SlideShare a Scribd company logo
INTRO TO COMPILER
DEVELOPMENT
LOGAN CHIEN
http://slide.logan.tw/compiler-intro/
LOGAN CHIEN
So ware engineer at MediaTek
Ametuar LLVM/Clang developer
Integrated LLVM/Clang into Android NDK
WHY I LOVE COMPILERS?
I have been a faithful reader of Jserv's blog for ten years.
I was inspired by the compiler and the virtual machine
technologies mentioned in his blog.
I have decided to choose compiler technologies as my
research topic since then.
UNDERGRADUATE COMPILER
COURSE
I took the undergraduate compiler course when I was a
sophomore.
MY PROFESSOR SAID ...
“We took many lectures to discuss about the parser.
However, when people say they are doing compiler
research, with large possibility, they are not referring to the
parsing technique.”
I AM HERE TO ...
Re-introduce the compiler technologies,
Give a lightening talk on industrial-strength compiler
design,
Explain the connection between compiler technologies and
the industry.
AGENDA
Re-introduction to Compiler (30min)
Industrial-strength Compiler Design (90min)
Compiler and ICT Industry (20min)
RE-INTRODUCTION TO
COMPILER
WHAT IS A COMPILER?
Compiler are tools for programmers to translate
programmer's thought into computer runnable programs.
ANALOGY — Translators who turn from one language to
another, such as those who translate Chinese to English.
WHAT HAVE WE LEARNED IN
UNDERGRADUATE COMPILER
COURSE?
LEXER
Reads the input source code (as a sequence of bytes) and
converts them into a stream of tokens.
u n s i g n e d b a c k g r o u n d ( u n s i g n e d f o r e g r o u n d ) {
i f ( ( f o r e g r o u n d > > 1 6 ) > 0 x 8 0 ) {
r e t u r n 0 ;
} e l s e {
r e t u r n 0 x f f f f f f ;
}
}
unsigned background ( unsigned foreground ) { if ( ( foreground >>
16 ) > 128 ) { return 0 ; } else { return 16777215 ; } }
PARSER
Reads the tokens and build an AST according to the syntax.
unsigned background ( unsigned foreground ) { if ( ( foreground >>
16 ) > 128 ) { return 0 ; } else { return 16777215 ; } }
( p r o c e d u r e b a c k g r o u n d
( a r g s ' ( f o r e g r o u n d ) )
( c o m p o u n d - s t m t
( i f - s t m t
( b i n - e x p r G E ( b i n - e x p r R S H I F T f o r e g r o u n d 1 6 ) 1 2 8 )
( r e t u r n - s t m t 0 )
( r e t u r n - s t m t 1 6 7 7 7 2 1 5 ) ) ) )
CODE GENERATOR
Generate the machine code or (assembly) according to the
AST. In the undergraduate course, we usually simply do
syntax-directed translation.
( p r o c e d u r e b a c k g r o u n d
( a r g s ' ( f o r e g r o u n d ) )
( c o m p o u n d - s t m t
( i f - s t m t
( b i n - e x p r G E ( b i n - e x p r R S H I F T f o r e g r o u n d 1 6 ) 1 2 8 )
( r e t u r n - s t m t 0 )
( r e t u r n - s t m t 1 6 7 7 7 2 1 5 ) ) ) )
l s r w 8 , w 0 , # 1 6
c m p w 8 , # 1 2 8
b . l o . L e l s e
m o v w 0 , w z r
r e t
. L e l s e :
o r r w 0 , w z r , # 0 x f f f f f f
r e t
WHAT'S MISSING?
Can a person who can only lex and parse sentences translate
articles well?
COMPILER REQUIREMENTS
A compiler should translate the source code precisely.
A compiler should utilize the device efficiently.
THREE RELATED FIELDS
Programming Language
Computer Architecture
Compiler
PROGRAMMING LANGUAGE THEORY
Essential component of a programming language: type
theory, variable scoping, language semantics, etc.
How do people reason and compose a program?
Create an abstraction that is understandable to human and
tracable to computers.
EXAMPLE: SUBTYPE AND MUTABLE
RECORDS
Why you can't perform following conversion in C++?
v o i d t e s t ( i n t * p t r ) {
i n t * * p = & p t r ;
c o n s t i n t * * a = p ; / / C o m p i l e r g i v e s w a r n i n g
/ / . . .
}
This is related to covariant type and contravarience type. With PLT, we know that we can only choose
two of (a) covariant type, (b) mutable records, and (c) type consistency.
v o i d t e s t ( i n t * p t r ) {
c o n s t i n t c = 0 ;
i n t * * p = & p t r ;
c o n s t i n t * * a = p ; / / I f i t i s a l l o w e d , b a d p r o g r a m s w i l l p a s s .
* a = & c ;
* p = 5 ; / / N o w a r n i n g h e r e .
}
EXAMPLE: DYNAMIC SCOPING IN
BASH
# ! / b i n / s h
v = 1 # I n i t i a l i z e v w i t h 1
f o o ( ) {
e c h o " f o o : v = $ { v } " # W h i c h v i s r e f e r r e d ?
v = 2 # W h i c h v i s a s s i g n e d ?
}
b a r ( ) {
l o c a l v = 3
f o o
e c h o " b a r : v = $ { v } " # W h a t w i l l b e p r i n t e d ?
}
v = 4 # A s s i g n 4 t o v
b a r
e c h o " v = $ { v } " # W h a t w i l l b e p r i n t e d ?
Ans: foo:v=3, bar:v=2, v=4. Surprisingly, foois
accessing local vin barinstead of the global v.
EXAMPLE: NON-LEXICAL SCOPING IN
JAVASCRIPT
/ / J a v a s c r i p t , t h e b a d p a r t
f u n c t i o n b a d ( v ) {
v a r s u m ;
w i t h ( v ) {
s u m = a + b ;
}
r e t u r n s u m ;
}
c o n s o l e . l o g ( b a d ( { a : 5 , b : 1 0 } ) ) ;
c o n s o l e . l o g ( b a d ( { a : 5 , b : 1 0 , s u m : 1 0 0 } ) ) ;
Ans: The second console.log()prints undefined.
COMPUTER ARCHITECTURE
Instruction set architecture: CISC vs. RISC.
Out-of-Order Execution vs. Instruction Scheduling.
Memory hierarchy
Memory model
QUIZ: DO YOU REALLY KNOW C?
Is it guaranteed that vwill always be loaded a er pred?
i n t p r e d ;
i n t v ;
i n t g e t ( i n t a , i n t b ) {
i n t r e s ;
i f ( p r e d > 0 ) {
r e s = v * a - v / b ;
} e l s e {
r e s = v * a + v / b ;
}
r e t u r n r e s ;
}
Ans: No. Independent reads/writes can be reordered. The standard only requires the result should
be the same as running from top to bottom (in a single thread.)
COMPILER ANALYSIS
Data-flow analysis — Analyze value ranges, check the
conditions or contraints, figure out modifications to
variables, etc.
Control-flow analysis — Analyze the structure of the
program, such as control dependency and loop structure.
Memory dependency analysis — Analyze the memory
access pattern of the access to array elements or pointer
dereferences, e.g. alias analysis.
ALIAS ANALYSIS
Determine whether two pointers can refers to the same
object or not.
v o i d m o v e ( c h a r * d s t , c o n s t c h a r * s r c , i n t n ) {
f o r ( i n t i = 0 ; i < n ; + + i ) {
d s t [ i ] = s r c [ i ] ;
}
}
i n t s u m ( i n t * p t r , c o n s t i n t * v a l , i n t n ) {
i n t r e s = 0 ;
f o r ( i n t i = 0 ; i < n ; + + i ) {
r e s + = * v a l ;
* p t r + + = 1 0 ;
}
r e t u r n r e s ;
}
QUIZ: DO YOU KNOW C++?
c l a s s Q M u t e x L o c k e r {
p u b l i c :
u n i o n {
Q M u t e x * m t x _ ;
u i n t p t r _ t v a l _ ;
} ;
v o i d u n l o c k ( ) {
i f ( v a l _ ) {
i f ( ( v a l _ & ( u i n t p t r _ t ) 1 ) = = ( u i n t p t r _ t ) 1 ) {
v a l _ & = ~ ( u i n t p t r _ t ) 1 ;
m t x _ - > u n l o c k ( ) ;
}
}
}
} ;
Pitfall: Reading from union fields that were not written
previously results in undefined behavior. Type-Based Alias
Analysis (TBAA) exploits this rule.
COMPILER OPTIMIZATION
Scalar optimization — Fold the constants, remove the
redundancies, change expressions with identities, etc.
Vector optimization — Convert several scalar operations
into one vector operation, e.g. combining for addinstruction
into one vector add.
Interprocedural optimization — function inlining,
devirtualization, cross-function analysis, etc.
OTHER COMPILER-RELATED
TECHNOLOGY
Just-in-time compilers
Binary translators
Program profiling and performance measurement
Facilities to run compiled executables, e.g. garbage
collectors
INDUSTRIAL-
STRENGTH COMPILER
DESIGN
What's the difference between your
final project and the industrial-
strength compiler?
KEY DIFFERENCE
Analysis — Reasons program structures and changes of
values.
Optimization — Applies several provably correct
transformation which should make program run faster.
Intermediate Representation — Data structure on which
analyses and optimizations are based.
INTERMEDIATE REPRESENTATION1/4
A data structure for program analyses and optimizations.
High-level enough to capture important properties and
encapsulates hardware limitation.
Low-level enough to be analyzed by analyses and
manipulated by transformations.
An abstraction layer for multiple front-ends and back-ends.
INTERMEDIATE REPRESENTATION2/4
C/C++
Ada
Fortran
Go
arm
aarch64
mips
nds
x86
GENERIC RTLGIMPLE
Tree SSA
GCC Compiler Pipeline
INTERMEDIATE REPRESENTATION3/4
C/C++
Swift
Rust
Obj‑C
arm
aarch64
mips
sparc
x86
MachInstrSelDAGLLVM IR
LLVM Compiler Pipeline
INTERMEDIATE REPRESENTATION4/4
GCC — GENERIC, GIMPLE, Tree SSA, and RTL.
LLVM — LLVM IR, Selection DAG, and Machine Instructions.
Java HotSpot — HIR, LIR, and MIR.
CONTROL FLOW GRAPH1/3
Basic block — A sequence of instructions that will only be
entered from the top and exited from the end.
Edge — If the basic block s may branch to t, then we add a
directed edge (s, t).
Predecessor/Successor — If there is an edge (s, t), then s is a
predecessor of t and t is a successor of s.
CONTROL FLOW GRAPH2/3
/ / y = a * x + b ;
v o i d m a t m u l ( d o u b l e * r e s t r i c t y ,
u n s i g n e d l o n g m , u n s i g n e d l o n g n ,
c o n s t d o u b l e * r e s t r i c t a ,
c o n s t d o u b l e * r e s t r i c t x ,
c o n s t d o u b l e * r e s t r i c t b ) {
f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) {
d o u b l e t = b [ r ] ;
f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) {
t + = a [ r * n + i ] * x [ i ] ;
}
y [ r ] = t ;
}
}
Input source program
CONTROL FLOW GRAPH3/3
bp = getelementptr b, r
t = load bp
i = 0
cmp = icmp lt, i, n
br cmp, B2, B3
B1
B2
rn = mul r, n
ai = add rn, i
ap = getelementptr a, ai
ad = load ap
xp = getelementptr x, i
xd = load xp
ax = mul ad, xd
t = add t, ax
i = add i, 1
cmp = icmp lt, i, n
br cmp, B2, B3
B3
yp = getelementptr y, r
store t, yp
r = add r, 1
cmp = icmp lt, r, n
br cmp, B1, B4B4
ret void
B0 (ENTRY)
r = 0
cmp = icmp lt r, m
br cmp, B1, B4
VARIABLE DEFINITION
bp = getelementptr b, r
t = load bp
i = 0
cmp = icmp lt, i, n
br cmp, B2, B3
B1
B2
rn = mul r, n
ai = add rn, i
ap = getelementptr a, ai
ad = load ap
xp = getelementptr x, i
xd = load xp
ax = mul ad, xd
t = add t, ax
i = add i, 1
cmp = icmp lt, i, n
br cmp, B2, B3
B3
yp = getelementptr y, r
store t, yp
r = add r, 1
cmp = icmp lt, r, n
br cmp, B1, B4B4
ret void
B0 (ENTRY)
r = 0
cmp = icmp lt r, m
br cmp, B1, B4
definitions of r
The place where a variable is assigned or defined.
VARIABLE USE
bp = getelementptr b, r
t = load bp
i = 0
cmp = icmp lt, i, n
br cmp, B2, B3
B1
B2
rn = mul r, n
ai = add rn, i
ap = getelementptr a, ai
ad = load ap
xp = getelementptr x, i
xd = load xp
ax = mul ad, xd
t = add t, ax
i = add i, 1
cmp = icmp lt, i, n
br cmp, B2, B3
B3
yp = getelementptr y, r
store t, yp
r = add r, 1
cmp = icmp lt, r, n
br cmp, B1, B4B4
ret void
B0 (ENTRY)
r = 0
cmp = icmp lt r, m
br cmp, B1, B4
definitions of r
uses of r
The places where a variable is referred or used.
REACHING DEFINITION1/2
bp = getelementptr b, r
t = load bp
i = 0
cmp = icmp lt, i, n
br cmp, B2, B3
B1
B2
rn = mul r, n
ai = add rn, i
ap = getelementptr a, ai
ad = load ap
xp = getelementptr x, i
xd = load xp
ax = mul ad, xd
t = add t, ax
i = add i, 1
cmp = icmp lt, i, n
br cmp, B2, B3
B3
yp = getelementptr y, r
store t, yp
r = add r, 1
cmp = icmp lt, r, n
br cmp, B1, B4B4
ret void
B0 (ENTRY)
r = 0
cmp = icmp lt r, m
br cmp, B1, B4
{d0} {d0, d1}
{d0, d1}
d0:
d1:
{d1}
{d0, d1}
{d0, d1}
Definitions that reaches a use.
REACHING DEFINITION2/2
Constant propagation is a good example to show the
usefulness of reaching definition.
v o i d t e s t ( i n t c o n d ) {
i n t a = 1 ; / / d 0
i n t b = 2 ; / / d 1
i f ( c o n d ) {
c = 3 ; / / d 2
} e l s e {
/ / R e a c h D e f [ a ] = { d 0 }
/ / R e a c h D e f [ b ] = { d 1 }
c = a + b ; / / d 3
}
/ / R e a c h D e f [ c ] = { d 2 , d 3 }
u s e ( c ) ;
}
DOMINANCE RELATION1/2
A basic block s dominates t iff every paths that goes from
entry to t will pass through s.
Every basic block in a CFG has an immediate dominator and
forms a dominator tree.
DOMINANCE RELATION2/2
B0
B1
B2
B3
B4
B0
B1
B2B3
B4
Dominator Tree
DOMINANCE FRONTIER
A basic block t is a dominance frontier of a basic block s, if
one of predecessor of t is dominated by s but t is not strictly
dominated by s.
B0
B1 B2
B3
B6
B4
B5
DF[B2] = {B3, B5}
DF[B4] = {B4}
DF[B1] = {B3, B5}
STATIC SINGLE-ASSIGNMENT FORM
static — A static analysis to the program (not the execution.)
single-assignment — Every variable can only be assigned
once.
SSA form is the most popular intermediate representation
recently.
It is adopted by a wide range of compilers, such as GCC,
LLVM, Java HotSpot, Android ART, etc.
SSA PROPERTIES
Every variables can only be defined once.
Every uses can only refer to one definition.
Use phifunction to handle the merged control-flow.
PHI FUNCTIONS
d e f i n e v o i d @ f o o ( i 1 c o n d ,
i 3 2 a , i 3 2 b ) {
e n t :
b r c o n d , b 1 , b 2
b 1 :
t 0 = m u l a , 4
b r b 3
b 2 :
t 1 = m u l b , 5
b r b 3
b 3 :
t 2 = p h i ( t 0 ) , ( t 1 )
u s e ( t 2 )
r e t
}
d e f i n e v o i d @ f o o ( i 3 2 n ) {
e n t :
b r l o o p
l o o p :
i 0 = p h i ( 0 ) , ( i 1 )
c m p = i c m p g e i 0 , n
b r c m p , e n d , c o n t
c o n t :
u s e ( i 0 )
i 1 = a d d i 0 , 1
b r l o o p
e n d :
r e t
}
ADVANTAGE OF SSA FORM
Compact — Reduce the def-use chain.
Referential transparency — The properties associated with a
variable will not be changed, aka. context-free.
REDUCED DEF-USE CHAIN
v o i d f o o ( i n t c o n d 1 , i n t c o n d 2 ,
i n t a , i n t b ) {
i n t t ;
i f ( c o n d 1 ) {
t = a * 4 ; / / d 0
} e l s e {
t = b * 5 ; / / d 1
}
i f ( c o n d 2 ) {
/ / r e a c h - d e f : { d 0 , d 1 }
u s e ( t ) ;
} e l s e {
/ / r e a c h - d e f : { d 0 , d 1 }
u s e ( t ) ;
}
}
v o i d f o o ( i n t c o n d 1 , i n t c o n d 2 ,
i n t a , i n t b ) {
i f ( c o n d 1 ) {
t . 0 = a * 4 ;
} e l s e {
t . 1 = b * 5 ;
}
t . 2 = p h i ( t . 0 , t . 1 ) ;
i f ( c o n d 2 ) {
u s e ( t . 2 ) ;
} e l s e {
u s e ( t . 2 ) ;
}
}
REFERENTIAL TRANSPARENCY1/2
v o i d f o o ( ) {
i n t r = 5 ; / / d 0
/ / . . . S O M E C O D E . . .
/ / W e c a n o n l y a s s u m e
/ / " r = = 5 " i f d 0 i s t h e
/ / o n l y r e a c h i n g d e f i n i t i o n .
u s e ( r ) ;
}
v o i d f o o ( ) {
r . 0 = 5 ;
/ / . . . S O M E C O D E . . .
/ / N o m a t t e r w h a t c o d e a r e
/ / s k i p p e d a b o v e , i t i s s a f e
/ / t o r e p l a c e f o l l o w i n g r . 0
/ / w i t h 5 .
u s e ( r . 0 ) ;
}
REFERENTIAL TRANSPARENCY2/2
v o i d f o o ( i n t a , i n t b ) {
i n t c = a + b ;
i n t r = a + b ;
/ / C a n w e s i m p l y r e p l a c e
/ / a l l o c c u r r e n c e o f r w i t h
/ / c ? ( N O )
/ / . . . S O M E C O D E . . .
u s e ( r ) ;
}
v o i d f o o ( i n t a , i n t b ) {
c . 0 = a + b ;
r . 0 = a + b ;
/ / . . . S O M E C O D E . . .
/ / N o m a t t e r w h a t c o d e a r e
/ / s k i p p e d a b o v e , i t i s s a f e
/ / t o r e p l a c e f o l l o w i n g r . 0
/ / w i t h c . 0 .
u s e ( r . 0 ) ;
}
BUILDING SSA FORM
1. Compute domination relationships between basic blocks
and build the dominator tree.
2. Compute dominator frontiers.
3. Insert phifunctions at dominator frontiers.
4. Traverse the dominator tree and rename the variables.
BEFORE SSA CONSTRUCTION
bp = getelementptr b, r
t = load bp
i = 0
cmp = icmp lt, i, n
br cmp, B2, B3
B1
B2
rn = mul r, n
ai = add rn, i
ap = getelementptr a, ai
ad = load ap
xp = getelementptr x, i
xd = load xp
ax = mul ad, xd
t = add t, ax
i = add i, 1
cmp = icmp lt, i, n
br cmp, B2, B3
B3
yp = getelementptr y, r
store t, yp
r = add r, 1
cmp = icmp lt, r, n
br cmp, B1, B4B4
ret void
B0 (ENTRY)
r = 0
cmp = icmp lt r, m
br cmp, B1, B4
AFTER SSA CONSTRUCTION
r.0 = phi (0, B0) (r.1 B3)
bp = getelementptr b, r.0
t.0 = load bp
cmp = icmp lt, 0, n
br cmp, B2, B3
B1
B2
t.1 = phi (t.0, B1) (t.2 B2)
i.0 = phi (0, B1) (i.1, B2)
rn = mul r.0, n
ai = add rn, i.1
ap = getelementptr a, ai
ad = load ap
xp = getelementptr x, i.1
xd = load xp
ax = mul ad, xd
t.2 = add t.1, ax
i.1 = add i.0, 1
cmp = icmp lt, i.1, n
br cmp, B2, B3
B3
t.3 = phi (t0, B1) (t.2, B2)
yp = getelementptr y, r.0
store t.3, yp
r.1 = add r.0, 1
cmp = icmp lt, r.1, n
br cmp, B1, B4
B4
ret void
B0 (ENTRY)
cmp = icmp lt 0, m
br cmp, B1, B4
OPTIMIZATIONS
CONSTANT PROPAGATION1/3
Constant propagation, sometimes known as constant
folding, will evaluate the instructions with constant
operands and propagate the constant result.
a = a d d 2 , 3
b = a
c = m u l a , b
a = 5
b = 5
c = 2 5
CONSTANT PROPAGATION2/3
Why do we need constant propagation?
s t r u c t q u e u e * c r e a t e _ q u e u e ( ) {
r e t u r n ( s t r u c t q u e u e * ) m a l l o c ( s i z e o f ( s t r u c t q u e u e * ) * 1 6 ) ;
}
i n t p r o c e s s _ d a t a ( i n t a , i n t b , i n t c ) {
i n t k [ ] = { 0 x 1 3 , 0 x 1 7 , 0 x 1 9 } ;
i f ( D E B U G ) {
v e r i f y _ d a t a ( k , d a t a ) ;
}
r e t u r n ( a * k [ 1 ] * k [ 2 ] + b * k [ 0 ] * k [ 2 ] + c * k [ 0 ] * k [ 1 ] ) ;
}
CONSTANT PROPAGATION3/3
For each basic block b from CFG in reversed postorder:
For each instruction i in basic block b from top to bottom:
If all of its operands are constants, the operation has no
side-effect, and we know how to evaluate it at compile time,
then evaluate the result, remove the instruction, and replace
all usages with the result.
GLOBAL VALUE NUMBERING1/2
Global value numbering tries to give numbers to the
computed expression and maps the newly visited expression
to the visited ones.
a = c * d ; / / [ ( * , c , d ) - > a ]
e = c ; / / [ ( * , c , d ) - > a ]
f = e * d ; / / q u e r y : i s ( * , c , d ) a v a i l a b l e ?
u s e ( a , e , f ) ;
a = c * d ;
u s e ( a , c , a ) ;
GLOBAL VALUE NUMBERING2/2
Traverse the basic blocks in depth-first order on dominator
tree.
Maintain a stack of hash table. Once we have returned from
a child node on the dominator tree, then we have to pop the
stack top.
Visit the instructions in the basic block with tᅠ=ᅠopᅠa,ᅠb
form and compute the hash for (op, a, b).
If (op, a, b) is already in the hash table, then change
tᅠ=ᅠopᅠa,ᅠb with tᅠ=ᅠhash_tab[(op,ᅠa,ᅠb)]
Otherwise, insert (op, a, b) -> t to the hash table.
DEAD CODE ELIMINATION1/6
Dead code elimination (DCE) removes unreachable
instructions or ignored results.
Constant propagation might reveal more dead code since
the branch conditions become constant value.
On the other hand, DCE can exploit more constant for
constant propagation because several definitions are
removed from the program.
DEAD CODE ELIMINATION2/6
Conditional statements with constant condition
i f ( k I s D e b u g B u i l d ) { / / D e a d c o d e
c h e c k _ i n v a r i a n t ( a , b , c , d ) ; / / D e a d c o d e
}
DEAD CODE ELIMINATION3/6
Platform-specific constant
v o i d h a s h _ e n t _ s e t _ v a l ( s t r u c t h a s h _ e n t * h , i n t v ) {
i f ( s i z e o f ( i n t ) < = s i z e o f ( v o i d * ) ) {
h - > p = ( v o i d * ) ( u i n t p t r _ t ) ( v ) ;
} e l s e {
h - > p = m a l l o c ( s i z e o f ( i n t ) ) ; / / D e a d c o d e
* ( h - > p ) = v ; / / D e a d c o d e
}
}
DEAD CODE ELIMINATION4/6
Computed result ignored
i n t c o m p u t e _ s u m ( i n t a , i n t b ) {
i n t s u m = ( a + b ) * ( a - b + 1 ) / 2 ; / / D e a d c o d e : N o t u s e d
r e t u r n 0 ;
}
Dead code a er dead store optimization
v o i d t e s t ( i n t * p , b o o l c o n d , i n t a , i n t b , i n t c ) {
i f ( c o n d ) {
t = a + b ; / / D e a d c o d e
* p = t ; / / W i l l b e r e m o v e d b y D S E
}
* p = c ;
}
DEAD CODE ELIMINATION5/6
Dead code a er code specialization
v o i d m a t m u l ( d o u b l e * r e s t r i c t y , u n s i g n e d l o n g m , u n s i g n e d l o n g n ,
c o n s t d o u b l e * r e s t r i c t a ,
c o n s t d o u b l e * r e s t r i c t x ,
c o n s t d o u b l e * r e s t r i c t b ) {
i f ( n = = 0 ) {
f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) {
d o u b l e t = b [ r ] ;
f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) { / / D e a d c o d e
t + = a [ r * n + i ] * x [ i ] ; / / D e a d c o d e
} / / D e a d c o d e
y [ r ] = t ;
}
} e l s e {
/ / . . . s k i p p e d . . .
}
}
DEAD CODE ELIMINATION6/6
Traverse the CFG starting from entry in reversed post order.
Only traverse the successor that may be visited, i.e. if the
branch condition is a constant, then ignore the other side.
While traversing the basic block, clear the dead instructions
within the basic block.
A er the traversal, remove the unvisited basic blocks and
remove the variable uses that refers to the variables that are
defined in the unvisited basic blocks.
LOOP OPTIMIZATIONS
It is reasonable to assume a program spends more time in
the loop body. Thus, loop optimization is an important issue
in the compiler.
LOOP INVARIANT CODE MOTION1/3
Loop invariant code motion (LICM) is an optimization which
moves loop invariants or loop constants out of the loop.
i n t t e s t ( i n t n , i n t a , i n t b , i n t c ) {
i n t s u m = 0 ;
f o r ( i n t i = 0 ; i < n ; + + i ) {
s u m + = i * a * b * c ; / / a * b * c i s l o o p i n v a r i a n t
}
r e t u r n s u m ;
}
LOOP INVARIANT CODE MOTION2/3
f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) {
d o u b l e t = b [ r ] ;
f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) {
t + = a [ ( r * n ) + i ] * x [ i ] ; / / " r * n " i s a i n n e r l o o p i n v a r i a n t
}
y [ r ] = t ;
}
f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) {
d o u b l e t = b [ r ] ;
u n s i g n e d l o n g k = r * n ; / / " r * n " m o v e d o u t o f t h e i n n e r l o o p
f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) {
t + = a [ k + i ] * x [ i ] ;
}
y [ r ] = t ;
}
LOOP INVARIANT CODE MOTION3/3
How do we know whether a variable is a loop invariant?
If the computation of a value is not (transitively) depending
on following black lists, we can assume such value is a loop
invariant:
Phi instructions associating with the loop being
considered
Instructions with side-effects or non-pure instructions,
e.g. function calls
INDUCTION VARIABLE
If x represents the trip count (iteration count), then we call
a*x+b induction variables.
f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) {
d o u b l e t = b [ r ] ;
u n s i g n e d l o n g k = r * n ; / / o u t e r l o o p I V
f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) {
u n s i g n e d l o n g m = k + i ; / / i n n e r l o o p I V
t + = a [ m ] * x [ i ] ;
}
y [ r ] = t ;
}
k and r are induction variables of outer loop.
i and m are induction variables of inner loop.
LOOP STRENGTH REDUCTION1/2
Strength reduction is an optimization to replace the
multiplication in induction variables with an addition.
f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) {
d o u b l e t = b [ r ] ;
u n s i g n e d l o n g k = r * n ; / / o u t e r l o o p I V
f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) {
u n s i g n e d l o n g m = k + i ; / / i n n e r l o o p I V
t + = a [ m ] * x [ i ] ;
}
y [ r ] = t ;
}
f o r ( u n s i g n e d l o n g r = 0 , k = 0 ; r < m ; + + r , k + = n ) { / / k
d o u b l e t = b [ r ] ;
f o r ( u n s i g n e d l o n g i = 0 , m = k ; i < n ; + + i , + + m ) { / / m
t + = a [ m ] * x [ i ] ;
}
y [ r ] = t ;
}
LOOP STRENGTH REDUCTION2/2
We can even rewrite the range to eliminate the index
computation.
i n t s u m ( c o n s t i n t * a , i n t n ) {
i n t r e s = 0 ;
f o r ( i n t i = 0 ; i < n ; + + i ) {
r e s + = a [ i ] ; / / i m p l i c i t * ( a + s i z e o f ( i n t ) * i )
}
r e t u r n r e s ;
}
i n t s u m ( c o n s t i n t * a , i n t n ) {
i n t r e s = 0 ;
c o n s t i n t * e n d = a + n ; / / i m p l i c i t a + s i z e o f ( i n t ) * n
f o r ( c o n s t i n t * p = a ; p ! = e n d ; + + p ) { / / r a n g e u p d a t e d
r e s + = * p ;
}
r e t u r n r e s ;
}
LOOP UNROLLING1/2
Unroll the loop body multiple times.
Purpose: Reduce amortized loop iteration overhead.
Purpose: Reduce load/store stall and exploit instruction-
level parallelism, e.g. so ware pipelining.
Purpose: Prepare for vectorization, e.g. SIMD.
LOOP UNROLLING2/2
f o r ( u n s i g n e d l o n g r = 0 , k = 0 ; r < m ; + + r , k + = n ) {
d o u b l e t = b [ r ] ;
s w i t c h ( n & 0 x 3 ) { / / D u f f ' s d e v i c e
c a s e 3 : t + = a [ k + 2 ] * x [ 2 ] ;
c a s e 2 : t + = a [ k + 1 ] * x [ 1 ] ;
c a s e 1 : t + = a [ k ] * x [ 0 ] ;
}
f o r ( u n s i g n e d l o n g i = n & 0 x 3 ; i < n ; i + = 4 ) {
t + = a [ k + i ] * x [ i ] ;
t + = a [ k + i + 1 ] * x [ i + 1 ] ;
t + = a [ k + i + 2 ] * x [ i + 2 ] ;
t + = a [ k + i + 3 ] * x [ i + 3 ] ;
}
y [ r ] = t ;
}
INSTRUCTION SELECTION1/5
Instruction selection is a process to map IR into machine
instructions.
Compiler back-ends will perform pattern matching to the
best select instructions (according to the heuristic.)
INSTRUCTION SELECTION2/5
Complex operations, e.g. shi -and-add or multiply-
accumulate.
Array load/store instructions, which can be translated to one
shi -add-and-load on some architectures.
IR instructions are which not natively supported by the target
machine.
INSTRUCTION SELECTION3/5
d e f i n e i 6 4 @ m a c ( i 6 4 % a , i 6 4 % b , i 6 4 % c ) {
e n t :
% 0 = m u l i 6 4 % a , % b
% 1 = a d d i 6 4 % 0 , % c
r e t i 6 4 % 1
}
m a c :
m a d d x 0 , x 1 , x 0 , x 2
r e t
INSTRUCTION SELECTION4/5
d e f i n e i 6 4 @ l o a d _ s h i f t ( i 6 4 * % a , i 6 4 % i ) {
e n t :
% 0 = g e t e l e m e n t p t r i 6 4 , i 6 4 * % a , i 6 4 % i
% 1 = l o a d i 6 4 , i 6 4 * % 0
r e t i 6 4 % 1
}
l o a d _ s h i f t :
l d r x 0 , [ x 0 , x 1 , l s l # 3 ]
r e t
INSTRUCTION SELECTION5/5
% s t r u c t . A = t y p e { i 6 4 * , [ 1 6 x i 6 4 ] }
d e f i n e i 6 4 @ g e t _ v a l ( % s t r u c t . A * % p , i 6 4 % i , i 6 4 % j ) {
e n t :
% 0 = g e t e l e m e n t p t r % s t r u c t . A , % s t r u c t . A * % p , i 6 4 % i , i 3 2 1 , i 6 4 % j
% 1 = l o a d i 6 4 , i 6 4 * % 0
r e t i 6 4 % 1
}
g e t _ v a l :
m o v z w 8 , # 0 x 8 8
m a d d x 8 , x 1 , x 8 , x 0
a d d x 8 , x 8 , x 2 , l s l # 3
l d r x 0 , [ x 8 , # 8 ]
r e t
SSA DESTRUCTION1/5
How do we deal with the phifunctions?
Copy the assignment operator to the end of the predecessor.
(Must be done carefully)
SSA DESTRUCTION2/3
cmp = icmp eq, cond, 0
br cmp, B1, B2
B0
br B3
B1
br B3
B2
a = phi (3, B1) (7, B2)
print(a)
B3
cmp = icmp eq, cond, 0
br cmp, B1, B2
B0
a = 3
br B3
B1
a = 7
br B3
B2
print(a)
B3
converts to
Example to show the assignment copying
SSA DESTRUCTION3/5
i.0 = phi (0, B0) (i.1, B2)
cmp = icmp lt, i.0, 100
br cmp, B2, B3
B1
ret
B3
print(i.0)
i.1 = add i.0, 1
br B1
B2
br B1
B0
cmp = icmp lt, i.0, 100
br cmp, B2, B3
B1 B3
print(i.0)
i.1 = add i.0, 1
i.0 = i.1
br B1
B2
i.0 = 0
br B1
B0
ret
Converts to
Converts to
Example to show the assignment copying with loop
SSA DESTRUCTION4/5
i.0 = phi (0, B0) (i.1, B2)
cmp = icmp lt, i.0, 100
br cmp, B2, B3
B1
print(i.0)
ret
B3
print(i.0)
i.1 = add i.0, 1
br B1
B2
br B1
B0
cmp = icmp lt, i.0, 100
br cmp, B2, B3
B1 B3
print(i.0)
i.1 = add i.0, 1
i.0 = i.1
br B1
B2
i.0 = 0
br B1
B0
print(i.0)
ret
Doesn't
work!
Lost copy problem — Naive de-SSA algorithm doesn't work
due to live range conflicts. Need extra assignments and
renaming to avoid conflicts.
SSA DESTRUCTION5/5
t = x
x = y
y = t
br cmp, B2, B1
B1
print(x)
print(y)
B2
x = 1
y = 2
br B1
B0
x1 = phi (x0, y1)
y1 = phi (y0, x1)
br cmp, B2, B1
B1
print(x1)
print(y1)
B2
x0 = 1
y0 = 2
br B1
B0
x1 = y1
y1 = x1
br cmp, B2, B1
B1
print(x1)
print(y1)
B2
x0 = 1
y0 = 2
x1 = x0
y1= y0
br B1
B0
Swap problem — Conflicts due to parallel assignment
semantics of phiinstructions. A correct algorithm should
detect the cycle and implement parallel assignment with
swap instructions.
REGISTER ALLOCATION1/2
We have to replace infinite virtual registers with finite
machine registers.
Register Allocation — Make sure that the maximum
simultaneous register usages are less then k.
Register Assignment — Assign a register given the fact that
registers are always sufficient.
The classical solution is to compute the life time of each
variables, build the inference graph, spill the variable to
stack if the inference graph is not k-colorable.
REGISTER ALLOCATION2/2
ret y
add y, c, g
add g a f
add f, d, e
add e, a, c
add d, a, b
mov c, #2
mov b, #1
mov a, #1
a
b
c
d
e
f
g
y
a
g
b
c
e
d
f
y
INSTRUCTION SCHEDULING1/2
Sort the instruction according the number of cycles in order
to reduce execution time of the critical path.
Constraints: (a) Data dependence, (b) Functional units, (c)
Issue width, (d) Datapath forwarding, (e) Instruction cycle
time, etc.
INSTRUCTION SCHEDULING2/2
0 : a d d r 0 , r 0 , r 1
1 : a d d r 1 , r 2 , r 2
2 : l d r r 4 , [ r 3 ]
3 : s u b r 4 , r 4 , r 0
4 : s t r r 4 , [ r 1 ]
2 : l d r r 4 , [ r 3 ] # l o a d i n s t r u c t i o n n e e d s m o r e c y c l e s
0 : a d d r 0 , r 0 , r 1
1 : a d d r 1 , r 2 , r 2
3 : s u b r 4 , r 4 , r 0
4 : s t r r 4 , [ r 1 ]
COMPILER AND ICT
INDUSTRY
WHERE CAN WE FIND COMPILER?
SMART PHONES
Android ART (Java VM)
OpenGL|ES GLSL Compiler (Graphics)
BROWSERS
Javascript-related
Javascript Engine, e.g. V8, IonMonkey, JavaScriptCore,
Chakra
Regular Expression Engine
WebAssembly
WebGL — OpenGL binding for the Web (Graphics)
WebCL — OpenCL binding for the Web (Computing)
DESKTOP APPLICATION RUN-TIME
ENVIRONMENTS
Java run-time (Java, Scala, Clojure, Groovy)
.NET run-time (C#, F#)
Ruby
Python
PHP
VIRTUAL MACHINES AND EMULATORS
Simulate different architecture (using dynamic
recompilation), e.g. QEMU
Simulate special instructions that are not supported by
hypervisor.
DEVELOPMENT ENVIRONMENT
C/C++ compiler, e.g. MSVC, GCC, LLVM
Java compiler, e.g. OpenJDK
DSP compilers for digital signal processors.
VHDL compilers for IC design team.
Profiling and/or intrusmentation tools, e.g. Valgrind, Dr.
Memory, Address Sanitizer, Memory Sanitizer
WHAT DOES A COMPILER TEAM DO?
Develop the compiler toolchain for the in-house processors,
e.g. DSP, GPU, CPU, and etc.
Tune the performance of the existing compiler or virtual
machines.
Develop a new programming language or model (e.g. Cuda
from NVIDIA.)
SOME RESEARCH TOPICS ...
Memory model for concurrency — Designing a good
memory model at programming language level, which
should be intuitive to human while open for
compiler/architecture optimization, is still a challenging
problem.
Both Java and C++ took efforts to standardize. However,
there are still some unintuitive cases that are allowed and
some desirable cases being ruled out.
THE END
Q & A

More Related Content

PDF
Ch06
PPTX
PUSH DOWN AUTOMATA VS TURING MACHINE
PPTX
ALF 5 - Parser Top-Down (2018)
PDF
Extending Python - EuroPython 2014
PPTX
What's new in c#7
PDF
Basic c++ 11/14 for python programmers
PDF
Phttp://www.cw360ms.com/pmsurveyresults/index.aspda
PPT
Unit 5
Ch06
PUSH DOWN AUTOMATA VS TURING MACHINE
ALF 5 - Parser Top-Down (2018)
Extending Python - EuroPython 2014
What's new in c#7
Basic c++ 11/14 for python programmers
Phttp://www.cw360ms.com/pmsurveyresults/index.aspda
Unit 5

What's hot (20)

PDF
Ch03
PPTX
Elements of C++11
PDF
Ch04
PPTX
ALF 5 - Parser Top-Down
PPT
Eecs 317 20010209
PPT
C++ Advanced
PDF
runtimestack
PDF
BBS crawler for Taiwan
PDF
C++ Programming - 11th Study
PDF
Tiramisu概要
PDF
PPT
About Go
PDF
Regexp Master
PPTX
C Language - Switch and For Loop
PDF
Python idiomatico
PDF
6. binary tree
PDF
Data Structure - 2nd Study
PDF
How to master C++
PPT
Unit 4
PPTX
Class 16: Making Loops
Ch03
Elements of C++11
Ch04
ALF 5 - Parser Top-Down
Eecs 317 20010209
C++ Advanced
runtimestack
BBS crawler for Taiwan
C++ Programming - 11th Study
Tiramisu概要
About Go
Regexp Master
C Language - Switch and For Loop
Python idiomatico
6. binary tree
Data Structure - 2nd Study
How to master C++
Unit 4
Class 16: Making Loops
Ad

Similar to Introduction to Compiler Development (20)

PDF
Code GPU with CUDA - Identifying performance limiters
PDF
Spring scala - Sneaking Scala into your corporation
PPTX
C Programming Homework Help
PDF
Kamil witecki asynchronous, yet readable, code
PPTX
Best C++ Programming Homework Help
PDF
JavaFX, because you're worth it
PPT
01 stack 20160908_jintaek_seo
PDF
A CTF Hackers Toolbox
PPTX
Programming Assignment Help
PDF
PyData Paris 2015 - Track 3.2 Serge Guelton et Pierrick Brunet
ODP
Scala as a Declarative Language
PDF
Writing (Meteor) Code With Style
PDF
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
PPTX
Data structures notes for college students btech.pptx
PPTX
Hardware Description Languages .pptx
PDF
Native interfaces for R
DOC
javapravticalfile.doc
PPTX
(Slightly) Smarter Smart Pointers
PPTX
GraphQL Relay Introduction
PPTX
C programming
Code GPU with CUDA - Identifying performance limiters
Spring scala - Sneaking Scala into your corporation
C Programming Homework Help
Kamil witecki asynchronous, yet readable, code
Best C++ Programming Homework Help
JavaFX, because you're worth it
01 stack 20160908_jintaek_seo
A CTF Hackers Toolbox
Programming Assignment Help
PyData Paris 2015 - Track 3.2 Serge Guelton et Pierrick Brunet
Scala as a Declarative Language
Writing (Meteor) Code With Style
"PyTorch Deep Learning Framework: Status and Directions," a Presentation from...
Data structures notes for college students btech.pptx
Hardware Description Languages .pptx
Native interfaces for R
javapravticalfile.doc
(Slightly) Smarter Smart Pointers
GraphQL Relay Introduction
C programming
Ad

Recently uploaded (20)

PDF
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
PDF
AI in Product Development-omnex systems
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 41
PDF
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
PDF
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
PPT
Introduction Database Management System for Course Database
PDF
Raksha Bandhan Grocery Pricing Trends in India 2025.pdf
PDF
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
PDF
top salesforce developer skills in 2025.pdf
PPTX
VVF-Customer-Presentation2025-Ver1.9.pptx
PDF
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
PPTX
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
PPTX
Transform Your Business with a Software ERP System
PDF
Understanding Forklifts - TECH EHS Solution
PPTX
Online Work Permit System for Fast Permit Processing
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PDF
Wondershare Filmora 15 Crack With Activation Key [2025
PDF
PTS Company Brochure 2025 (1).pdf.......
PPTX
CHAPTER 2 - PM Management and IT Context
PDF
Design an Analysis of Algorithms I-SECS-1021-03
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
AI in Product Development-omnex systems
Internet Downloader Manager (IDM) Crack 6.42 Build 41
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
Addressing The Cult of Project Management Tools-Why Disconnected Work is Hold...
Introduction Database Management System for Course Database
Raksha Bandhan Grocery Pricing Trends in India 2025.pdf
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
top salesforce developer skills in 2025.pdf
VVF-Customer-Presentation2025-Ver1.9.pptx
Why TechBuilder is the Future of Pickup and Delivery App Development (1).pdf
Agentic AI : A Practical Guide. Undersating, Implementing and Scaling Autono...
Transform Your Business with a Software ERP System
Understanding Forklifts - TECH EHS Solution
Online Work Permit System for Fast Permit Processing
Adobe Illustrator 28.6 Crack My Vision of Vector Design
Wondershare Filmora 15 Crack With Activation Key [2025
PTS Company Brochure 2025 (1).pdf.......
CHAPTER 2 - PM Management and IT Context
Design an Analysis of Algorithms I-SECS-1021-03

Introduction to Compiler Development

  • 1. INTRO TO COMPILER DEVELOPMENT LOGAN CHIEN http://slide.logan.tw/compiler-intro/
  • 2. LOGAN CHIEN So ware engineer at MediaTek Ametuar LLVM/Clang developer Integrated LLVM/Clang into Android NDK
  • 3. WHY I LOVE COMPILERS? I have been a faithful reader of Jserv's blog for ten years. I was inspired by the compiler and the virtual machine technologies mentioned in his blog. I have decided to choose compiler technologies as my research topic since then.
  • 4. UNDERGRADUATE COMPILER COURSE I took the undergraduate compiler course when I was a sophomore.
  • 5. MY PROFESSOR SAID ... “We took many lectures to discuss about the parser. However, when people say they are doing compiler research, with large possibility, they are not referring to the parsing technique.”
  • 6. I AM HERE TO ... Re-introduce the compiler technologies, Give a lightening talk on industrial-strength compiler design, Explain the connection between compiler technologies and the industry.
  • 7. AGENDA Re-introduction to Compiler (30min) Industrial-strength Compiler Design (90min) Compiler and ICT Industry (20min)
  • 9. WHAT IS A COMPILER? Compiler are tools for programmers to translate programmer's thought into computer runnable programs. ANALOGY — Translators who turn from one language to another, such as those who translate Chinese to English.
  • 10. WHAT HAVE WE LEARNED IN UNDERGRADUATE COMPILER COURSE?
  • 11. LEXER Reads the input source code (as a sequence of bytes) and converts them into a stream of tokens. u n s i g n e d b a c k g r o u n d ( u n s i g n e d f o r e g r o u n d ) { i f ( ( f o r e g r o u n d > > 1 6 ) > 0 x 8 0 ) { r e t u r n 0 ; } e l s e { r e t u r n 0 x f f f f f f ; } } unsigned background ( unsigned foreground ) { if ( ( foreground >> 16 ) > 128 ) { return 0 ; } else { return 16777215 ; } }
  • 12. PARSER Reads the tokens and build an AST according to the syntax. unsigned background ( unsigned foreground ) { if ( ( foreground >> 16 ) > 128 ) { return 0 ; } else { return 16777215 ; } } ( p r o c e d u r e b a c k g r o u n d ( a r g s ' ( f o r e g r o u n d ) ) ( c o m p o u n d - s t m t ( i f - s t m t ( b i n - e x p r G E ( b i n - e x p r R S H I F T f o r e g r o u n d 1 6 ) 1 2 8 ) ( r e t u r n - s t m t 0 ) ( r e t u r n - s t m t 1 6 7 7 7 2 1 5 ) ) ) )
  • 13. CODE GENERATOR Generate the machine code or (assembly) according to the AST. In the undergraduate course, we usually simply do syntax-directed translation. ( p r o c e d u r e b a c k g r o u n d ( a r g s ' ( f o r e g r o u n d ) ) ( c o m p o u n d - s t m t ( i f - s t m t ( b i n - e x p r G E ( b i n - e x p r R S H I F T f o r e g r o u n d 1 6 ) 1 2 8 ) ( r e t u r n - s t m t 0 ) ( r e t u r n - s t m t 1 6 7 7 7 2 1 5 ) ) ) ) l s r w 8 , w 0 , # 1 6 c m p w 8 , # 1 2 8 b . l o . L e l s e m o v w 0 , w z r r e t . L e l s e : o r r w 0 , w z r , # 0 x f f f f f f r e t
  • 14. WHAT'S MISSING? Can a person who can only lex and parse sentences translate articles well?
  • 15. COMPILER REQUIREMENTS A compiler should translate the source code precisely. A compiler should utilize the device efficiently.
  • 16. THREE RELATED FIELDS Programming Language Computer Architecture Compiler
  • 17. PROGRAMMING LANGUAGE THEORY Essential component of a programming language: type theory, variable scoping, language semantics, etc. How do people reason and compose a program? Create an abstraction that is understandable to human and tracable to computers.
  • 18. EXAMPLE: SUBTYPE AND MUTABLE RECORDS Why you can't perform following conversion in C++? v o i d t e s t ( i n t * p t r ) { i n t * * p = & p t r ; c o n s t i n t * * a = p ; / / C o m p i l e r g i v e s w a r n i n g / / . . . } This is related to covariant type and contravarience type. With PLT, we know that we can only choose two of (a) covariant type, (b) mutable records, and (c) type consistency. v o i d t e s t ( i n t * p t r ) { c o n s t i n t c = 0 ; i n t * * p = & p t r ; c o n s t i n t * * a = p ; / / I f i t i s a l l o w e d , b a d p r o g r a m s w i l l p a s s . * a = & c ; * p = 5 ; / / N o w a r n i n g h e r e . }
  • 19. EXAMPLE: DYNAMIC SCOPING IN BASH # ! / b i n / s h v = 1 # I n i t i a l i z e v w i t h 1 f o o ( ) { e c h o " f o o : v = $ { v } " # W h i c h v i s r e f e r r e d ? v = 2 # W h i c h v i s a s s i g n e d ? } b a r ( ) { l o c a l v = 3 f o o e c h o " b a r : v = $ { v } " # W h a t w i l l b e p r i n t e d ? } v = 4 # A s s i g n 4 t o v b a r e c h o " v = $ { v } " # W h a t w i l l b e p r i n t e d ? Ans: foo:v=3, bar:v=2, v=4. Surprisingly, foois accessing local vin barinstead of the global v.
  • 20. EXAMPLE: NON-LEXICAL SCOPING IN JAVASCRIPT / / J a v a s c r i p t , t h e b a d p a r t f u n c t i o n b a d ( v ) { v a r s u m ; w i t h ( v ) { s u m = a + b ; } r e t u r n s u m ; } c o n s o l e . l o g ( b a d ( { a : 5 , b : 1 0 } ) ) ; c o n s o l e . l o g ( b a d ( { a : 5 , b : 1 0 , s u m : 1 0 0 } ) ) ; Ans: The second console.log()prints undefined.
  • 21. COMPUTER ARCHITECTURE Instruction set architecture: CISC vs. RISC. Out-of-Order Execution vs. Instruction Scheduling. Memory hierarchy Memory model
  • 22. QUIZ: DO YOU REALLY KNOW C? Is it guaranteed that vwill always be loaded a er pred? i n t p r e d ; i n t v ; i n t g e t ( i n t a , i n t b ) { i n t r e s ; i f ( p r e d > 0 ) { r e s = v * a - v / b ; } e l s e { r e s = v * a + v / b ; } r e t u r n r e s ; } Ans: No. Independent reads/writes can be reordered. The standard only requires the result should be the same as running from top to bottom (in a single thread.)
  • 23. COMPILER ANALYSIS Data-flow analysis — Analyze value ranges, check the conditions or contraints, figure out modifications to variables, etc. Control-flow analysis — Analyze the structure of the program, such as control dependency and loop structure. Memory dependency analysis — Analyze the memory access pattern of the access to array elements or pointer dereferences, e.g. alias analysis.
  • 24. ALIAS ANALYSIS Determine whether two pointers can refers to the same object or not. v o i d m o v e ( c h a r * d s t , c o n s t c h a r * s r c , i n t n ) { f o r ( i n t i = 0 ; i < n ; + + i ) { d s t [ i ] = s r c [ i ] ; } } i n t s u m ( i n t * p t r , c o n s t i n t * v a l , i n t n ) { i n t r e s = 0 ; f o r ( i n t i = 0 ; i < n ; + + i ) { r e s + = * v a l ; * p t r + + = 1 0 ; } r e t u r n r e s ; }
  • 25. QUIZ: DO YOU KNOW C++? c l a s s Q M u t e x L o c k e r { p u b l i c : u n i o n { Q M u t e x * m t x _ ; u i n t p t r _ t v a l _ ; } ; v o i d u n l o c k ( ) { i f ( v a l _ ) { i f ( ( v a l _ & ( u i n t p t r _ t ) 1 ) = = ( u i n t p t r _ t ) 1 ) { v a l _ & = ~ ( u i n t p t r _ t ) 1 ; m t x _ - > u n l o c k ( ) ; } } } } ; Pitfall: Reading from union fields that were not written previously results in undefined behavior. Type-Based Alias Analysis (TBAA) exploits this rule.
  • 26. COMPILER OPTIMIZATION Scalar optimization — Fold the constants, remove the redundancies, change expressions with identities, etc. Vector optimization — Convert several scalar operations into one vector operation, e.g. combining for addinstruction into one vector add. Interprocedural optimization — function inlining, devirtualization, cross-function analysis, etc.
  • 27. OTHER COMPILER-RELATED TECHNOLOGY Just-in-time compilers Binary translators Program profiling and performance measurement Facilities to run compiled executables, e.g. garbage collectors
  • 29. What's the difference between your final project and the industrial- strength compiler?
  • 30. KEY DIFFERENCE Analysis — Reasons program structures and changes of values. Optimization — Applies several provably correct transformation which should make program run faster. Intermediate Representation — Data structure on which analyses and optimizations are based.
  • 31. INTERMEDIATE REPRESENTATION1/4 A data structure for program analyses and optimizations. High-level enough to capture important properties and encapsulates hardware limitation. Low-level enough to be analyzed by analyses and manipulated by transformations. An abstraction layer for multiple front-ends and back-ends.
  • 34. INTERMEDIATE REPRESENTATION4/4 GCC — GENERIC, GIMPLE, Tree SSA, and RTL. LLVM — LLVM IR, Selection DAG, and Machine Instructions. Java HotSpot — HIR, LIR, and MIR.
  • 35. CONTROL FLOW GRAPH1/3 Basic block — A sequence of instructions that will only be entered from the top and exited from the end. Edge — If the basic block s may branch to t, then we add a directed edge (s, t). Predecessor/Successor — If there is an edge (s, t), then s is a predecessor of t and t is a successor of s.
  • 36. CONTROL FLOW GRAPH2/3 / / y = a * x + b ; v o i d m a t m u l ( d o u b l e * r e s t r i c t y , u n s i g n e d l o n g m , u n s i g n e d l o n g n , c o n s t d o u b l e * r e s t r i c t a , c o n s t d o u b l e * r e s t r i c t x , c o n s t d o u b l e * r e s t r i c t b ) { f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) { d o u b l e t = b [ r ] ; f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) { t + = a [ r * n + i ] * x [ i ] ; } y [ r ] = t ; } } Input source program
  • 37. CONTROL FLOW GRAPH3/3 bp = getelementptr b, r t = load bp i = 0 cmp = icmp lt, i, n br cmp, B2, B3 B1 B2 rn = mul r, n ai = add rn, i ap = getelementptr a, ai ad = load ap xp = getelementptr x, i xd = load xp ax = mul ad, xd t = add t, ax i = add i, 1 cmp = icmp lt, i, n br cmp, B2, B3 B3 yp = getelementptr y, r store t, yp r = add r, 1 cmp = icmp lt, r, n br cmp, B1, B4B4 ret void B0 (ENTRY) r = 0 cmp = icmp lt r, m br cmp, B1, B4
  • 38. VARIABLE DEFINITION bp = getelementptr b, r t = load bp i = 0 cmp = icmp lt, i, n br cmp, B2, B3 B1 B2 rn = mul r, n ai = add rn, i ap = getelementptr a, ai ad = load ap xp = getelementptr x, i xd = load xp ax = mul ad, xd t = add t, ax i = add i, 1 cmp = icmp lt, i, n br cmp, B2, B3 B3 yp = getelementptr y, r store t, yp r = add r, 1 cmp = icmp lt, r, n br cmp, B1, B4B4 ret void B0 (ENTRY) r = 0 cmp = icmp lt r, m br cmp, B1, B4 definitions of r The place where a variable is assigned or defined.
  • 39. VARIABLE USE bp = getelementptr b, r t = load bp i = 0 cmp = icmp lt, i, n br cmp, B2, B3 B1 B2 rn = mul r, n ai = add rn, i ap = getelementptr a, ai ad = load ap xp = getelementptr x, i xd = load xp ax = mul ad, xd t = add t, ax i = add i, 1 cmp = icmp lt, i, n br cmp, B2, B3 B3 yp = getelementptr y, r store t, yp r = add r, 1 cmp = icmp lt, r, n br cmp, B1, B4B4 ret void B0 (ENTRY) r = 0 cmp = icmp lt r, m br cmp, B1, B4 definitions of r uses of r The places where a variable is referred or used.
  • 40. REACHING DEFINITION1/2 bp = getelementptr b, r t = load bp i = 0 cmp = icmp lt, i, n br cmp, B2, B3 B1 B2 rn = mul r, n ai = add rn, i ap = getelementptr a, ai ad = load ap xp = getelementptr x, i xd = load xp ax = mul ad, xd t = add t, ax i = add i, 1 cmp = icmp lt, i, n br cmp, B2, B3 B3 yp = getelementptr y, r store t, yp r = add r, 1 cmp = icmp lt, r, n br cmp, B1, B4B4 ret void B0 (ENTRY) r = 0 cmp = icmp lt r, m br cmp, B1, B4 {d0} {d0, d1} {d0, d1} d0: d1: {d1} {d0, d1} {d0, d1} Definitions that reaches a use.
  • 41. REACHING DEFINITION2/2 Constant propagation is a good example to show the usefulness of reaching definition. v o i d t e s t ( i n t c o n d ) { i n t a = 1 ; / / d 0 i n t b = 2 ; / / d 1 i f ( c o n d ) { c = 3 ; / / d 2 } e l s e { / / R e a c h D e f [ a ] = { d 0 } / / R e a c h D e f [ b ] = { d 1 } c = a + b ; / / d 3 } / / R e a c h D e f [ c ] = { d 2 , d 3 } u s e ( c ) ; }
  • 42. DOMINANCE RELATION1/2 A basic block s dominates t iff every paths that goes from entry to t will pass through s. Every basic block in a CFG has an immediate dominator and forms a dominator tree.
  • 44. DOMINANCE FRONTIER A basic block t is a dominance frontier of a basic block s, if one of predecessor of t is dominated by s but t is not strictly dominated by s. B0 B1 B2 B3 B6 B4 B5 DF[B2] = {B3, B5} DF[B4] = {B4} DF[B1] = {B3, B5}
  • 45. STATIC SINGLE-ASSIGNMENT FORM static — A static analysis to the program (not the execution.) single-assignment — Every variable can only be assigned once. SSA form is the most popular intermediate representation recently. It is adopted by a wide range of compilers, such as GCC, LLVM, Java HotSpot, Android ART, etc.
  • 46. SSA PROPERTIES Every variables can only be defined once. Every uses can only refer to one definition. Use phifunction to handle the merged control-flow.
  • 47. PHI FUNCTIONS d e f i n e v o i d @ f o o ( i 1 c o n d , i 3 2 a , i 3 2 b ) { e n t : b r c o n d , b 1 , b 2 b 1 : t 0 = m u l a , 4 b r b 3 b 2 : t 1 = m u l b , 5 b r b 3 b 3 : t 2 = p h i ( t 0 ) , ( t 1 ) u s e ( t 2 ) r e t } d e f i n e v o i d @ f o o ( i 3 2 n ) { e n t : b r l o o p l o o p : i 0 = p h i ( 0 ) , ( i 1 ) c m p = i c m p g e i 0 , n b r c m p , e n d , c o n t c o n t : u s e ( i 0 ) i 1 = a d d i 0 , 1 b r l o o p e n d : r e t }
  • 48. ADVANTAGE OF SSA FORM Compact — Reduce the def-use chain. Referential transparency — The properties associated with a variable will not be changed, aka. context-free.
  • 49. REDUCED DEF-USE CHAIN v o i d f o o ( i n t c o n d 1 , i n t c o n d 2 , i n t a , i n t b ) { i n t t ; i f ( c o n d 1 ) { t = a * 4 ; / / d 0 } e l s e { t = b * 5 ; / / d 1 } i f ( c o n d 2 ) { / / r e a c h - d e f : { d 0 , d 1 } u s e ( t ) ; } e l s e { / / r e a c h - d e f : { d 0 , d 1 } u s e ( t ) ; } } v o i d f o o ( i n t c o n d 1 , i n t c o n d 2 , i n t a , i n t b ) { i f ( c o n d 1 ) { t . 0 = a * 4 ; } e l s e { t . 1 = b * 5 ; } t . 2 = p h i ( t . 0 , t . 1 ) ; i f ( c o n d 2 ) { u s e ( t . 2 ) ; } e l s e { u s e ( t . 2 ) ; } }
  • 50. REFERENTIAL TRANSPARENCY1/2 v o i d f o o ( ) { i n t r = 5 ; / / d 0 / / . . . S O M E C O D E . . . / / W e c a n o n l y a s s u m e / / " r = = 5 " i f d 0 i s t h e / / o n l y r e a c h i n g d e f i n i t i o n . u s e ( r ) ; } v o i d f o o ( ) { r . 0 = 5 ; / / . . . S O M E C O D E . . . / / N o m a t t e r w h a t c o d e a r e / / s k i p p e d a b o v e , i t i s s a f e / / t o r e p l a c e f o l l o w i n g r . 0 / / w i t h 5 . u s e ( r . 0 ) ; }
  • 51. REFERENTIAL TRANSPARENCY2/2 v o i d f o o ( i n t a , i n t b ) { i n t c = a + b ; i n t r = a + b ; / / C a n w e s i m p l y r e p l a c e / / a l l o c c u r r e n c e o f r w i t h / / c ? ( N O ) / / . . . S O M E C O D E . . . u s e ( r ) ; } v o i d f o o ( i n t a , i n t b ) { c . 0 = a + b ; r . 0 = a + b ; / / . . . S O M E C O D E . . . / / N o m a t t e r w h a t c o d e a r e / / s k i p p e d a b o v e , i t i s s a f e / / t o r e p l a c e f o l l o w i n g r . 0 / / w i t h c . 0 . u s e ( r . 0 ) ; }
  • 52. BUILDING SSA FORM 1. Compute domination relationships between basic blocks and build the dominator tree. 2. Compute dominator frontiers. 3. Insert phifunctions at dominator frontiers. 4. Traverse the dominator tree and rename the variables.
  • 53. BEFORE SSA CONSTRUCTION bp = getelementptr b, r t = load bp i = 0 cmp = icmp lt, i, n br cmp, B2, B3 B1 B2 rn = mul r, n ai = add rn, i ap = getelementptr a, ai ad = load ap xp = getelementptr x, i xd = load xp ax = mul ad, xd t = add t, ax i = add i, 1 cmp = icmp lt, i, n br cmp, B2, B3 B3 yp = getelementptr y, r store t, yp r = add r, 1 cmp = icmp lt, r, n br cmp, B1, B4B4 ret void B0 (ENTRY) r = 0 cmp = icmp lt r, m br cmp, B1, B4
  • 54. AFTER SSA CONSTRUCTION r.0 = phi (0, B0) (r.1 B3) bp = getelementptr b, r.0 t.0 = load bp cmp = icmp lt, 0, n br cmp, B2, B3 B1 B2 t.1 = phi (t.0, B1) (t.2 B2) i.0 = phi (0, B1) (i.1, B2) rn = mul r.0, n ai = add rn, i.1 ap = getelementptr a, ai ad = load ap xp = getelementptr x, i.1 xd = load xp ax = mul ad, xd t.2 = add t.1, ax i.1 = add i.0, 1 cmp = icmp lt, i.1, n br cmp, B2, B3 B3 t.3 = phi (t0, B1) (t.2, B2) yp = getelementptr y, r.0 store t.3, yp r.1 = add r.0, 1 cmp = icmp lt, r.1, n br cmp, B1, B4 B4 ret void B0 (ENTRY) cmp = icmp lt 0, m br cmp, B1, B4
  • 56. CONSTANT PROPAGATION1/3 Constant propagation, sometimes known as constant folding, will evaluate the instructions with constant operands and propagate the constant result. a = a d d 2 , 3 b = a c = m u l a , b a = 5 b = 5 c = 2 5
  • 57. CONSTANT PROPAGATION2/3 Why do we need constant propagation? s t r u c t q u e u e * c r e a t e _ q u e u e ( ) { r e t u r n ( s t r u c t q u e u e * ) m a l l o c ( s i z e o f ( s t r u c t q u e u e * ) * 1 6 ) ; } i n t p r o c e s s _ d a t a ( i n t a , i n t b , i n t c ) { i n t k [ ] = { 0 x 1 3 , 0 x 1 7 , 0 x 1 9 } ; i f ( D E B U G ) { v e r i f y _ d a t a ( k , d a t a ) ; } r e t u r n ( a * k [ 1 ] * k [ 2 ] + b * k [ 0 ] * k [ 2 ] + c * k [ 0 ] * k [ 1 ] ) ; }
  • 58. CONSTANT PROPAGATION3/3 For each basic block b from CFG in reversed postorder: For each instruction i in basic block b from top to bottom: If all of its operands are constants, the operation has no side-effect, and we know how to evaluate it at compile time, then evaluate the result, remove the instruction, and replace all usages with the result.
  • 59. GLOBAL VALUE NUMBERING1/2 Global value numbering tries to give numbers to the computed expression and maps the newly visited expression to the visited ones. a = c * d ; / / [ ( * , c , d ) - > a ] e = c ; / / [ ( * , c , d ) - > a ] f = e * d ; / / q u e r y : i s ( * , c , d ) a v a i l a b l e ? u s e ( a , e , f ) ; a = c * d ; u s e ( a , c , a ) ;
  • 60. GLOBAL VALUE NUMBERING2/2 Traverse the basic blocks in depth-first order on dominator tree. Maintain a stack of hash table. Once we have returned from a child node on the dominator tree, then we have to pop the stack top. Visit the instructions in the basic block with tᅠ=ᅠopᅠa,ᅠb form and compute the hash for (op, a, b). If (op, a, b) is already in the hash table, then change tᅠ=ᅠopᅠa,ᅠb with tᅠ=ᅠhash_tab[(op,ᅠa,ᅠb)] Otherwise, insert (op, a, b) -> t to the hash table.
  • 61. DEAD CODE ELIMINATION1/6 Dead code elimination (DCE) removes unreachable instructions or ignored results. Constant propagation might reveal more dead code since the branch conditions become constant value. On the other hand, DCE can exploit more constant for constant propagation because several definitions are removed from the program.
  • 62. DEAD CODE ELIMINATION2/6 Conditional statements with constant condition i f ( k I s D e b u g B u i l d ) { / / D e a d c o d e c h e c k _ i n v a r i a n t ( a , b , c , d ) ; / / D e a d c o d e }
  • 63. DEAD CODE ELIMINATION3/6 Platform-specific constant v o i d h a s h _ e n t _ s e t _ v a l ( s t r u c t h a s h _ e n t * h , i n t v ) { i f ( s i z e o f ( i n t ) < = s i z e o f ( v o i d * ) ) { h - > p = ( v o i d * ) ( u i n t p t r _ t ) ( v ) ; } e l s e { h - > p = m a l l o c ( s i z e o f ( i n t ) ) ; / / D e a d c o d e * ( h - > p ) = v ; / / D e a d c o d e } }
  • 64. DEAD CODE ELIMINATION4/6 Computed result ignored i n t c o m p u t e _ s u m ( i n t a , i n t b ) { i n t s u m = ( a + b ) * ( a - b + 1 ) / 2 ; / / D e a d c o d e : N o t u s e d r e t u r n 0 ; } Dead code a er dead store optimization v o i d t e s t ( i n t * p , b o o l c o n d , i n t a , i n t b , i n t c ) { i f ( c o n d ) { t = a + b ; / / D e a d c o d e * p = t ; / / W i l l b e r e m o v e d b y D S E } * p = c ; }
  • 65. DEAD CODE ELIMINATION5/6 Dead code a er code specialization v o i d m a t m u l ( d o u b l e * r e s t r i c t y , u n s i g n e d l o n g m , u n s i g n e d l o n g n , c o n s t d o u b l e * r e s t r i c t a , c o n s t d o u b l e * r e s t r i c t x , c o n s t d o u b l e * r e s t r i c t b ) { i f ( n = = 0 ) { f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) { d o u b l e t = b [ r ] ; f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) { / / D e a d c o d e t + = a [ r * n + i ] * x [ i ] ; / / D e a d c o d e } / / D e a d c o d e y [ r ] = t ; } } e l s e { / / . . . s k i p p e d . . . } }
  • 66. DEAD CODE ELIMINATION6/6 Traverse the CFG starting from entry in reversed post order. Only traverse the successor that may be visited, i.e. if the branch condition is a constant, then ignore the other side. While traversing the basic block, clear the dead instructions within the basic block. A er the traversal, remove the unvisited basic blocks and remove the variable uses that refers to the variables that are defined in the unvisited basic blocks.
  • 67. LOOP OPTIMIZATIONS It is reasonable to assume a program spends more time in the loop body. Thus, loop optimization is an important issue in the compiler.
  • 68. LOOP INVARIANT CODE MOTION1/3 Loop invariant code motion (LICM) is an optimization which moves loop invariants or loop constants out of the loop. i n t t e s t ( i n t n , i n t a , i n t b , i n t c ) { i n t s u m = 0 ; f o r ( i n t i = 0 ; i < n ; + + i ) { s u m + = i * a * b * c ; / / a * b * c i s l o o p i n v a r i a n t } r e t u r n s u m ; }
  • 69. LOOP INVARIANT CODE MOTION2/3 f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) { d o u b l e t = b [ r ] ; f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) { t + = a [ ( r * n ) + i ] * x [ i ] ; / / " r * n " i s a i n n e r l o o p i n v a r i a n t } y [ r ] = t ; } f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) { d o u b l e t = b [ r ] ; u n s i g n e d l o n g k = r * n ; / / " r * n " m o v e d o u t o f t h e i n n e r l o o p f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) { t + = a [ k + i ] * x [ i ] ; } y [ r ] = t ; }
  • 70. LOOP INVARIANT CODE MOTION3/3 How do we know whether a variable is a loop invariant? If the computation of a value is not (transitively) depending on following black lists, we can assume such value is a loop invariant: Phi instructions associating with the loop being considered Instructions with side-effects or non-pure instructions, e.g. function calls
  • 71. INDUCTION VARIABLE If x represents the trip count (iteration count), then we call a*x+b induction variables. f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) { d o u b l e t = b [ r ] ; u n s i g n e d l o n g k = r * n ; / / o u t e r l o o p I V f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) { u n s i g n e d l o n g m = k + i ; / / i n n e r l o o p I V t + = a [ m ] * x [ i ] ; } y [ r ] = t ; } k and r are induction variables of outer loop. i and m are induction variables of inner loop.
  • 72. LOOP STRENGTH REDUCTION1/2 Strength reduction is an optimization to replace the multiplication in induction variables with an addition. f o r ( u n s i g n e d l o n g r = 0 ; r < m ; + + r ) { d o u b l e t = b [ r ] ; u n s i g n e d l o n g k = r * n ; / / o u t e r l o o p I V f o r ( u n s i g n e d l o n g i = 0 ; i < n ; + + i ) { u n s i g n e d l o n g m = k + i ; / / i n n e r l o o p I V t + = a [ m ] * x [ i ] ; } y [ r ] = t ; } f o r ( u n s i g n e d l o n g r = 0 , k = 0 ; r < m ; + + r , k + = n ) { / / k d o u b l e t = b [ r ] ; f o r ( u n s i g n e d l o n g i = 0 , m = k ; i < n ; + + i , + + m ) { / / m t + = a [ m ] * x [ i ] ; } y [ r ] = t ; }
  • 73. LOOP STRENGTH REDUCTION2/2 We can even rewrite the range to eliminate the index computation. i n t s u m ( c o n s t i n t * a , i n t n ) { i n t r e s = 0 ; f o r ( i n t i = 0 ; i < n ; + + i ) { r e s + = a [ i ] ; / / i m p l i c i t * ( a + s i z e o f ( i n t ) * i ) } r e t u r n r e s ; } i n t s u m ( c o n s t i n t * a , i n t n ) { i n t r e s = 0 ; c o n s t i n t * e n d = a + n ; / / i m p l i c i t a + s i z e o f ( i n t ) * n f o r ( c o n s t i n t * p = a ; p ! = e n d ; + + p ) { / / r a n g e u p d a t e d r e s + = * p ; } r e t u r n r e s ; }
  • 74. LOOP UNROLLING1/2 Unroll the loop body multiple times. Purpose: Reduce amortized loop iteration overhead. Purpose: Reduce load/store stall and exploit instruction- level parallelism, e.g. so ware pipelining. Purpose: Prepare for vectorization, e.g. SIMD.
  • 75. LOOP UNROLLING2/2 f o r ( u n s i g n e d l o n g r = 0 , k = 0 ; r < m ; + + r , k + = n ) { d o u b l e t = b [ r ] ; s w i t c h ( n & 0 x 3 ) { / / D u f f ' s d e v i c e c a s e 3 : t + = a [ k + 2 ] * x [ 2 ] ; c a s e 2 : t + = a [ k + 1 ] * x [ 1 ] ; c a s e 1 : t + = a [ k ] * x [ 0 ] ; } f o r ( u n s i g n e d l o n g i = n & 0 x 3 ; i < n ; i + = 4 ) { t + = a [ k + i ] * x [ i ] ; t + = a [ k + i + 1 ] * x [ i + 1 ] ; t + = a [ k + i + 2 ] * x [ i + 2 ] ; t + = a [ k + i + 3 ] * x [ i + 3 ] ; } y [ r ] = t ; }
  • 76. INSTRUCTION SELECTION1/5 Instruction selection is a process to map IR into machine instructions. Compiler back-ends will perform pattern matching to the best select instructions (according to the heuristic.)
  • 77. INSTRUCTION SELECTION2/5 Complex operations, e.g. shi -and-add or multiply- accumulate. Array load/store instructions, which can be translated to one shi -add-and-load on some architectures. IR instructions are which not natively supported by the target machine.
  • 78. INSTRUCTION SELECTION3/5 d e f i n e i 6 4 @ m a c ( i 6 4 % a , i 6 4 % b , i 6 4 % c ) { e n t : % 0 = m u l i 6 4 % a , % b % 1 = a d d i 6 4 % 0 , % c r e t i 6 4 % 1 } m a c : m a d d x 0 , x 1 , x 0 , x 2 r e t
  • 79. INSTRUCTION SELECTION4/5 d e f i n e i 6 4 @ l o a d _ s h i f t ( i 6 4 * % a , i 6 4 % i ) { e n t : % 0 = g e t e l e m e n t p t r i 6 4 , i 6 4 * % a , i 6 4 % i % 1 = l o a d i 6 4 , i 6 4 * % 0 r e t i 6 4 % 1 } l o a d _ s h i f t : l d r x 0 , [ x 0 , x 1 , l s l # 3 ] r e t
  • 80. INSTRUCTION SELECTION5/5 % s t r u c t . A = t y p e { i 6 4 * , [ 1 6 x i 6 4 ] } d e f i n e i 6 4 @ g e t _ v a l ( % s t r u c t . A * % p , i 6 4 % i , i 6 4 % j ) { e n t : % 0 = g e t e l e m e n t p t r % s t r u c t . A , % s t r u c t . A * % p , i 6 4 % i , i 3 2 1 , i 6 4 % j % 1 = l o a d i 6 4 , i 6 4 * % 0 r e t i 6 4 % 1 } g e t _ v a l : m o v z w 8 , # 0 x 8 8 m a d d x 8 , x 1 , x 8 , x 0 a d d x 8 , x 8 , x 2 , l s l # 3 l d r x 0 , [ x 8 , # 8 ] r e t
  • 81. SSA DESTRUCTION1/5 How do we deal with the phifunctions? Copy the assignment operator to the end of the predecessor. (Must be done carefully)
  • 82. SSA DESTRUCTION2/3 cmp = icmp eq, cond, 0 br cmp, B1, B2 B0 br B3 B1 br B3 B2 a = phi (3, B1) (7, B2) print(a) B3 cmp = icmp eq, cond, 0 br cmp, B1, B2 B0 a = 3 br B3 B1 a = 7 br B3 B2 print(a) B3 converts to Example to show the assignment copying
  • 83. SSA DESTRUCTION3/5 i.0 = phi (0, B0) (i.1, B2) cmp = icmp lt, i.0, 100 br cmp, B2, B3 B1 ret B3 print(i.0) i.1 = add i.0, 1 br B1 B2 br B1 B0 cmp = icmp lt, i.0, 100 br cmp, B2, B3 B1 B3 print(i.0) i.1 = add i.0, 1 i.0 = i.1 br B1 B2 i.0 = 0 br B1 B0 ret Converts to Converts to Example to show the assignment copying with loop
  • 84. SSA DESTRUCTION4/5 i.0 = phi (0, B0) (i.1, B2) cmp = icmp lt, i.0, 100 br cmp, B2, B3 B1 print(i.0) ret B3 print(i.0) i.1 = add i.0, 1 br B1 B2 br B1 B0 cmp = icmp lt, i.0, 100 br cmp, B2, B3 B1 B3 print(i.0) i.1 = add i.0, 1 i.0 = i.1 br B1 B2 i.0 = 0 br B1 B0 print(i.0) ret Doesn't work! Lost copy problem — Naive de-SSA algorithm doesn't work due to live range conflicts. Need extra assignments and renaming to avoid conflicts.
  • 85. SSA DESTRUCTION5/5 t = x x = y y = t br cmp, B2, B1 B1 print(x) print(y) B2 x = 1 y = 2 br B1 B0 x1 = phi (x0, y1) y1 = phi (y0, x1) br cmp, B2, B1 B1 print(x1) print(y1) B2 x0 = 1 y0 = 2 br B1 B0 x1 = y1 y1 = x1 br cmp, B2, B1 B1 print(x1) print(y1) B2 x0 = 1 y0 = 2 x1 = x0 y1= y0 br B1 B0 Swap problem — Conflicts due to parallel assignment semantics of phiinstructions. A correct algorithm should detect the cycle and implement parallel assignment with swap instructions.
  • 86. REGISTER ALLOCATION1/2 We have to replace infinite virtual registers with finite machine registers. Register Allocation — Make sure that the maximum simultaneous register usages are less then k. Register Assignment — Assign a register given the fact that registers are always sufficient. The classical solution is to compute the life time of each variables, build the inference graph, spill the variable to stack if the inference graph is not k-colorable.
  • 87. REGISTER ALLOCATION2/2 ret y add y, c, g add g a f add f, d, e add e, a, c add d, a, b mov c, #2 mov b, #1 mov a, #1 a b c d e f g y a g b c e d f y
  • 88. INSTRUCTION SCHEDULING1/2 Sort the instruction according the number of cycles in order to reduce execution time of the critical path. Constraints: (a) Data dependence, (b) Functional units, (c) Issue width, (d) Datapath forwarding, (e) Instruction cycle time, etc.
  • 89. INSTRUCTION SCHEDULING2/2 0 : a d d r 0 , r 0 , r 1 1 : a d d r 1 , r 2 , r 2 2 : l d r r 4 , [ r 3 ] 3 : s u b r 4 , r 4 , r 0 4 : s t r r 4 , [ r 1 ] 2 : l d r r 4 , [ r 3 ] # l o a d i n s t r u c t i o n n e e d s m o r e c y c l e s 0 : a d d r 0 , r 0 , r 1 1 : a d d r 1 , r 2 , r 2 3 : s u b r 4 , r 4 , r 0 4 : s t r r 4 , [ r 1 ]
  • 91. WHERE CAN WE FIND COMPILER?
  • 92. SMART PHONES Android ART (Java VM) OpenGL|ES GLSL Compiler (Graphics)
  • 93. BROWSERS Javascript-related Javascript Engine, e.g. V8, IonMonkey, JavaScriptCore, Chakra Regular Expression Engine WebAssembly WebGL — OpenGL binding for the Web (Graphics) WebCL — OpenCL binding for the Web (Computing)
  • 94. DESKTOP APPLICATION RUN-TIME ENVIRONMENTS Java run-time (Java, Scala, Clojure, Groovy) .NET run-time (C#, F#) Ruby Python PHP
  • 95. VIRTUAL MACHINES AND EMULATORS Simulate different architecture (using dynamic recompilation), e.g. QEMU Simulate special instructions that are not supported by hypervisor.
  • 96. DEVELOPMENT ENVIRONMENT C/C++ compiler, e.g. MSVC, GCC, LLVM Java compiler, e.g. OpenJDK DSP compilers for digital signal processors. VHDL compilers for IC design team. Profiling and/or intrusmentation tools, e.g. Valgrind, Dr. Memory, Address Sanitizer, Memory Sanitizer
  • 97. WHAT DOES A COMPILER TEAM DO? Develop the compiler toolchain for the in-house processors, e.g. DSP, GPU, CPU, and etc. Tune the performance of the existing compiler or virtual machines. Develop a new programming language or model (e.g. Cuda from NVIDIA.)
  • 98. SOME RESEARCH TOPICS ... Memory model for concurrency — Designing a good memory model at programming language level, which should be intuitive to human while open for compiler/architecture optimization, is still a challenging problem. Both Java and C++ took efforts to standardize. However, there are still some unintuitive cases that are allowed and some desirable cases being ruled out.