SlideShare a Scribd company logo
EECS0712 Adaptive Signal Processing
1
Introduction to Adaptive Signal
Processing
EECS0712 Adaptive Signal Processing
1
Introduction to Adaptive Signal
Processing
Assoc. Prof. Dr. Peerapol Yuvapoositanon
Dept. of Electronic Engineering
CESdSP ASP1-1
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Course Outline
• Introduction to Adaptive Signal Processing
• Adaptive Algorithms Families:
• Newton’s Method and Steepest Descent
• Least Mean Squared (LMS)
• Recursive Least Squares (RLS)
• Kalman Filtering
• Applications of Adaptive Signal Processing in
Communications and Blind Equalization
• Introduction to Adaptive Signal Processing
• Adaptive Algorithms Families:
• Newton’s Method and Steepest Descent
• Least Mean Squared (LMS)
• Recursive Least Squares (RLS)
• Kalman Filtering
• Applications of Adaptive Signal Processing in
Communications and Blind Equalization
CESdSP ASP1-2
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Evaluation
• Assignment= 20 %
• Midterm = 30 %
• Final = 50 %
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-3
Textbooks
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-4
http://embedsigproc.wordpress.com
/eecs0712-adaptive-signal-processing/
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-5
QR code
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-6
Adaptive Signal Processing
• Definition: Adaptive signal processing is the
design of adaptive systems for signal-
processing applications.
[http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr
ocessing]
• Definition: Adaptive signal processing is the
design of adaptive systems for signal-
processing applications.
[http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr
ocessing]
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-7
System Identification
• Let’s consider a system called “plant”
• We need to know its characteristics, i.e., The
impulse response of the system
CESdSP ASP1-8
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Plant Comparison
CESdSP ASP1-9
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Error of Plant Outputs
CESdSP ASP1-10
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Error of Estimation
• Error of estimation is represented by the
signal energy of error
2 2
2 2
( )
2
e d y
d dy y
 
  
CESdSP ASP1-11
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
2 2
2 2
( )
2
e d y
d dy y
 
  
Adaptive System
• We can do it adaptively
CESdSP ASP1-12
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• Adjust the weight for minimum error e
One-weight
CESdSP ASP1-13
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
2 2
2 2
2 2
0 0 0 0
( )
2
( ) 2( )( ) ( )I I
e d y
d dy y
w x w x w x w x
 
  
  
CESdSP
2 2
2 2
2 2
0 0 0 0
( )
2
( ) 2( )( ) ( )I I
e d y
d dy y
w x w x w x w x
 
  
  
ASP1-14
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Error Curve
• Parabola equation
CESdSP ASP1-15
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Partial diff. and set to zero
• Partial differentiation
• Set to zero
• Result:
2
2 2
0 0 0 0
0 0
2 2
0 0
( ) 2( )( ) ( )
2 2
I I
I I
I
e
w x w x w x w x
w w
w x w x
 
  
 
  
• Partial differentiation
• Set to zero
• Result:
CESdSP
2
2 2
0 0 0 0
0 0
2 2
0 0
( ) 2( )( ) ( )
2 2
I I
I I
I
e
w x w x w x w x
w w
w x w x
 
  
 
  
2 2
0 00 2 2 I
w x w x  
0 0
I
w w
ASP1-16
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Multiple Weight Plants
• We calculate the weight adaptively
• Questions:
– What is the type of signal “x” to be used, e.g.
Sine, Cosine or Random signals ?
– If there is more than one weight w0 , i.e., w0….wN-
1, how do we calculate the solution?
• We calculate the weight adaptively
• Questions:
– What is the type of signal “x” to be used, e.g.
Sine, Cosine or Random signals ?
– If there is more than one weight w0 , i.e., w0….wN-
1, how do we calculate the solution?
CESdSP ASP1-17
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Plants with Multiple Weight
• If we have multiple weights
CESdSP
1
0 1w w z
 w
ASP1-18
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• In the case of two-weight
Two-weight
CESdSP ASP1-19
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Input
• From
• We construct the x as vector with first
element is the most recent
(3), (2), (1), (0), ( 1), ( 2),...x x x x x x 
• From
• We construct the x as vector with first
element is the most recent
CESdSP
[ (3) (2) (1) (0)...]T
x x x xx
ASP1-20
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Plants with Multiple Weight
(aka “Transversal Filter”)
• If we have multiple weights
( )x n ( 1)x n 
CESdSP
0 ( )w x n
0 ( 1)w x n 
0 0( ) ( ) ( 1)y n w x n w x n  
ASP1-21
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Regression input signal vector
• If the current time is n, we have “Regression
input signal vector”
[ ( ) ( 1) ( 2) ( 3)...]T
x n x n x n x n   x
CESdSP
[ ( ) ( 1) ( 2) ( 3)...]T
x n x n x n x n   x
ASP1-22
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
0
0 1
1
[ ]T
w
w ww
 
  
  
w
CESdSP
0
0 1
1
[ ]T
w
w ww
 
  
  
w
0
0 1
1
ˆ [ ]
I
I I T
I
w
w w
w
 
 
  
 
 
w
ASP1-23
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Convolution
• Output of plant is a convolution
• Ex For N=2
1
1
( ) ( )
N
k
k
y n w x n k


 
• Output of plant is a convolution
• Ex For N=2
CESdSP
1
1
( ) ( )
N
k
k
y n w x n k


 
0 0( ) ( 0) ( 1)y n w x n w x n   
ASP1-24
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
0 1
0 1
0 1
0 1
0 1
(3) (3) (2)
(2) (2) (1)
(1) (1) (0)
(0) (0) ( 1)
( 1) ( 1) ( 2)
y w x w x
y w x w x
y w x w x
y w x w x
y w x w x
 
 
 
  
    
CESdSP
0 1
0 1
0 1
0 1
0 1
(3) (3) (2)
(2) (2) (1)
(1) (1) (0)
(0) (0) ( 1)
( 1) ( 1) ( 2)
y w x w x
y w x w x
y w x w x
y w x w x
y w x w x
 
 
 
  
    
ASP1-25
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• We can use a vector-matrix multiplication
• For example, for n=3 we construct y(3) as
• For example, for n=1 we construct y(1) as
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
T
x
y w x w x w w
x
 
     
  
w x
• We can use a vector-matrix multiplication
• For example, for n=3 we construct y(3) as
• For example, for n=1 we construct y(1) as
CESdSP
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
T
x
y w x w x w w
x
 
     
  
w x
0 1 0 1
(1)
(1) (1) (0) [ ] (1)
(0)
T
x
y w x w x w w
x
 
     
  
w x
ASP1-26
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
(2)
(2) (2) (1) [ ] (2)
(1)
(1)
(1) (1) (0) [ ] (1)
(0)
(2)
(0) (0) ( 1) [ ] (0
(1)
T
T
T
T
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
 
     
  
 
     
  
 
     
  
 
      
  
w x
w x
w x
w x )
CESdSP
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
(3)
(3) (3) (2) [ ] (3)
(2)
(2)
(2) (2) (1) [ ] (2)
(1)
(1)
(1) (1) (0) [ ] (1)
(0)
(2)
(0) (0) ( 1) [ ] (0
(1)
T
T
T
T
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
x
y w x w x w w
x
 
     
  
 
     
  
 
     
  
 
      
  
w x
w x
w x
w x )
ASP1-27
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
• The error squared is
• Let us stop there to consider Random signal
theory first.
2 2
2 2
2 2
( )
2
ˆ ˆ( ) 2( )( ) ( )T T T T
e d y
d dy y
 
  
  w x w x w x w x
• The error squared is
• Let us stop there to consider Random signal
theory first.
CESdSP
2 2
2 2
2 2
( )
2
ˆ ˆ( ) 2( )( ) ( )T T T T
e d y
d dy y
 
  
  w x w x w x w x
ASP1-28
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Review of Random Signals
CESdSP ASP1-29
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Wireless Transmissions
• Ideal signal transmission
11 00 11 00 11 0011 11 11 000011
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-30
11 00 11 00 11 0011 11 11 000011
Information
Information is Random
Random variable
CESdSP ASP1-31
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Random Variable
• Random variable is a function
• For a single time Coin Tossing
1,
( )
-1,
x H
X x
x T
 
 
• Random variable is a function
• For a single time Coin Tossing
CESdSP
1,
( )
-1,
x H
X x
x T
 
 
ASP1-32
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Our signal x(n) is a Random
Variable
• For a series of Coin Tossing
1,
( )
-1,
i
i
i
x H
X x
x T
 
 
• For a series of Coin Tossing
CESdSP
1,
( )
-1,
i
i
i
x H
X x
x T
 
 
0 1 2 3 4{ , , , , ,....}x x x x x x
ASP1-33
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Coin tossing and Random Variable
• If random
• We have random variable X
0 1 2 3 4
{ , , , , }
{ , , , , }
x H H T H T
x x x x x


CESdSP
• If random
• We have random variable X
0 1 2 3 4( ) { ( ), ( ), ( ), ( ), ( )}
{ ( ), ( ), ( ), ( ), ( )}
{1,1, 1,1, 1}
iX x X x X x X x X x X x
X H X H X T X H X T


  
ASP1-34
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Random Digital Signal
• If the random variable is a function of time, it
is called a stochastic process
CESdSP ASP1-35
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Mass Function
• We need also to define the probability of each
random variable
( ) { ( ), ( ), ( ), ( ), ( )}
{1,1, 1,1, 1}
X x X H X H X T X H X T
  
CESdSP
( ) { ( ), ( ), ( ), ( ), ( )}
{1,1, 1,1, 1}
X x X H X H X T X H X T
  
ASP1-36
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Mass Function
• PMF is for Discrete distribution function
CESdSP ASP1-37
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Time and Emsemble
CESdSP ASP1-38
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability of X(2)
CESdSP ASP1-39
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Density Function
• PDF is for Continuous Distribution Function
CESdSP ASP1-40
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
CESdSP ASP1-41
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Probability Density Function
• PDF values can be > 1 as long as its area under
curve is 1
2
CESdSP
1/2
2
1
1
ASP1-42
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Cumulative Distribution Function
CESdSP
( ( )) Pr[ ( )]P x n X x n x
ASP1-43
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
( )
( ( )) ( )
x n
P x n p z dz

 x x
CESdSP
( )
( ( )) ( )
x n
P x n p z dz

 x x
ASP1-44
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Expectation Operator
{}E 
CESdSP
{}E 
ASP1-45
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Expected Value
• Expected value is known as the “Mean”
{ } ( )X XE x xp x dx


 
CESdSP
{ } ( )X XE x xp x dx


 
ASP1-46
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Example of Expected Value
(Discrete)
• We toss a die N times and get a set of
outcomes
• Suppose we roll a die with N=6, we might get
{ ( )} { (1), (2), (3),..., ( )}X i X X X X N
• We toss a die N times and get a set of
outcomes
• Suppose we roll a die with N=6, we might get
CESdSP
{ ( )} { (1), (2), (3),..., ( )}X i X X X X N
{ ( )} {2,3,6,3,1,1}X i 
ASP1-47
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Example of Expected Value
(Discrete)
• But, empirically we have Empirical (Monte
Carlo) estimate as Expected Value
6
1
{ } ( )Pr( ( ))
1 1 1 1
1 2 3 6
3 6 3 6
2.67
X
i
E x X i X X i

 
       


CESdSP
6
1
{ } ( )Pr( ( ))
1 1 1 1
1 2 3 6
3 6 3 6
2.67
X
i
E x X i X X i

 
       


ASP1-48
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Theoretical Expected Value
• But in theory, for a die
6
1
{ } ( )Pr( ( ))
1 1 1 1 1 1
1 2 3 4 5 6
6 6 6 6 6 6
3.5
X
i
E X X i X X i

 
           


1
Pr( ( ))
6
X X i 
CESdSP
6
1
{ } ( )Pr( ( ))
1 1 1 1 1 1
1 2 3 4 5 6
6 6 6 6 6 6
3.5
X
i
E X X i X X i

 
           


ASP1-49
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Ensemble Average
i ensembles
1 1 2 2Ensemble Average of (1) (1)Pr[ (1)] (1)Pr[ (1)]
(1)Pr[ (1)]N N
x x x x x
x x
  


1 ensemble
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-50
i ensembles
Ensemble Average
{ ( )}E x n 
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-51
{ ( )} ( ) ( ( )) ( )E x n x n p x n dx n


  x
{ ( )}E x n 
• I) Linearity
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-52
{ ( ) ( )} { ( )} { ( )}E ax n by n aE x n bE y n  
• II)
{ ( ) ( )} { ( )} { ( )}E x n y n E x n E y n
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-53
{ ( ) ( )} { ( )} { ( )}E x n y n E x n E y n
• III)
{ ( )} ( ( )) ( ( )) ( )E y n g x n p x n dx n


  x
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-54
{ ( )} ( ( )) ( ( )) ( )E y n g x n p x n dx n


  x
Autocorrelation
1 1( , ) { ( ) ( )}r n m E x n x mxx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-55
1 11 1 1 1 1 1( , ) ( ) ( ) ( ( ), ( )) ( ) ( )r n m x n x m p x n x m dx n x m
 
 
  xx x x
1 1(1,4) { (1) (4)}r E x xxx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-56
Autocorrelation
• n=m
2
( , ) ( , ) { ( )}r n m r n n E x n xx xx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-57
2
( , ) ( , ) { ( )}r n m r n n E x n xx xx
Autocorrelation Matrix
(0,0) (0,1) (0, 1)
(1,0) (1,1) (1, 1)
( 1,0) ( 1,1) ( 1, 1)
r r r N
r r r N
r N r N r N N
  
 
  
  
 
 
      
xx xx xx
xx xx xx
xx
xx xx xx
R

  

CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-58
(0,0) (0,1) (0, 1)
(1,0) (1,1) (1, 1)
( 1,0) ( 1,1) ( 1, 1)
r r r N
r r r N
r N r N r N N
  
 
  
  
 
 
      
xx xx xx
xx xx xx
xx
xx xx xx
R

  

Covariance
( , ) {[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-59
( , ) {[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx
Stationarity (I)
• I)
{ ( )} { ( )}E x n E x m  
n1
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-60
n2
Stationarity (II)
• II)
( , ) { ( ) ( )}r n n m E x n x n m  xx
1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-61
1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx
Expected Value of Error Energy
• Let’s take the expected value of error energy
2 2 2
ˆ ˆ{ } {( ) 2( )( ) ( ) }
ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )}
ˆ ˆ ˆ{ } 2 {( )( )} { }
ˆ ˆ ˆ2 {( )( )}
T T T T
T T T T T T
T T T T T T
T T T T
E e E
E E E
E E E
E
  
  
  
  
w x w x w x w x
w x x w x w w x w x x w
w xx w x w x w w xx w
w Rw x w x w w Rw
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-62
2 2 2
ˆ ˆ{ } {( ) 2( )( ) ( ) }
ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )}
ˆ ˆ ˆ{ } 2 {( )( )} { }
ˆ ˆ ˆ2 {( )( )}
T T T T
T T T T T T
T T T T T T
T T T T
E e E
E E E
E E E
E
  
  
  
  
w x w x w x w x
w x x w x w w x w x x w
w xx w x w x w w xx w
w Rw x w x w w Rw
Vector-Matrix Differentiation
ˆI)
ˆ
ˆ ˆ ˆII) 2
ˆ
T
T T






w x x
w
w xx w Rw
w
CESdSP
ˆI)
ˆ
ˆ ˆ ˆII) 2
ˆ
T
T T






w x x
w
w xx w Rw
w
ASP1-63
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Partial diff. and set to zero
• Differentiation
• Result:
ˆ0 2 {( ) } 2
ˆ
ˆ2 { } 2
ˆ2 2
T
E
E d

  

  
  
w x x Rw
w
x Rw
r Rw
• Differentiation
• Result:
CESdSP
ˆ0 2 {( ) } 2
ˆ
ˆ2 { } 2
ˆ2 2
T
E
E d

  

  
  
w x x Rw
w
x Rw
r Rw
1
ˆ 
w R r
ASP1-64
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
2-D Error surface
CESdSP
1
ˆ 
w R r
ASP1-65
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
Four Basic Classes of Adaptive
Signal Processing
• I) Identification
• II) Inverse Modelling
• III) Prediction
• IV) Interference Cancelling
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-66
• I) Identification
• II) Inverse Modelling
• III) Prediction
• IV) Interference Cancelling
The Four Classes of Adaptive
Filtering
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-67
System Identification
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-68
Inverse Modelling
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-69
Prediction
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-70
Interference Canceller
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP2-71
What are we looking for in
Adaptive Systems?
• Rate of Convergence
• Misadjustment
• Tracking
• Robustness
• Computational Complexity
• Numerical Properties
• Rate of Convergence
• Misadjustment
• Tracking
• Robustness
• Computational Complexity
• Numerical Properties
CESdSP
EECS0712 Adaptive Signal Processing
http://embedsigproc.wordpress.com/eecs0712
Assoc. Prof. Dr. P.Yuvapoositanon
ASP1-72

More Related Content

PDF
Fast Fourier Transform
PPTX
Precise LSTM Algorithm
PDF
important question jntu network analysis
PPTX
Chapter 9 morphological image processing
PDF
Lecture Notes on Adaptive Signal Processing-1.pdf
PPT
Wiener filters
PPTX
CLICK CHEMISTRY
PPTX
Chapter 9 morphological image processing
Fast Fourier Transform
Precise LSTM Algorithm
important question jntu network analysis
Chapter 9 morphological image processing
Lecture Notes on Adaptive Signal Processing-1.pdf
Wiener filters
CLICK CHEMISTRY
Chapter 9 morphological image processing

What's hot (20)

PPTX
NYQUIST CRITERION FOR ZERO ISI
PPT
Adaptive filter
PPTX
MINIMUM SHIFT KEYING(MSK)
PDF
Design of FIR filters
PDF
Circular Convolution
PDF
Satellite Link Design: Basic Transmission Theory & Noise Temperature
PPTX
Adaptive filter
PPTX
Path Loss and Shadowing
PPTX
Dsp ppt
PDF
DSP Processor
PPTX
IIR filter
PDF
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
PPT
PPT
PULSE CODE MODULATION (PCM)
PDF
Smart traffic light controller using verilog
PPTX
Orthogonal Frequency Division Multiplexing (OFDM)
PDF
7. log distance and log normal shadowing
PDF
4.5 equalizers and its types
PPTX
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
PDF
Design of IIR filters
NYQUIST CRITERION FOR ZERO ISI
Adaptive filter
MINIMUM SHIFT KEYING(MSK)
Design of FIR filters
Circular Convolution
Satellite Link Design: Basic Transmission Theory & Noise Temperature
Adaptive filter
Path Loss and Shadowing
Dsp ppt
DSP Processor
IIR filter
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
PULSE CODE MODULATION (PCM)
Smart traffic light controller using verilog
Orthogonal Frequency Division Multiplexing (OFDM)
7. log distance and log normal shadowing
4.5 equalizers and its types
Lecture Notes: EEEC6440315 Communication Systems - Inter Symbol Interference...
Design of IIR filters
Ad

Similar to Introduction to adaptive signal processing (20)

PDF
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
PPTX
Deep learning study 2
PDF
Introduction to Adaptive Signal Processing (II)
PDF
Machine Learning Lecture10 From Abu Mustafa.pdf
PDF
Basics of CMOS integrated circuits described
PPT
Annintro
PDF
Neural Networks. Overview
PDF
RNN and sequence-to-sequence processing
PDF
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)
PPTX
Neuronal self-organized criticality (II)
PDF
Dynamic response of structures with uncertain properties
PDF
Random variate generate for simulation .pdf
PPTX
Av 738- Adaptive Filtering - Background Material
PDF
Lecture 5 backpropagation
PDF
03 20256 ijict
PPT
Artificial neural networks
PDF
kape_science
PDF
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
PDF
Fixed point theorems for random variables in complete metric spaces
PDF
Neural_N_Problems - SLP.pdf
JAISTサマースクール2016「脳を知るための理論」講義02 Synaptic Learning rules
Deep learning study 2
Introduction to Adaptive Signal Processing (II)
Machine Learning Lecture10 From Abu Mustafa.pdf
Basics of CMOS integrated circuits described
Annintro
Neural Networks. Overview
RNN and sequence-to-sequence processing
類神經網路、語意相似度(一個不嫌少、兩個恰恰好)
Neuronal self-organized criticality (II)
Dynamic response of structures with uncertain properties
Random variate generate for simulation .pdf
Av 738- Adaptive Filtering - Background Material
Lecture 5 backpropagation
03 20256 ijict
Artificial neural networks
kape_science
Optimal Multisine Probing Signal Design for Power System Electromechanical Mo...
Fixed point theorems for random variables in complete metric spaces
Neural_N_Problems - SLP.pdf
Ad

Recently uploaded (20)

PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
Cell Structure & Organelles in detailed.
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Classroom Observation Tools for Teachers
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Lesson notes of climatology university.
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
RMMM.pdf make it easy to upload and study
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Cell Structure & Organelles in detailed.
PPH.pptx obstetrics and gynecology in nursing
Classroom Observation Tools for Teachers
O7-L3 Supply Chain Operations - ICLT Program
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Final Presentation General Medicine 03-08-2024.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
O5-L3 Freight Transport Ops (International) V1.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Module 4: Burden of Disease Tutorial Slides S2 2025
Lesson notes of climatology university.
TR - Agricultural Crops Production NC III.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Microbial diseases, their pathogenesis and prophylaxis
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
RMMM.pdf make it easy to upload and study
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx

Introduction to adaptive signal processing

  • 1. EECS0712 Adaptive Signal Processing 1 Introduction to Adaptive Signal Processing EECS0712 Adaptive Signal Processing 1 Introduction to Adaptive Signal Processing Assoc. Prof. Dr. Peerapol Yuvapoositanon Dept. of Electronic Engineering CESdSP ASP1-1 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 2. Course Outline • Introduction to Adaptive Signal Processing • Adaptive Algorithms Families: • Newton’s Method and Steepest Descent • Least Mean Squared (LMS) • Recursive Least Squares (RLS) • Kalman Filtering • Applications of Adaptive Signal Processing in Communications and Blind Equalization • Introduction to Adaptive Signal Processing • Adaptive Algorithms Families: • Newton’s Method and Steepest Descent • Least Mean Squared (LMS) • Recursive Least Squares (RLS) • Kalman Filtering • Applications of Adaptive Signal Processing in Communications and Blind Equalization CESdSP ASP1-2 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 3. Evaluation • Assignment= 20 % • Midterm = 30 % • Final = 50 % CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-3
  • 4. Textbooks CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-4
  • 5. http://embedsigproc.wordpress.com /eecs0712-adaptive-signal-processing/ CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-5
  • 6. QR code CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-6
  • 7. Adaptive Signal Processing • Definition: Adaptive signal processing is the design of adaptive systems for signal- processing applications. [http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr ocessing] • Definition: Adaptive signal processing is the design of adaptive systems for signal- processing applications. [http://encyclopedia2.thefreedictionary.com/adaptive+signal+pr ocessing] CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-7
  • 8. System Identification • Let’s consider a system called “plant” • We need to know its characteristics, i.e., The impulse response of the system CESdSP ASP1-8 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 9. Plant Comparison CESdSP ASP1-9 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 10. Error of Plant Outputs CESdSP ASP1-10 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 11. Error of Estimation • Error of estimation is represented by the signal energy of error 2 2 2 2 ( ) 2 e d y d dy y      CESdSP ASP1-11 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon 2 2 2 2 ( ) 2 e d y d dy y     
  • 12. Adaptive System • We can do it adaptively CESdSP ASP1-12 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 13. • Adjust the weight for minimum error e One-weight CESdSP ASP1-13 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 14. 2 2 2 2 2 2 0 0 0 0 ( ) 2 ( ) 2( )( ) ( )I I e d y d dy y w x w x w x w x         CESdSP 2 2 2 2 2 2 0 0 0 0 ( ) 2 ( ) 2( )( ) ( )I I e d y d dy y w x w x w x w x         ASP1-14 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 15. Error Curve • Parabola equation CESdSP ASP1-15 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 16. Partial diff. and set to zero • Partial differentiation • Set to zero • Result: 2 2 2 0 0 0 0 0 0 2 2 0 0 ( ) 2( )( ) ( ) 2 2 I I I I I e w x w x w x w x w w w x w x           • Partial differentiation • Set to zero • Result: CESdSP 2 2 2 0 0 0 0 0 0 2 2 0 0 ( ) 2( )( ) ( ) 2 2 I I I I I e w x w x w x w x w w w x w x           2 2 0 00 2 2 I w x w x   0 0 I w w ASP1-16 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 17. Multiple Weight Plants • We calculate the weight adaptively • Questions: – What is the type of signal “x” to be used, e.g. Sine, Cosine or Random signals ? – If there is more than one weight w0 , i.e., w0….wN- 1, how do we calculate the solution? • We calculate the weight adaptively • Questions: – What is the type of signal “x” to be used, e.g. Sine, Cosine or Random signals ? – If there is more than one weight w0 , i.e., w0….wN- 1, how do we calculate the solution? CESdSP ASP1-17 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 18. Plants with Multiple Weight • If we have multiple weights CESdSP 1 0 1w w z  w ASP1-18 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 19. • In the case of two-weight Two-weight CESdSP ASP1-19 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 20. Input • From • We construct the x as vector with first element is the most recent (3), (2), (1), (0), ( 1), ( 2),...x x x x x x  • From • We construct the x as vector with first element is the most recent CESdSP [ (3) (2) (1) (0)...]T x x x xx ASP1-20 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 21. Plants with Multiple Weight (aka “Transversal Filter”) • If we have multiple weights ( )x n ( 1)x n  CESdSP 0 ( )w x n 0 ( 1)w x n  0 0( ) ( ) ( 1)y n w x n w x n   ASP1-21 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 22. Regression input signal vector • If the current time is n, we have “Regression input signal vector” [ ( ) ( 1) ( 2) ( 3)...]T x n x n x n x n   x CESdSP [ ( ) ( 1) ( 2) ( 3)...]T x n x n x n x n   x ASP1-22 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 23. 0 0 1 1 [ ]T w w ww         w CESdSP 0 0 1 1 [ ]T w w ww         w 0 0 1 1 ˆ [ ] I I I T I w w w w            w ASP1-23 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 24. Convolution • Output of plant is a convolution • Ex For N=2 1 1 ( ) ( ) N k k y n w x n k     • Output of plant is a convolution • Ex For N=2 CESdSP 1 1 ( ) ( ) N k k y n w x n k     0 0( ) ( 0) ( 1)y n w x n w x n    ASP1-24 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 25. 0 1 0 1 0 1 0 1 0 1 (3) (3) (2) (2) (2) (1) (1) (1) (0) (0) (0) ( 1) ( 1) ( 1) ( 2) y w x w x y w x w x y w x w x y w x w x y w x w x               CESdSP 0 1 0 1 0 1 0 1 0 1 (3) (3) (2) (2) (2) (1) (1) (1) (0) (0) (0) ( 1) ( 1) ( 1) ( 2) y w x w x y w x w x y w x w x y w x w x y w x w x               ASP1-25 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 26. • We can use a vector-matrix multiplication • For example, for n=3 we construct y(3) as • For example, for n=1 we construct y(1) as 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) T x y w x w x w w x            w x • We can use a vector-matrix multiplication • For example, for n=3 we construct y(3) as • For example, for n=1 we construct y(1) as CESdSP 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) T x y w x w x w w x            w x 0 1 0 1 (1) (1) (1) (0) [ ] (1) (0) T x y w x w x w w x            w x ASP1-26 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 27. 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) (2) (2) (2) (1) [ ] (2) (1) (1) (1) (1) (0) [ ] (1) (0) (2) (0) (0) ( 1) [ ] (0 (1) T T T T x y w x w x w w x x y w x w x w w x x y w x w x w w x x y w x w x w w x                                              w x w x w x w x ) CESdSP 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 (3) (3) (3) (2) [ ] (3) (2) (2) (2) (2) (1) [ ] (2) (1) (1) (1) (1) (0) [ ] (1) (0) (2) (0) (0) ( 1) [ ] (0 (1) T T T T x y w x w x w w x x y w x w x w w x x y w x w x w w x x y w x w x w w x                                              w x w x w x w x ) ASP1-27 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 28. • The error squared is • Let us stop there to consider Random signal theory first. 2 2 2 2 2 2 ( ) 2 ˆ ˆ( ) 2( )( ) ( )T T T T e d y d dy y        w x w x w x w x • The error squared is • Let us stop there to consider Random signal theory first. CESdSP 2 2 2 2 2 2 ( ) 2 ˆ ˆ( ) 2( )( ) ( )T T T T e d y d dy y        w x w x w x w x ASP1-28 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 29. Review of Random Signals CESdSP ASP1-29 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 30. Wireless Transmissions • Ideal signal transmission 11 00 11 00 11 0011 11 11 000011 CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-30 11 00 11 00 11 0011 11 11 000011 Information Information is Random
  • 31. Random variable CESdSP ASP1-31 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 32. Random Variable • Random variable is a function • For a single time Coin Tossing 1, ( ) -1, x H X x x T     • Random variable is a function • For a single time Coin Tossing CESdSP 1, ( ) -1, x H X x x T     ASP1-32 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 33. Our signal x(n) is a Random Variable • For a series of Coin Tossing 1, ( ) -1, i i i x H X x x T     • For a series of Coin Tossing CESdSP 1, ( ) -1, i i i x H X x x T     0 1 2 3 4{ , , , , ,....}x x x x x x ASP1-33 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 34. Coin tossing and Random Variable • If random • We have random variable X 0 1 2 3 4 { , , , , } { , , , , } x H H T H T x x x x x   CESdSP • If random • We have random variable X 0 1 2 3 4( ) { ( ), ( ), ( ), ( ), ( )} { ( ), ( ), ( ), ( ), ( )} {1,1, 1,1, 1} iX x X x X x X x X x X x X H X H X T X H X T      ASP1-34 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 35. Random Digital Signal • If the random variable is a function of time, it is called a stochastic process CESdSP ASP1-35 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 36. Probability Mass Function • We need also to define the probability of each random variable ( ) { ( ), ( ), ( ), ( ), ( )} {1,1, 1,1, 1} X x X H X H X T X H X T    CESdSP ( ) { ( ), ( ), ( ), ( ), ( )} {1,1, 1,1, 1} X x X H X H X T X H X T    ASP1-36 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 37. Probability Mass Function • PMF is for Discrete distribution function CESdSP ASP1-37 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 38. Time and Emsemble CESdSP ASP1-38 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 39. Probability of X(2) CESdSP ASP1-39 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 40. Probability Density Function • PDF is for Continuous Distribution Function CESdSP ASP1-40 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 41. CESdSP ASP1-41 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 42. Probability Density Function • PDF values can be > 1 as long as its area under curve is 1 2 CESdSP 1/2 2 1 1 ASP1-42 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 43. Cumulative Distribution Function CESdSP ( ( )) Pr[ ( )]P x n X x n x ASP1-43 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 44. ( ) ( ( )) ( ) x n P x n p z dz   x x CESdSP ( ) ( ( )) ( ) x n P x n p z dz   x x ASP1-44 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 45. Expectation Operator {}E  CESdSP {}E  ASP1-45 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 46. Expected Value • Expected value is known as the “Mean” { } ( )X XE x xp x dx     CESdSP { } ( )X XE x xp x dx     ASP1-46 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 47. Example of Expected Value (Discrete) • We toss a die N times and get a set of outcomes • Suppose we roll a die with N=6, we might get { ( )} { (1), (2), (3),..., ( )}X i X X X X N • We toss a die N times and get a set of outcomes • Suppose we roll a die with N=6, we might get CESdSP { ( )} { (1), (2), (3),..., ( )}X i X X X X N { ( )} {2,3,6,3,1,1}X i  ASP1-47 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 48. Example of Expected Value (Discrete) • But, empirically we have Empirical (Monte Carlo) estimate as Expected Value 6 1 { } ( )Pr( ( )) 1 1 1 1 1 2 3 6 3 6 3 6 2.67 X i E x X i X X i              CESdSP 6 1 { } ( )Pr( ( )) 1 1 1 1 1 2 3 6 3 6 3 6 2.67 X i E x X i X X i              ASP1-48 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 49. Theoretical Expected Value • But in theory, for a die 6 1 { } ( )Pr( ( )) 1 1 1 1 1 1 1 2 3 4 5 6 6 6 6 6 6 6 3.5 X i E X X i X X i                  1 Pr( ( )) 6 X X i  CESdSP 6 1 { } ( )Pr( ( )) 1 1 1 1 1 1 1 2 3 4 5 6 6 6 6 6 6 6 3.5 X i E X X i X X i                  ASP1-49 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 50. Ensemble Average i ensembles 1 1 2 2Ensemble Average of (1) (1)Pr[ (1)] (1)Pr[ (1)] (1)Pr[ (1)]N N x x x x x x x      1 ensemble CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-50 i ensembles
  • 51. Ensemble Average { ( )}E x n  CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-51 { ( )} ( ) ( ( )) ( )E x n x n p x n dx n     x { ( )}E x n 
  • 52. • I) Linearity CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-52 { ( ) ( )} { ( )} { ( )}E ax n by n aE x n bE y n  
  • 53. • II) { ( ) ( )} { ( )} { ( )}E x n y n E x n E y n CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-53 { ( ) ( )} { ( )} { ( )}E x n y n E x n E y n
  • 54. • III) { ( )} ( ( )) ( ( )) ( )E y n g x n p x n dx n     x CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-54 { ( )} ( ( )) ( ( )) ( )E y n g x n p x n dx n     x
  • 55. Autocorrelation 1 1( , ) { ( ) ( )}r n m E x n x mxx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-55 1 11 1 1 1 1 1( , ) ( ) ( ) ( ( ), ( )) ( ) ( )r n m x n x m p x n x m dx n x m       xx x x
  • 56. 1 1(1,4) { (1) (4)}r E x xxx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-56
  • 57. Autocorrelation • n=m 2 ( , ) ( , ) { ( )}r n m r n n E x n xx xx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-57 2 ( , ) ( , ) { ( )}r n m r n n E x n xx xx
  • 58. Autocorrelation Matrix (0,0) (0,1) (0, 1) (1,0) (1,1) (1, 1) ( 1,0) ( 1,1) ( 1, 1) r r r N r r r N r N r N r N N                       xx xx xx xx xx xx xx xx xx xx R      CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-58 (0,0) (0,1) (0, 1) (1,0) (1,1) (1, 1) ( 1,0) ( 1,1) ( 1, 1) r r r N r r r N r N r N r N N                       xx xx xx xx xx xx xx xx xx xx R     
  • 59. Covariance ( , ) {[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-59 ( , ) {[ ( ) ( )][ ( ) ( )]}c n m E x n n x m m   xx
  • 60. Stationarity (I) • I) { ( )} { ( )}E x n E x m   n1 CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-60 n2
  • 61. Stationarity (II) • II) ( , ) { ( ) ( )}r n n m E x n x n m  xx 1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-61 1 1 1 1( , ) { ( ) ( )}r n n m E x n x n m  xx
  • 62. Expected Value of Error Energy • Let’s take the expected value of error energy 2 2 2 ˆ ˆ{ } {( ) 2( )( ) ( ) } ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )} ˆ ˆ ˆ{ } 2 {( )( )} { } ˆ ˆ ˆ2 {( )( )} T T T T T T T T T T T T T T T T T T T T E e E E E E E E E E             w x w x w x w x w x x w x w w x w x x w w xx w x w x w w xx w w Rw x w x w w Rw CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-62 2 2 2 ˆ ˆ{ } {( ) 2( )( ) ( ) } ˆ ˆ ˆ{( )( )} 2 {( )( )} {( )( )} ˆ ˆ ˆ{ } 2 {( )( )} { } ˆ ˆ ˆ2 {( )( )} T T T T T T T T T T T T T T T T T T T T E e E E E E E E E E             w x w x w x w x w x x w x w w x w x x w w xx w x w x w w xx w w Rw x w x w w Rw
  • 63. Vector-Matrix Differentiation ˆI) ˆ ˆ ˆ ˆII) 2 ˆ T T T       w x x w w xx w Rw w CESdSP ˆI) ˆ ˆ ˆ ˆII) 2 ˆ T T T       w x x w w xx w Rw w ASP1-63 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 64. Partial diff. and set to zero • Differentiation • Result: ˆ0 2 {( ) } 2 ˆ ˆ2 { } 2 ˆ2 2 T E E d            w x x Rw w x Rw r Rw • Differentiation • Result: CESdSP ˆ0 2 {( ) } 2 ˆ ˆ2 { } 2 ˆ2 2 T E E d            w x x Rw w x Rw r Rw 1 ˆ  w R r ASP1-64 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 65. 2-D Error surface CESdSP 1 ˆ  w R r ASP1-65 EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon
  • 66. Four Basic Classes of Adaptive Signal Processing • I) Identification • II) Inverse Modelling • III) Prediction • IV) Interference Cancelling CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-66 • I) Identification • II) Inverse Modelling • III) Prediction • IV) Interference Cancelling
  • 67. The Four Classes of Adaptive Filtering CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-67
  • 68. System Identification CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-68
  • 69. Inverse Modelling CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-69
  • 70. Prediction CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-70
  • 71. Interference Canceller CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP2-71
  • 72. What are we looking for in Adaptive Systems? • Rate of Convergence • Misadjustment • Tracking • Robustness • Computational Complexity • Numerical Properties • Rate of Convergence • Misadjustment • Tracking • Robustness • Computational Complexity • Numerical Properties CESdSP EECS0712 Adaptive Signal Processing http://embedsigproc.wordpress.com/eecs0712 Assoc. Prof. Dr. P.Yuvapoositanon ASP1-72