chicago Crime Analysis
PDF
The Prepared Executive: A Linguistic Exploration
PDF
Crime Analysis using Regression and ANOVA
PDF
Exploration of Call Transcripts with MapReduce and Zipf’s Law
PDF
Data Lakes versus Data Warehouses
PDF
Data Warehouse Project Report
Data warehousing and machine learning primer
Chicago Crime Analysis
The Prepared Executive: A Linguistic Exploration
Crime Analysis using Regression and ANOVA
Exploration of Call Transcripts with MapReduce and Zipf’s Law
Data Lakes versus Data Warehouses
Data Warehouse Project Report

Recently uploaded (20)

PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PDF
Foundation of Data Science unit number two notes
PDF
Launch Your Data Science Career in Kochi – 2025
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
Database Infoormation System (DBIS).pptx
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PDF
Mega Projects Data Mega Projects Data
PPTX
Introduction to Knowledge Engineering Part 1
PDF
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
PPTX
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PPTX
Computer network topology notes for revision
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
.pdf is not working space design for the following data for the following dat...
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Foundation of Data Science unit number two notes
Launch Your Data Science Career in Kochi – 2025
Fluorescence-microscope_Botany_detailed content
Database Infoormation System (DBIS).pptx
Major-Components-ofNKJNNKNKNKNKronment.pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Miokarditis (Inflamasi pada Otot Jantung)
Mega Projects Data Mega Projects Data
Introduction to Knowledge Engineering Part 1
TRAFFIC-MANAGEMENT-AND-ACCIDENT-INVESTIGATION-WITH-DRIVING-PDF-FILE.pdf
05. PRACTICAL GUIDE TO MICROSOFT EXCEL.pptx
Clinical guidelines as a resource for EBP(1).pdf
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
Galatica Smart Energy Infrastructure Startup Pitch Deck
Computer network topology notes for revision
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
168300704-gasification-ppt.pdfhghhhsjsjhsuxush

Internet of Things (IoT) in the Fog

  • 1. Data Processing Challenges Presented by IoT Data in Distributed Computing Tom Donoghue School of Computing National College of Ireland Dublin, Ireland Email: x16103491@student.ncirl.ie Abstract—The Internet of Things (IoT) growth is charted to accelerate over the next few years. The nature of IoT is such that they exist as heterogeneous unfettered devices and sensors, capable of emitting erratic and unyielding amounts of data. The challenges of processing unrelenting data from the IoT are similar to those of earlier Big data and Cloud computing but the scale is magnified. Streaming masses of disparate data to cloud hubs may well stifle and overwhelm infrastructure and service capability. The IoT excel in generating data but possess limited resources when it comes to data processing. We conduct a literature review with an interest in how distributed computing may assist in overcoming some of the challenges of processing IoT data. I. INTRODUCTION As the internet continues to evolve, each cycle of growth appears to consume yet another group of entities capable of generating more data than the previous set [1]. One such group of entities is the Internet of Things (IoT). There is an abundance of descriptions covering what the IoT are and without an accepted definition it falls down to the setting in which the IoT are used to obtain clarification [2],[3]. For our purposes, we adopt an IoT description from [4] who suggest that IoT objects share an internet connected relationship which, enables them to converse through the transmission of data concerning the context of their local environment. In this paper we review a sample of literature which encompass some of the challenges associated with processing IoT data and how distributed computing may relieve certain pinch points? Distributed computing (referring to compute and storage services) offered through clouded implementations go some way to close the gaps encountered in processing IoT data [5]. The literature refers to the estimated extent of IoT growth as supplied by industrial and vendor research [6],[7]. For example, a current IoT growth prediction is estimated to be in the order of 30 billion IoT connected devices by 2020 with a data footprint of 180 zettabytes being emitted annually by 2025. 1 II. IOT DATA PROCESSING CHALLENGES The IoT is still a relatively new area and may appear redolent of the advance of cloud computing. The sheer increase in IoT deployment and uptake create distinct data processing 1https://www.ibm.com/blogs/internet-of-things/enabling-iot-business- outcomes/ [Accessed 9 March 2017] [8] challenges. The figures indicating data emissions may warrant closer attention by those implementing IoT and their end users than the figures powerpointed by vendors and commercial research [9]. The IoT span a vast area and much of it is beyond the scope of our focus (e.g. data security, privacy and connectivity concerns which are relevant to IoT have been precluded) on the data processing challenges mentioned in this literature review and summarised below. A. Volume of Data Generated Each new deployment of an IoT device adds to the amount of data emitted [4],[9]. The approach to systems architecture as [7] observe will need to adapt to the demands of processing IoT data. The IoT data multiplier effect will impact systems which are not sized for the data profiles they expect to serve (including built in burst capability to cater for future data volume requirements) and will be at risk of becoming a point of failure should ingestion gateways become flooded with data. B. Uneven Frequency of Emission Devices may be event driven, always on or a mixture of both, hence the data generated is not necessarily uniform which [1],[10] recognise and [1] further elaborate on possible approaches to manage the irregular profile of IoT data. Another issue could be related to cost where infrastructure is in place awaiting data from event driven devices which are infrequently triggered or as [11] suggest, devices emitting redundant data to the cloud when it is superfluous to requirements. C. Speed of Arrival Devices producing real time or near real time streams as [6],[9],[12] confer present an additional processing challenge. Poor throughput and processing blockages will preclude timely reporting of sensitive information emitted from event driven sensors. Information which arrives too late may be of little value [3]. D. Heterogeneity A plethora of IoT devices producing differing output as [7],[9],[12],[13] suggest will add to the data processing burden. Connecting to a clouded infrastructure may relieve some of the IoT device heterogeneity connectivity concerns through the concept of the Cloud of Things [5],[11].
  • 2. However, customised pre-processing may be required to contend with the variety of flavours and formats of data emitted [1],[6],[12],[14]. E. Quality Data quality may be eroded for several reasons as [6] mention this may be due to missing values, duplication, unknown meaning and sparse data. The level of impact will vary depending on the domain. Missing data may be due to erratic connectivity, device malfunction or failures [6],[9]. Devices may generate data that is rated as poor because of over dilution with superfluous values which are not part of the end user requirements [14]. F. Data Locality Devices generally are incapable of processing their own data, hence data is transmitted to the cloud for processing [4],[11],[12]. It is optimal to retain data locality, that the compute is proximal to the data. For IoT this will require boosting compute services towards the network edges. Without the ability to identify, isolate and pre-process the data the value it may contain could escape unnoticed [14]. Amongst a recent review of IoT literature [6] suggest that it tends to conduct a broad synopsis of the areas of concern without addressing the key item impacting IoT, that being how the handling of data is accomplished. We find literature that focus on IoT architecture [15] or IoT middleware [3], however, in general the data element is recognised, but perhaps not to the rigor desired. III. DISTRIBUTED PROCESSING OF IOT DATA The Cloud of Things (CoT) mentioned earlier, is the confluence of IoT and the Cloud [4],[5],[11],[12]. There are necessary shared services that IoT implementations obtain an advantage from which, according to [5] and related to our focus, is the provision of a substantial processing resource. However, based on the challenges mentioned above, dependence on a central clouded resource is unlikely to perform to the demands placed on it by a disparate heterogeneous IoT population. What follows is some of the distributed computing assists which we see in our review of the literature. A. Fog Computing Fog computing, as [11],[16] concur, is the juxtaposition of cloud services to primarily, but not only, the outer reaches of the network touching many disparate devices. Bringing compute closer to the device through the Fog may alleviate many of the IoT data challenges [11]. Proximal Fog endpoints which [11] suggest enable data locality, initial inspection, prejudiced selection of data and processing of high priority real time data at the edge. Lower priority data (and where necessary Fog processed data) undergoing a store and forward basis prior to transmission to the central clouded facilities for downstream processing. Bringing multiple Fog end points into play across a wide array of IoT deployments and selective partitioning of data by priority, leads to data only appearing where it is needed. It is not apparent how an extensive Fog cloud would be implemented [4] consider that the Fog lacks the resources required to conduct lengthy or convoluted data processing, and advocate the Lambda architectural design [17] that provides processing and machine learning capabilities from device data. The provision of storage and processing brought to work in unison at these Fog edges as [18] recognise creates the setting for parallelisation through federated mini clouds configured to suit the local IoT needs, with data coalescing to central clouded facilities. However, the dispersal of services to the edge gives rise to issues of command and control of the diaspora. The eradication of such issues is one of the alluring factors for the move to the cloud in the first place [18]. B. Contextualising Data Adding context to IoT data to enable a better understanding of the data which as [3],[4] suggest has been highlighted due to the expansion of the IoT. Addition of such context could be achieved by early simple machine learning in the Fog, providing the resources are in place. Conducting a cluster analysis of the IoT data in real time as [1] suggest would be one such method of bringing meaning to data which could be distributed across compute. The use of Map Reduce on IoT real time streams is not suitable as [12] point out and suggest that a new design pattern which provides parallel processing of IoT real time streams is long overdue. IV. CONCLUSION The IoT present many challenges which are typical of those witnessed by the surge of Big Data. It appears that the IoT data footprint is bigger by magnitudes. A review of the literature associated with the challenges of IoT data processing and what distributed computing might contribute to the alleviation of such issues was conducted. The current approach of a centralised cloud may not be capable of fully keeping in step with the demands of IoT data processing. Applying a Fog computing implementation could be designed to overcome many of the challenges mentioned. Data locality being a main attraction, hence assisting the introduction of parallelisation. Obtaining a degree of meaning about the data through its contextualisation could enable better management of data volume through partitioning. Both these areas present opportunities for further research in particular the devolution of machine learning of real time IoT data processing in the Fog. REFERENCES [1] D. Puschmann, P. Barnaghi, and R. Tafazolli, “Adaptive clustering for dynamic iot data streams,” IEEE Internet of Things Journal, vol. 4, no. 1, pp. 64–74, 2017. [2] L. Atzori, A. Iera, and G. Morabito, “A Survey of the Internet of Things,” Proceedings of the 1st International Conference on E-Business Intelligence (ICEBI2010), vol. 54, pp. 358–366, 2010. [3] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Cla, “Middle- ware for internet of things: A survey,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70–95, 2016.
  • 3. [4] M. D´ıaz, C. Mart´ın, and B. Rubio, “State-of-the-art, challenges, and open issues in the integration of internet of things and cloud computing,” Journal of Network and Computer Applications, vol. 67, pp. 99–117, 2016. [5] A. Botta, W. De Donato, V. Persico, and A. Pescap´e, “Integration of Cloud computing and Internet of Things: A survey,” Future Generation Computer Systems, vol. 56, pp. 684–700, 2016. [6] Y. Qin, Q. Z. Sheng, N. J. G. Falkner, S. Dustdar, H. Wang, and A. V. Vasilakos, “When things matter: A survey on data-centric internet of things,” Journal of Network and Computer Applications, vol. 64, pp. 137–153, 2016. [7] T. Chun-Wei, L. Chin-Feng, C. Ming-Chao, and Y. Laurence, “Data Mining for Internet of Things,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 77–97, 2014. [8] IBM, “Enabling IoT Platforms to Deliver Business Outcomes.” [Online]. Available: https://www.ibm.com/blogs/internet-of-things/enabling-iot- business-outcomes [9] A. Sheth, “Internet of Things to Smart IoT Through Semantic, Cognitive, and Perceptual Computing,” IEEE Intelligent Systems, vol. 31, no. 2, pp. 108–112, 2016. [10] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context Aware Computing for The Internet of Things,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014. [11] M. Aazam and E. N. Huh, “Fog computing and smart gateway based communication for cloud of things,” Proceedings - 2014 International Conference on Future Internet of Things and Cloud, FiCloud 2014, pp. 464–470, 2014. [12] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based Big Data Storage Systems in Cloud Computing: Perspectives and Challenges,” IEEE Internet of Things Journal, vol. PP, no. 99, p. 1, 2016. [13] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT- Oriented Data Storage Framework in Cloud Computing Platform,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1443–1451, 2014. [14] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, “Data mining for the internet of things: Literature review and challenges,” International Journal of Distributed Sensor Networks, vol. 11, no. 8, p. 431047, 2015. [15] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015. [16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its Role in the Internet of Things,” Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16, 2012. [17] N. Marz and J. Warren, Big data: principles and best practices of scalable realtime data systems. London;Greenwich, Conn;: Manning, 2013. [18] X. Masip-Bruin, E. Marn-Tordera, G. Tashakor, A. Jukan, and G. J. Ren, “Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems,” IEEE Wireless Communications, vol. 23, no. 5, pp. 120–128, October 2016.