SlideShare a Scribd company logo
Turning	
  agro-­‐biodiversity	
  open	
  data	
  to	
  
real	
  services:	
  an	
  intro	
  to	
  technologies	
  
Giannis	
  Stoitsis	
  
Agro-­‐Know	
  Technologies	
  
	
  
AIM	
  OF	
  THE	
  COURSE	
  
How	
  to	
  get	
  as	
  much	
  as	
  possible	
  from	
  data?	
  
Which	
  technologies	
  and	
  how	
  they	
  can	
  be	
  used?	
  
Course	
  syllabus	
  
•  Intro	
  
•  Technologies	
  
•  Sharing	
  data	
  
•  Linking	
  data	
  
•  Architectural	
  aspects	
  
•  Building	
  a	
  simple	
  case	
  
•  Some	
  suggesFons	
  
ARE	
  WE	
  READY	
  TO	
  BUILD	
  REAL	
  
SERVICES	
  USING	
  AGRO	
  AND	
  
BIODIVERSITY	
  OPEN	
  DATA?	
  
What	
  we	
  need	
  
data	
   technology	
  
and	
  of	
  course	
  a	
  good	
  idea	
  
As	
  for	
  the	
  data	
  
Thanks	
  Nikos	
  	
  
“Intro	
  to	
  green	
  data	
  ecosystems:	
  why	
  is	
  a	
  data-­‐
powered	
  tech	
  start	
  up	
  for	
  agriculture	
  &	
  
biodiversity	
  going	
  to	
  be	
  profitable?”	
  
TECHNOLOGIES:	
  THERE	
  IS	
  REALLY	
  
GREAT	
  STAFF	
  OUT	
  THERE	
  
Infrastructure	
  
•  We	
  have	
  the	
  cloud	
  
•  Cloud	
  is	
  geJng	
  cheaper,	
  beLer	
  and	
  more	
  
development	
  friendly	
  	
  
•  OpFons	
  
–  Amazon	
  
–  Rackspace	
  
–  Linode	
  
–  MicrosoQ	
  
–  Google	
  
–  Okeanos	
  
–  Other	
  Private	
  or	
  even	
  yours	
  (e.g.	
  OpenStack,	
  OpenNebula)	
  
Storage and Processing Monitoring/Management/Allocation layer
Virtualization of Infrastructure Layer
Virtual Machines
Virtualization of Infrastructure LayerVirtualized Infrastractures Management Layer
GUI tools and APIs
Cloud provider A Cloud provider B Cloud provider B
What	
  does	
  this	
  mean?	
  
Quick	
  prototyping	
  
Get	
  your	
  running	
  instance	
  in	
  minutes	
  
REST	
  
•  AbstracFng	
  the	
  architectural	
  elements	
  
•  Close	
  to	
  the	
  way	
  we	
  are	
  working	
  in	
  the	
  web	
  
•  Standard	
  hLp	
  methods	
  
–  GET	
  
–  PUT	
  
–  POST	
  
–  DELETE	
  
•  easy	
  to	
  be	
  built	
  especially	
  with	
  MVC	
  frameworks	
  
e.g.	
  Rails	
  	
  
•  easy	
  to	
  be	
  consumed	
  with	
  any	
  language	
  	
  
GET	
  hLp://www.example.com/User/1234	
  
POST	
  hLp://www.example	
  .com/User/	
  ‘{“user”:”{“”id”:”55”,	
  “name”:”John”}’	
  
DELETE	
  hLp://www.example.com/User/1234	
  
REST	
  clients	
  
•  easy	
  to	
  be	
  	
  developed	
  with	
  any	
  language	
  
•  check	
  before	
  start	
  developing	
  
Data	
  exchange	
  formats	
  
•  XML,	
  RDF	
  or	
  JSON?	
  
•  They	
  all	
  work	
  but	
  we	
  always	
  have	
  preferences	
  
•  Why	
  we	
  love	
  JSON?	
  
– can	
  be	
  parsed	
  by	
  any	
  front	
  end	
  (web,	
  mobile)	
  
– simple	
  
– can	
  be	
  used	
  to	
  represent	
  data	
  models	
  
– beLer	
  in	
  processing	
  e.g.	
  transformaFon	
  
– used	
  widely	
  by	
  all	
  document	
  based	
  repositories	
  
(e.g.	
  MongoDB,	
  elasFcsearch)	
  
Sensors	
  
•  Are	
  everywhere	
  
•  Two	
  categories	
  
– The	
  one	
  that	
  we	
  hold	
  i.e.	
  from	
  smartphones	
  today	
  
from	
  watch	
  tomorrow	
  
– The	
  one	
  installed	
  at	
  sites	
  e.g.	
  fields	
  
•  We	
  can	
  get	
  and	
  use	
  data	
  from	
  both	
  
get	
  data	
  from	
  a	
  smartphone	
  
•  sensing	
  data	
  
– MoFon	
  sensor/accelerometer	
  
– Proximity	
  
– gyroscope	
  (for	
  gaming)	
  
•  GPS:	
  	
  Core	
  LocaFon	
  Framework	
  to	
  get	
  the	
  
coordinates	
  and	
  tracking	
  user’s	
  locaFon	
  
GeJng	
  real	
  Fme	
  weather	
  data	
  
GeJng	
  real	
  Fme	
  weather	
  data	
  
	
  
h:p://api.openweathermap.org/data/2.5/weather?q=London,uk	
  	
  
Big	
  data	
  technologies	
  
•  A	
  trend?	
  	
  
•  Some	
  of	
  them	
  
– NoSQL	
  dbs	
  e.g.	
  MongoDB,	
  CouchDB	
  
– elasFcsearch	
  
– MapReduce	
  framework	
  e.g.	
  run	
  processes	
  over	
  a	
  
big	
  amount	
  of	
  data	
  
– Hadoop	
  
– Cassandra	
  
– and	
  more	
  ….	
  
Natural	
  Language	
  Processing	
  
•  Dbpedia	
  Spotlight	
  
•  EnFty	
  recogniFon	
  (idenFfy	
  names	
  and	
  places	
  in	
  a	
  text)	
  
•  DisambiguaFon	
  (apple	
  can	
  be	
  a	
  company,	
  a	
  fruit	
  or	
  a	
  river)	
  
Image	
  processing	
  
APIs	
  for	
  mobile	
  apps	
   Open	
  Source	
  Libraries	
  	
  
how	
  image	
  processing	
  can	
  be	
  used?	
  
•  Similar	
  to	
  how	
  Google	
  Goggles	
  works	
  but	
  trained	
  for	
  your	
  data	
  
Machine	
  Learning	
  
how	
  machine	
  learning	
  can	
  be	
  used?	
  
Provide	
  a	
  recommendaFon	
  service	
   Mine	
  and	
  Cluster	
  Data	
  
JavaScript	
  
•  can	
  do	
  almost	
  everything	
  
•  even	
  image	
  processing	
  e.g.	
  PixasFc	
  for	
  image	
  processing	
  
•  powerful	
  libraries	
  e.g.	
  D3	
  for	
  real	
  Fme	
  data	
  visualizaFon	
  
AnalyFcs	
  
•  Track	
  the	
  users	
  and	
  events	
  of	
  your	
  applicaFon	
  
– ElasFc	
  Search,	
  MongoDB	
  
– Google	
  AnalyFcs	
  
Follow	
  a	
  well	
  accepted	
  framework	
  
•  Model	
  View	
  Controller	
  (MVC)	
  
•  There	
  are	
  many	
  nice	
  MVC	
  based	
  frameworks	
  
– Rails	
  
– Spring	
  
– Zend	
  
– Yii	
  
– Laravel	
  
– and	
  more	
  …	
  
SHARING	
  DATA	
  
  	
   	
   	
  
	
   	
   	
   	
  	
  
Publisher
Date Catalog
Subject
ID
Author
Title
we actually share metadata
the	
  value	
  is	
  sFll	
  in	
  metadata	
  
•  Metadata	
  connect	
  us	
  to	
  the	
  real	
  data	
  	
  
– Search	
  metadata	
  records	
  not	
  raw	
  data	
  
•  Metadata	
  gives	
  the	
  context	
  
– themaFc	
  classificaFon	
  
– target	
  users	
  
•  Well	
  defined	
  standards	
  (e.g.	
  DC,	
  IEEE	
  LOM,	
  
Darwin	
  Core,	
  ABCD)	
  
•  RDF,	
  XML	
  and	
  JSON	
  binding	
  
AGGREGATING	
  METADATA	
  
…	
  the	
  power	
  is	
  at	
  the	
  back	
  end	
  
CulQvaQon	
   HarvesQng	
   Blossom	
  
Unorganized	
  content	
  in	
  
local	
  and	
  remote	
  sites	
  
Organized	
  and	
  
structured	
  content	
  in	
  
local	
  and	
  remote	
  
databases	
  
EducaQonal	
  
Bibliographic	
  
EducaQonal	
  
Geographical	
  
Bibliographic	
  
Agricultural	
  
Data	
  
PlaVorm	
  
Aggregate	
  
data	
  from	
  
diverse	
  
sources	
  
Work	
  with	
  
different	
  
type	
  of	
  data	
  
Prepare	
  
data	
  for	
  
meaningful	
  
services	
  
IngesQon	
  Enrichment	
  TranslaQon	
  Publishing	
  
Data	
  discovery	
  
services	
  
Widgets	
  
Authoring	
  
services	
  
AnalyQcs	
  	
  
services	
  
Why	
  to	
  aggregate?	
  
•  Enrich	
  metadata	
  
•  Provide	
  developer	
  friendly	
  APIs	
  that	
  can	
  be	
  
used	
  to	
  build	
  good	
  services	
  
•  Data	
  providers	
  rarely	
  have	
  APIs	
  
	
  
LINKING	
  DATA	
  
Why	
  we	
  sFll	
  have	
  data	
  silos?	
  
•  CompeFng	
  metadata	
  standards	
  (e.g.	
  DC,	
  IEEE	
  LOM)	
  
•  Diversity	
  of	
  web	
  interfaces	
  (e.g.	
  REST,	
  OAI-­‐PMH,	
  SOAP,	
  SPI,	
  SQI)	
  
•  Different	
  exchange	
  format	
  (e.g.	
  XML,	
  RDF,	
  JSON)	
  
•  Fragmented	
  use	
  of	
  texonomies	
  
LD for educational data/resource sharing
Overview
Approaches for LD in educational data sharing
 On the-fly/automated integration of heterogeneous APIs and data (http://www.meducator.net)
 Dataset (transformation and) cataloging (http://linkedup-project.eu)
?
	
  We	
  are	
  sFll	
  here	
  …	
   …	
  and	
  not	
  here	
  …	
  
What	
  is	
  Linked	
  Data?	
  
•  A	
  set	
  of	
  principles	
  and	
  technologies	
  for	
  the	
  Web	
  
of	
  Data	
  
•  Principles	
  
–  Put	
  the	
  data	
  online	
  with	
  permanent	
  address	
  (URIs)	
  
–  Describe	
  the	
  data	
  with	
  a	
  standard	
  representaFon	
  (RDF)	
  
–  Link	
  to	
  other	
  data	
  through	
  published	
  taxonomies	
  
•  Technologies	
  
–  Triple	
  stores	
  
–  SPARQL	
  
–  RDF,	
  OWL	
  	
  
–  SWRL	
  
Seman&c	
  Web	
  /	
  Linked	
  Data	
  Technologies	
  by	
  Mathieu	
  d'Aquin	
  on	
  Sep	
  11,	
  2013	
  
ApplicaFons	
  
Mash	
  up	
  and	
  Linked	
  Data:	
  FAO	
  case	
  
How	
  it	
  works?	
  
•  Based	
  on	
  AGROVOC	
  
•  Using	
  AGROVOC	
  mappings	
  to	
  other	
  ontologies	
  e.g.	
  GeopoliFcal	
  and	
  DBpedia	
  
<hLp://aims.fao.org/aos/agrovoc/c_690>	
  <hLp://www.w3.org/2004/02/skos/core#closeMatch>	
  <hLp://dbpedia.org/resource/Salmon>	
  	
  
<hLp://dbpedia.org/page/Salmon>	
  	
  
replace	
  resource	
  with	
  page	
  and	
  get	
  rdf	
  
Why	
  to	
  rely	
  on	
  linked	
  data	
  
•  Easy	
  to	
  be	
  processed	
  e.g.	
  microdata,	
  rdf	
  
•  Get	
  more	
  out	
  of	
  data	
  through	
  linking	
  e.g.	
  get	
  the	
  staFsFcs	
  for	
  a	
  country	
  
through	
  GeoPoliFcal	
  Ontology	
  
Web	
  resource	
  about	
  Greece	
  annotated	
  with	
  Agrovoc	
  term	
  “Greece”	
   hLp://www.fao.org/countryprofiles/geoinfo/geopoliFcal/data/Greece	
  
Country	
  GDP	
  
and	
  even	
  more	
  …	
  
•  Data	
  that	
  you	
  can	
  get	
  from	
  World	
  Bank	
  based	
  on	
  ISO3	
  
country	
  code	
  
–  Agricultural	
  irrigated	
  land	
  (%	
  of	
  total	
  agricultural	
  land)	
  
–  Cereal	
  yield	
  (kg	
  per	
  hectare)	
  
–  Rural	
  populaFon	
  (%	
  of	
  total	
  populaFon)	
  
–  Poverty	
  headcount	
  raFo	
  at	
  rural	
  poverty	
  line	
  (%	
  of	
  rural	
  
populaFon)	
  
–  Agricultural	
  machinery,	
  tractors	
  per	
  100	
  sq.	
  km	
  of	
  arable	
  
land	
  
–  Arable	
  land	
  (%	
  of	
  land	
  area)	
  
–  CO2	
  emissions	
  (kt)	
  
–  Fish	
  species,	
  threatened	
  
DECOUPLING	
  FRONT	
  END	
  FROM	
  
BACK	
  END	
  
how	
  it	
  works	
  
Template	
  customizaQon	
  
html,	
  css,	
  Ajax,	
  JS	
  
Data	
  mash	
  up	
  
Search	
  API	
  
Cloud	
  
Edu	
  resources	
  
Data	
  processing	
  and	
  enrichment	
  
e.g.	
  semanQc	
  enrichment	
  or	
  clustering	
  
Search	
  API	
  
Cultural	
  resources	
  
from	
  Museums	
  
how	
  it	
  works	
  
Template	
  customizaQon	
  
html,	
  css,	
  Ajax,	
  JS	
  
widget	
  in	
  Facebook	
  page	
  
Data	
  mash	
  up	
  
Search	
  API	
  
Cloud	
  
Edu	
  resources	
  
Data	
  processing	
  and	
  enrichment	
  
e.g.	
  semanQc	
  enrichment	
  or	
  clustering	
  
Search	
  API	
  
Cultural	
  resources	
  
from	
  Museums	
  
AUTHENTICATION	
  
Use	
  authenFcaFon	
  APIs	
  
NATIVE	
  OR	
  WEB	
  APP?	
  
NaFve	
  vs	
  Web	
  app	
  
•  Depends	
  on	
  the	
  business	
  case	
  
•  Responsive	
  web	
  app	
  are	
  cross	
  plaworm	
  
•  Responsive	
  design	
  is	
  great	
  but	
  it	
  is	
  not	
  so	
  
friendly	
  as	
  naFve	
  app	
  
•  NaFve	
  app	
  has	
  nice	
  workflow	
  
•  NaFve	
  app	
  can	
  use	
  device	
  sensors	
  
•  In	
  many	
  data-­‐powered	
  cases	
  you	
  need	
  both	
  
BUILDING	
  A	
  BASIC	
  APP	
  IN	
  HOURS	
  
THE	
  IDEA	
  
A	
  mobile	
  app	
  for	
  discovering	
  green	
  
learning	
  resources	
  
•  Similar	
  apps	
  
– OER	
  commons	
  
– iMarine	
  
•  Similar	
  web	
  app	
  
– hLp://www.greenlearningnetwork.org/
organicedunet/	
  
Which	
  data	
  
•  Learning	
  Resources	
  about	
  environment,	
  
agriculture	
  and	
  biodiversity	
  
•  API	
  end	
  point	
  hLp://83.212.96.219:8080/
glnRepo/api/ariadne/restp?json=Χ&callback=Y	
  
Recipe	
  
•  Mobile	
  app	
  SDK	
  e.g.	
  XCODE	
  
•  Mobile	
  simulator	
  
•  Some	
  reading	
  
•  Similar	
  examples	
  e.g.	
  Searching	
  in	
  twiLer	
  
•  A	
  workflow	
  
•  JSON	
  parser	
  
•  No	
  beauFes	
  at	
  this	
  stage	
  
Development	
  is	
  friendly	
  
Defining	
  the	
  workflow	
  is	
  a	
  game	
  
ConnecFng	
  to	
  the	
  data	
  
Use	
  NSJSONSerializaFon	
  Class	
  to	
  get	
  the	
  data	
  
and	
  finally	
  
SuggesFons	
  
•  focus	
  on	
  the	
  idea	
  and	
  business	
  value	
  
•  re-­‐use	
  the	
  workflow	
  of	
  successful	
  apps	
  
•  processing	
  gives	
  the	
  value	
  
•  do	
  not	
  create	
  unnecessary	
  procedures	
  e.g.	
  RegistraFon	
  page	
  
•  re-­‐use	
  exisFng	
  data	
  
•  put	
  emphasis	
  on	
  the	
  value	
  of	
  your	
  app	
  and	
  not	
  on	
  the	
  
complexity	
  of	
  the	
  technology	
  
•  always	
  check	
  first	
  if	
  there	
  is	
  open	
  source	
  code	
  
•  design	
  maLers	
  
•  go	
  beyond	
  trivial	
  and	
  benefit	
  from	
  innovaFon	
  
 
	
  
thank	
  you!	
  
stoitsis@agroknow.gr	
  	
  

More Related Content

PDF
The Real-time Web in the Age of Agents
ODP
If You Have The Content, Then Apache Has The Technology!
PDF
Linked Data in Scholarly Communication
PDF
The Open Annotation Collaboration (OAC) Model
PDF
RDFa: introduction, comparison with microdata and microformats and how to use it
PPTX
Graph Databases for SQL Server Professionals
PPTX
Graph Databases
PDF
Sep 2012 HUG: Apache Drill for Interactive Analysis
The Real-time Web in the Age of Agents
If You Have The Content, Then Apache Has The Technology!
Linked Data in Scholarly Communication
The Open Annotation Collaboration (OAC) Model
RDFa: introduction, comparison with microdata and microformats and how to use it
Graph Databases for SQL Server Professionals
Graph Databases
Sep 2012 HUG: Apache Drill for Interactive Analysis

What's hot (20)

PDF
Oak meeting 18/09/2014
PDF
Semantic Technologies and Triplestores for Business Intelligence
PPTX
2012 09 aos-workshop-johanneskeizer
PDF
OU RSE Tutorial Big Data Cluster
PPTX
Family tree of data – provenance and neo4j
PPTX
IGeLU 2014
PPTX
SUNYLA2018_Opening_Pandora’s_Box
PDF
Hadoop User Group - Status Apache Drill
PDF
Analyzing Web Archives
KEY
Introduction to the Semantic Web
PDF
IPython Notebook as a Unified Data Science Interface for Hadoop
PDF
Arabidopsis Information Portal, Developer Workshop 2014, Introduction
PPTX
NISO Webinar: Library Linked Data: From Vision to Reality
PDF
Large-Scale Data Storage and Processing for Scientists with Hadoop
PPTX
Introduction to hadoop V2
PPTX
Coordinating the Many Tools of Big Data - Apache HCatalog, Apache Pig and Apa...
PPTX
Apache Arrow - An Overview
PDF
What are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
PPTX
Linked Data as an enabling framework for resource discovery across libraries,...
PDF
Apache Arrow: Cross-language Development Platform for In-memory Data
Oak meeting 18/09/2014
Semantic Technologies and Triplestores for Business Intelligence
2012 09 aos-workshop-johanneskeizer
OU RSE Tutorial Big Data Cluster
Family tree of data – provenance and neo4j
IGeLU 2014
SUNYLA2018_Opening_Pandora’s_Box
Hadoop User Group - Status Apache Drill
Analyzing Web Archives
Introduction to the Semantic Web
IPython Notebook as a Unified Data Science Interface for Hadoop
Arabidopsis Information Portal, Developer Workshop 2014, Introduction
NISO Webinar: Library Linked Data: From Vision to Reality
Large-Scale Data Storage and Processing for Scientists with Hadoop
Introduction to hadoop V2
Coordinating the Many Tools of Big Data - Apache HCatalog, Apache Pig and Apa...
Apache Arrow - An Overview
What are Hadoop Components? Hadoop Ecosystem and Architecture | Edureka
Linked Data as an enabling framework for resource discovery across libraries,...
Apache Arrow: Cross-language Development Platform for In-memory Data

Similar to Intro to-technologies-Green-City-Hackathon-Athens (20)

PPTX
The Semantic Web Exists. What Next?
PDF
Implementing Linked Data in Low-Resource Conditions
ODP
Linked Data
PPTX
NISO/DCMI September 25 Webinar: Implementing Linked Data in Developing Countr...
PDF
Enabling Smarter Cities through Internet of Things, Web of Data & Citizen Par...
PPT
ReadWriteWeb's Top 5 Web Trends in 2009
PDF
Semantic Search: We're Living in a Golden Age for Information
PDF
Sharing data on the web (2013)
PDF
Some news about the SW
PPTX
Lotico oct 2010
PPTX
SMX Advanced 2012 - Catching up with the Semantic Web
PDF
Open data and linked data
PPTX
The Information Workbench - Linked Data and Semantic Wikis in the Enterprise
PDF
Open Data - technical approach
PDF
Planetdata simpda
PDF
PlanetData: Consuming Structured Data at Web Scale
PPT
RDFa From Theory to Practice
PPTX
Introduction to Big data
PDF
IOT, Real World Things, & Linked data
PPSX
The Web of data and web data commons
The Semantic Web Exists. What Next?
Implementing Linked Data in Low-Resource Conditions
Linked Data
NISO/DCMI September 25 Webinar: Implementing Linked Data in Developing Countr...
Enabling Smarter Cities through Internet of Things, Web of Data & Citizen Par...
ReadWriteWeb's Top 5 Web Trends in 2009
Semantic Search: We're Living in a Golden Age for Information
Sharing data on the web (2013)
Some news about the SW
Lotico oct 2010
SMX Advanced 2012 - Catching up with the Semantic Web
Open data and linked data
The Information Workbench - Linked Data and Semantic Wikis in the Enterprise
Open Data - technical approach
Planetdata simpda
PlanetData: Consuming Structured Data at Web Scale
RDFa From Theory to Practice
Introduction to Big data
IOT, Real World Things, & Linked data
The Web of data and web data commons

More from Stoitsis Giannis (16)

PDF
Food, agriculture and open data – the world is changing
PDF
Agroknow and FREME presentation @Linda workshop-20-11-2015
PDF
The Open Data Stakeholders’ Ecosystem
PDF
Open Data in the agrifood sector
PDF
Open-data-in-agrifood-sector-challenges-opportunities
PPTX
How internet and open data transforms the agricultural sector (in greek)
PDF
Facilitating regional growth through they use of open agricultural data
PPTX
City to-farm agro-know
PPTX
Open data: Showcases from agricultural domain
PDF
How e-infrastructure can contribute to Linked Germplasm Data
PPTX
Open Data Working Group - Agricultural Showcase
PPT
Ag infra kream-presentation-7-6-2013
PPTX
Cetaf ISTC Meeting: Natural-Europe Presentation
PPTX
E services for learning in agriculture-stevia-event-dec-2012
PPTX
Requirements for Processing Datasets for Recommender Systems
PPTX
Organic.lingua presentation cer_organic
Food, agriculture and open data – the world is changing
Agroknow and FREME presentation @Linda workshop-20-11-2015
The Open Data Stakeholders’ Ecosystem
Open Data in the agrifood sector
Open-data-in-agrifood-sector-challenges-opportunities
How internet and open data transforms the agricultural sector (in greek)
Facilitating regional growth through they use of open agricultural data
City to-farm agro-know
Open data: Showcases from agricultural domain
How e-infrastructure can contribute to Linked Germplasm Data
Open Data Working Group - Agricultural Showcase
Ag infra kream-presentation-7-6-2013
Cetaf ISTC Meeting: Natural-Europe Presentation
E services for learning in agriculture-stevia-event-dec-2012
Requirements for Processing Datasets for Recommender Systems
Organic.lingua presentation cer_organic

Recently uploaded (20)

PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Cell Structure & Organelles in detailed.
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Classroom Observation Tools for Teachers
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Pre independence Education in Inndia.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Microbial disease of the cardiovascular and lymphatic systems
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Final Presentation General Medicine 03-08-2024.pptx
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
TR - Agricultural Crops Production NC III.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Cell Structure & Organelles in detailed.
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Classroom Observation Tools for Teachers
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Complications of Minimal Access Surgery at WLH
Microbial diseases, their pathogenesis and prophylaxis
Pre independence Education in Inndia.pdf
Renaissance Architecture: A Journey from Faith to Humanism
2.FourierTransform-ShortQuestionswithAnswers.pdf

Intro to-technologies-Green-City-Hackathon-Athens

  • 1. Turning  agro-­‐biodiversity  open  data  to   real  services:  an  intro  to  technologies   Giannis  Stoitsis   Agro-­‐Know  Technologies    
  • 2. AIM  OF  THE  COURSE  
  • 3. How  to  get  as  much  as  possible  from  data?   Which  technologies  and  how  they  can  be  used?  
  • 4. Course  syllabus   •  Intro   •  Technologies   •  Sharing  data   •  Linking  data   •  Architectural  aspects   •  Building  a  simple  case   •  Some  suggesFons  
  • 5. ARE  WE  READY  TO  BUILD  REAL   SERVICES  USING  AGRO  AND   BIODIVERSITY  OPEN  DATA?  
  • 6. What  we  need   data   technology   and  of  course  a  good  idea  
  • 7. As  for  the  data   Thanks  Nikos     “Intro  to  green  data  ecosystems:  why  is  a  data-­‐ powered  tech  start  up  for  agriculture  &   biodiversity  going  to  be  profitable?”  
  • 8. TECHNOLOGIES:  THERE  IS  REALLY   GREAT  STAFF  OUT  THERE  
  • 9. Infrastructure   •  We  have  the  cloud   •  Cloud  is  geJng  cheaper,  beLer  and  more   development  friendly     •  OpFons   –  Amazon   –  Rackspace   –  Linode   –  MicrosoQ   –  Google   –  Okeanos   –  Other  Private  or  even  yours  (e.g.  OpenStack,  OpenNebula)  
  • 10. Storage and Processing Monitoring/Management/Allocation layer Virtualization of Infrastructure Layer Virtual Machines Virtualization of Infrastructure LayerVirtualized Infrastractures Management Layer GUI tools and APIs Cloud provider A Cloud provider B Cloud provider B
  • 11. What  does  this  mean?   Quick  prototyping   Get  your  running  instance  in  minutes  
  • 12. REST   •  AbstracFng  the  architectural  elements   •  Close  to  the  way  we  are  working  in  the  web   •  Standard  hLp  methods   –  GET   –  PUT   –  POST   –  DELETE   •  easy  to  be  built  especially  with  MVC  frameworks   e.g.  Rails     •  easy  to  be  consumed  with  any  language     GET  hLp://www.example.com/User/1234   POST  hLp://www.example  .com/User/  ‘{“user”:”{“”id”:”55”,  “name”:”John”}’   DELETE  hLp://www.example.com/User/1234  
  • 13. REST  clients   •  easy  to  be    developed  with  any  language   •  check  before  start  developing  
  • 14. Data  exchange  formats   •  XML,  RDF  or  JSON?   •  They  all  work  but  we  always  have  preferences   •  Why  we  love  JSON?   – can  be  parsed  by  any  front  end  (web,  mobile)   – simple   – can  be  used  to  represent  data  models   – beLer  in  processing  e.g.  transformaFon   – used  widely  by  all  document  based  repositories   (e.g.  MongoDB,  elasFcsearch)  
  • 15. Sensors   •  Are  everywhere   •  Two  categories   – The  one  that  we  hold  i.e.  from  smartphones  today   from  watch  tomorrow   – The  one  installed  at  sites  e.g.  fields   •  We  can  get  and  use  data  from  both  
  • 16. get  data  from  a  smartphone   •  sensing  data   – MoFon  sensor/accelerometer   – Proximity   – gyroscope  (for  gaming)   •  GPS:    Core  LocaFon  Framework  to  get  the   coordinates  and  tracking  user’s  locaFon  
  • 17. GeJng  real  Fme  weather  data  
  • 18. GeJng  real  Fme  weather  data     h:p://api.openweathermap.org/data/2.5/weather?q=London,uk    
  • 19. Big  data  technologies   •  A  trend?     •  Some  of  them   – NoSQL  dbs  e.g.  MongoDB,  CouchDB   – elasFcsearch   – MapReduce  framework  e.g.  run  processes  over  a   big  amount  of  data   – Hadoop   – Cassandra   – and  more  ….  
  • 20. Natural  Language  Processing   •  Dbpedia  Spotlight   •  EnFty  recogniFon  (idenFfy  names  and  places  in  a  text)   •  DisambiguaFon  (apple  can  be  a  company,  a  fruit  or  a  river)  
  • 21. Image  processing   APIs  for  mobile  apps   Open  Source  Libraries    
  • 22. how  image  processing  can  be  used?   •  Similar  to  how  Google  Goggles  works  but  trained  for  your  data  
  • 24. how  machine  learning  can  be  used?   Provide  a  recommendaFon  service   Mine  and  Cluster  Data  
  • 25. JavaScript   •  can  do  almost  everything   •  even  image  processing  e.g.  PixasFc  for  image  processing   •  powerful  libraries  e.g.  D3  for  real  Fme  data  visualizaFon  
  • 26. AnalyFcs   •  Track  the  users  and  events  of  your  applicaFon   – ElasFc  Search,  MongoDB   – Google  AnalyFcs  
  • 27. Follow  a  well  accepted  framework   •  Model  View  Controller  (MVC)   •  There  are  many  nice  MVC  based  frameworks   – Rails   – Spring   – Zend   – Yii   – Laravel   – and  more  …  
  • 29.                   Publisher Date Catalog Subject ID Author Title we actually share metadata
  • 30. the  value  is  sFll  in  metadata   •  Metadata  connect  us  to  the  real  data     – Search  metadata  records  not  raw  data   •  Metadata  gives  the  context   – themaFc  classificaFon   – target  users   •  Well  defined  standards  (e.g.  DC,  IEEE  LOM,   Darwin  Core,  ABCD)   •  RDF,  XML  and  JSON  binding  
  • 32. …  the  power  is  at  the  back  end   CulQvaQon   HarvesQng   Blossom   Unorganized  content  in   local  and  remote  sites   Organized  and   structured  content  in   local  and  remote   databases   EducaQonal   Bibliographic   EducaQonal   Geographical   Bibliographic   Agricultural   Data   PlaVorm   Aggregate   data  from   diverse   sources   Work  with   different   type  of  data   Prepare   data  for   meaningful   services   IngesQon  Enrichment  TranslaQon  Publishing   Data  discovery   services   Widgets   Authoring   services   AnalyQcs     services  
  • 33. Why  to  aggregate?   •  Enrich  metadata   •  Provide  developer  friendly  APIs  that  can  be   used  to  build  good  services   •  Data  providers  rarely  have  APIs    
  • 35. Why  we  sFll  have  data  silos?   •  CompeFng  metadata  standards  (e.g.  DC,  IEEE  LOM)   •  Diversity  of  web  interfaces  (e.g.  REST,  OAI-­‐PMH,  SOAP,  SPI,  SQI)   •  Different  exchange  format  (e.g.  XML,  RDF,  JSON)   •  Fragmented  use  of  texonomies   LD for educational data/resource sharing Overview Approaches for LD in educational data sharing  On the-fly/automated integration of heterogeneous APIs and data (http://www.meducator.net)  Dataset (transformation and) cataloging (http://linkedup-project.eu) ?  We  are  sFll  here  …   …  and  not  here  …  
  • 36. What  is  Linked  Data?   •  A  set  of  principles  and  technologies  for  the  Web   of  Data   •  Principles   –  Put  the  data  online  with  permanent  address  (URIs)   –  Describe  the  data  with  a  standard  representaFon  (RDF)   –  Link  to  other  data  through  published  taxonomies   •  Technologies   –  Triple  stores   –  SPARQL   –  RDF,  OWL     –  SWRL  
  • 37. Seman&c  Web  /  Linked  Data  Technologies  by  Mathieu  d'Aquin  on  Sep  11,  2013   ApplicaFons  
  • 38. Mash  up  and  Linked  Data:  FAO  case  
  • 39. How  it  works?   •  Based  on  AGROVOC   •  Using  AGROVOC  mappings  to  other  ontologies  e.g.  GeopoliFcal  and  DBpedia   <hLp://aims.fao.org/aos/agrovoc/c_690>  <hLp://www.w3.org/2004/02/skos/core#closeMatch>  <hLp://dbpedia.org/resource/Salmon>     <hLp://dbpedia.org/page/Salmon>     replace  resource  with  page  and  get  rdf  
  • 40. Why  to  rely  on  linked  data   •  Easy  to  be  processed  e.g.  microdata,  rdf   •  Get  more  out  of  data  through  linking  e.g.  get  the  staFsFcs  for  a  country   through  GeoPoliFcal  Ontology   Web  resource  about  Greece  annotated  with  Agrovoc  term  “Greece”   hLp://www.fao.org/countryprofiles/geoinfo/geopoliFcal/data/Greece   Country  GDP  
  • 41. and  even  more  …   •  Data  that  you  can  get  from  World  Bank  based  on  ISO3   country  code   –  Agricultural  irrigated  land  (%  of  total  agricultural  land)   –  Cereal  yield  (kg  per  hectare)   –  Rural  populaFon  (%  of  total  populaFon)   –  Poverty  headcount  raFo  at  rural  poverty  line  (%  of  rural   populaFon)   –  Agricultural  machinery,  tractors  per  100  sq.  km  of  arable   land   –  Arable  land  (%  of  land  area)   –  CO2  emissions  (kt)   –  Fish  species,  threatened  
  • 42. DECOUPLING  FRONT  END  FROM   BACK  END  
  • 43. how  it  works   Template  customizaQon   html,  css,  Ajax,  JS   Data  mash  up   Search  API   Cloud   Edu  resources   Data  processing  and  enrichment   e.g.  semanQc  enrichment  or  clustering   Search  API   Cultural  resources   from  Museums  
  • 44. how  it  works   Template  customizaQon   html,  css,  Ajax,  JS   widget  in  Facebook  page   Data  mash  up   Search  API   Cloud   Edu  resources   Data  processing  and  enrichment   e.g.  semanQc  enrichment  or  clustering   Search  API   Cultural  resources   from  Museums  
  • 47. NATIVE  OR  WEB  APP?  
  • 48. NaFve  vs  Web  app   •  Depends  on  the  business  case   •  Responsive  web  app  are  cross  plaworm   •  Responsive  design  is  great  but  it  is  not  so   friendly  as  naFve  app   •  NaFve  app  has  nice  workflow   •  NaFve  app  can  use  device  sensors   •  In  many  data-­‐powered  cases  you  need  both  
  • 49. BUILDING  A  BASIC  APP  IN  HOURS  
  • 51. A  mobile  app  for  discovering  green   learning  resources   •  Similar  apps   – OER  commons   – iMarine   •  Similar  web  app   – hLp://www.greenlearningnetwork.org/ organicedunet/  
  • 52. Which  data   •  Learning  Resources  about  environment,   agriculture  and  biodiversity   •  API  end  point  hLp://83.212.96.219:8080/ glnRepo/api/ariadne/restp?json=Χ&callback=Y  
  • 53. Recipe   •  Mobile  app  SDK  e.g.  XCODE   •  Mobile  simulator   •  Some  reading   •  Similar  examples  e.g.  Searching  in  twiLer   •  A  workflow   •  JSON  parser   •  No  beauFes  at  this  stage  
  • 55. Defining  the  workflow  is  a  game  
  • 56. ConnecFng  to  the  data   Use  NSJSONSerializaFon  Class  to  get  the  data  
  • 58. SuggesFons   •  focus  on  the  idea  and  business  value   •  re-­‐use  the  workflow  of  successful  apps   •  processing  gives  the  value   •  do  not  create  unnecessary  procedures  e.g.  RegistraFon  page   •  re-­‐use  exisFng  data   •  put  emphasis  on  the  value  of  your  app  and  not  on  the   complexity  of  the  technology   •  always  check  first  if  there  is  open  source  code   •  design  maLers   •  go  beyond  trivial  and  benefit  from  innovaFon  
  • 59.     thank  you!   stoitsis@agroknow.gr