SlideShare a Scribd company logo
Interval Notation
Interval notation is a mathematical notation designed to describe a set of real 
numbers. It is another way to write the domain or range of a relation.

In previous math courses, you have used set notation to describe a set of real 
numbers.
Examples:

1.     The set of real numbers greater than 2 is written in set notation as {x > 2}
       and can be sketched on a number line as:


                                                   2      Note the open dot at 2.
                                                          This means that we don't include the 
                                                          number 2 in the set.

2.     The set  { ­5 ≤ x < 3} describes the set of real numbers between ­5 and 3,
       and includes the endpoint ­5 in the set.
       On a number line, this can be sketched as:


                                    ­5                             3
                             Note the closed dot at ­5 and the open dot at 3
                             This means that we include the number ­5 in the 
                             set, but don't include the 3.



In interval notation, the set {x > 2} is written in the form (2,∞).
The round parenthesis indicates that we do not include the 2 in the set.
We always have a round parenthesis at ∞ or ­∞.
The set { ­5 ≤ x < 3} is written as [­5,3) in interval notation.
The square parenthesis indicates that we include the endpoint ­5 in the set.

Round parentheses correspond to open dots on sign diagrams, and square 
parentheses correspond to the solid dots.

We use the notation  (­∞,∞) to indicate the set of all real numbers, or R.

Here are some more examples:

                                  Set Notation           Interval Notation

                                    { x ≤ ­4}                  (­∞,­4]

                                   {2 < x ≤ 6}                 (2,6] 

                                 {­3 ≤ x ≤ 0}                  [­3, 0] 

                               {x < 0} or {x ≥ 2}     (­∞,0) ∪ [2,∞) 


                                            0              2
This last example has two separate regions on the number line that form the set. 
In set notation we use the word "or" to indicate this, and in interval notation we use the notation 
"∪" to indicate the Union of the two regions.



                                                                                                       1
Try these examples, and check your answers on the next page.

1.   Write the set {­8 < x ≤ 20} in interval notation.


2.   Write the interval  [4,∞) in set notation.


3.   Write the domain and the range of the function shown below.
     Use interval notation to describe both sets.


                            (­4,3)




                                                         (5,­2)




4.   Determine the domain and the range of the quadratic function  y = x2 + 7


5.   Draw the graph of any relation that has the domain [­2, ∞) and the range [0,4).


For more examples and notes on interval notation, see this YouTube video:


                    http://www.youtube.com/watch?v=hqg85P0ZMZ4




                                                                                       2
Answers:

1.   (­8,20]

2.   x ≥ 4

3.   Domain: [­4,5)     Range (­2,3]

4.   Domain (­∞,∞)      Range [7,∞)

5.   Answers may vary, but here is one example:

                                 (3,4)




               (­2,1)


                                         (5,0)




                                                  3

More Related Content

PPT
Chapter 4.1 and 4.2
PDF
Synthetic Division
PPTX
Dividing polynomials
PPTX
Domain and range_ppt (1)
PPTX
Intro to Domain, Range, and Functions.
PDF
Mat221 5.6 definite integral substitutions and the area between two curves
PPT
KEY
Notes solving polynomials using synthetic division
Chapter 4.1 and 4.2
Synthetic Division
Dividing polynomials
Domain and range_ppt (1)
Intro to Domain, Range, and Functions.
Mat221 5.6 definite integral substitutions and the area between two curves
Notes solving polynomials using synthetic division

What's hot (20)

PPTX
Polynomial Function and Synthetic Division
PPT
3. apply distance and midpoint
PPTX
Mult div rational exp
DOCX
G6 m3-c-lesson 14-s
PPTX
Synthetic division example
PPT
Polynomial functions
PPTX
Exploring sequences
KEY
Notes - Polynomial Division
PPTX
Elements of a sequence
DOC
Distance between two points
PPT
Volume of Cylinders
PPSX
Polynomial Function by Desirae &
PPTX
Alg2 lesson 7-8
PPTX
Alg2 lesson 7-8
PDF
Pc 2.3 b_notes
PPT
Lar calc10 ch03_sec1
PPTX
12 rational expressions
PPTX
11 applications of factoring
PDF
Algebra presentation
PPTX
Functions
Polynomial Function and Synthetic Division
3. apply distance and midpoint
Mult div rational exp
G6 m3-c-lesson 14-s
Synthetic division example
Polynomial functions
Exploring sequences
Notes - Polynomial Division
Elements of a sequence
Distance between two points
Volume of Cylinders
Polynomial Function by Desirae &
Alg2 lesson 7-8
Alg2 lesson 7-8
Pc 2.3 b_notes
Lar calc10 ch03_sec1
12 rational expressions
11 applications of factoring
Algebra presentation
Functions
Ad

Similar to Interval Notation (20)

PDF
Chapter 1 Functions Relations V3
PDF
Sets of numbers
PPT
Functions And Relations
PPTX
Lesson 7: Graphing Inequalities
PDF
MATH 11 lesson2.pdf
PPT
Functions And Relations
DOCX
Linear ineqns. and statistics
PDF
2.1 Basics of Functions and Their Graphs
KEY
0101 ch 1 day 1
PPTX
Module 3. mathematics in the modern world
PPT
MATHH LEARNING WITH AAAchapterP_Sec3.ppt
PPT
Sulalgtrig7e Isg 1 5
PDF
1 1 number theory
DOC
A2 Domain and Range Notes
PDF
3.2 Domain and Range
PPT
A2 Domain and Range
PPTX
Linear inequalities-intervals-system.pptx
PDF
Lesson 1: Functions and their representations (slides)
PDF
Lesson 1: Functions and their representations (slides)
Chapter 1 Functions Relations V3
Sets of numbers
Functions And Relations
Lesson 7: Graphing Inequalities
MATH 11 lesson2.pdf
Functions And Relations
Linear ineqns. and statistics
2.1 Basics of Functions and Their Graphs
0101 ch 1 day 1
Module 3. mathematics in the modern world
MATHH LEARNING WITH AAAchapterP_Sec3.ppt
Sulalgtrig7e Isg 1 5
1 1 number theory
A2 Domain and Range Notes
3.2 Domain and Range
A2 Domain and Range
Linear inequalities-intervals-system.pptx
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
Ad

Recently uploaded (20)

PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
Trump Administration's workforce development strategy
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Practical Manual AGRO-233 Principles and Practices of Natural Farming
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Unit 4 Computer Architecture Multicore Processor.pptx
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
International_Financial_Reporting_Standa.pdf
Trump Administration's workforce development strategy
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Environmental Education MCQ BD2EE - Share Source.pdf
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Weekly quiz Compilation Jan -July 25.pdf
Chinmaya Tiranga Azadi Quiz (Class 7-8 )

Interval Notation

  • 1. Interval Notation Interval notation is a mathematical notation designed to describe a set of real  numbers. It is another way to write the domain or range of a relation. In previous math courses, you have used set notation to describe a set of real  numbers. Examples: 1. The set of real numbers greater than 2 is written in set notation as {x > 2} and can be sketched on a number line as: 2 Note the open dot at 2. This means that we don't include the  number 2 in the set. 2. The set  { ­5 ≤ x < 3} describes the set of real numbers between ­5 and 3, and includes the endpoint ­5 in the set. On a number line, this can be sketched as: ­5 3 Note the closed dot at ­5 and the open dot at 3 This means that we include the number ­5 in the  set, but don't include the 3. In interval notation, the set {x > 2} is written in the form (2,∞). The round parenthesis indicates that we do not include the 2 in the set. We always have a round parenthesis at ∞ or ­∞. The set { ­5 ≤ x < 3} is written as [­5,3) in interval notation. The square parenthesis indicates that we include the endpoint ­5 in the set. Round parentheses correspond to open dots on sign diagrams, and square  parentheses correspond to the solid dots. We use the notation  (­∞,∞) to indicate the set of all real numbers, or R. Here are some more examples:    Set Notation   Interval Notation      { x ≤ ­4}         (­∞,­4]     {2 < x ≤ 6}         (2,6]    {­3 ≤ x ≤ 0}          [­3, 0]  {x < 0} or {x ≥ 2}     (­∞,0) ∪ [2,∞)  0 2 This last example has two separate regions on the number line that form the set.  In set notation we use the word "or" to indicate this, and in interval notation we use the notation  "∪" to indicate the Union of the two regions. 1
  • 2. Try these examples, and check your answers on the next page. 1. Write the set {­8 < x ≤ 20} in interval notation. 2. Write the interval  [4,∞) in set notation. 3. Write the domain and the range of the function shown below. Use interval notation to describe both sets. (­4,3) (5,­2) 4. Determine the domain and the range of the quadratic function  y = x2 + 7 5. Draw the graph of any relation that has the domain [­2, ∞) and the range [0,4). For more examples and notes on interval notation, see this YouTube video: http://www.youtube.com/watch?v=hqg85P0ZMZ4 2
  • 3. Answers: 1. (­8,20] 2. x ≥ 4 3. Domain: [­4,5) Range (­2,3] 4. Domain (­∞,∞) Range [7,∞) 5. Answers may vary, but here is one example: (3,4) (­2,1) (5,0) 3