SlideShare a Scribd company logo
Intro to
Deep Learning
for
NeuroImaging
Andrew Doyle
@crocodoyle
McGill Centre for Integrative Neuroscience
Outline
1. GET EXCITED
2. Artificial Neural Networks
3. Backpropagation
4. Convolutional Neural Networks
ImageNet-1000 Results
Image courtesy Aaron Courville, 2016
Generative Models
Deep Blood by Team BloodArtBrainBrush
Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. "Image style
transfer using convolutional neural networks." Computer Vision and
Pattern Recognition (CVPR), 2016 IEEE Conference on. IEEE, 2016.
Generative Models
Zhang, Han, et al. "StackGAN: Text to photo-realistic image synthesis
with stacked generative adversarial networks." arXiv preprint
arXiv:1612.03242 (2016).
StackGAN
Generative Models
Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-
consistent adversarial networks." arXiv preprint
arXiv:1703.10593 (2017).
CycleGAN
Generative Models
Wolterink, Jelmer M., et al. "Deep MR to CT synthesis using unpaired
data." International Workshop on Simulation and Synthesis in Medical
Imaging. Springer, Cham, 2017.
Introduction
For Deep Learning, you need:
1. Artificial Neural Network
2. Loss
3. Optimizer
4. Data
Artificial Neurons
Feedforward Recurrent
Artificial Neurons
𝑜 = 𝑓 𝑥 = 𝑓 𝒘 𝑻
𝒊 + 𝒃
i1
i2
i3
o
w1i1
w2i2
w3i3
b
x
Artificial Neurons
Artificial Neurons
i1
i2
i3
o 𝑜 = 𝜎 𝑥 = 𝜎 𝒘 𝑻
𝒊 + 𝒃
w1i1
w2i2
w3i3
b
x
Logistic Regression
Hartl, Florian. “Logistic Regression – Geometric Intuition”
https://florianhartl.com/logistic-regression-geometric-intuition.html
i
o
Neural Networks
x1
x2 h2
h1
y
i1
i2
o
Support
Vector
Machine
Input
Hidden
Output
Neural Networks
x1
x2
h2
h1
y
h5
h4
h1
h2 h3
h4 h5 h6 h7
h3
h6
h7
x1 x2
y
Sethi, Ishwar Krishnan. "Entropy nets: From decision trees to neural
networks." Proceedings of the IEEE 78.10 (1990): 1605-1613
Neural Networks
x1
x2
h2
h1
y
h5
h4
h1
h2 h3
h4 h5 h6 h7
h3
h6
h7
x1 x2
y
Sethi, Ishwar Krishnan. "Entropy nets: From decision trees to neural
networks." Proceedings of the IEEE 78.10 (1990): 1605-1613
x1
x2
h2
h1
y
h9
h8
h3
h10
h11
h5
h4
h6
h13
h12
h14
h15
h7
h1
h2 h3
h4 h5 h6 h7
x1 x2
h8 h9 h11h10 h13h12 h14 h15
y
Neural Networks
x1
x2 h2
h1
y
𝑓 𝑥2 = 𝜎(𝑖2 𝑤 𝑥2,𝑖2
+ 𝑏 𝑥2
)
𝑓 ℎ2 = 𝜎(𝑤ℎ2,𝑥1
𝑓 𝑥1 + 𝑤ℎ2,𝑥2
𝑓 𝑥2 + 𝑏ℎ2
)
= 𝜎(𝑤ℎ2,𝑥1
𝜎 𝑖1 𝑤 𝑥1,𝑖1
+ 𝑏 𝑥1 + 𝑤ℎ2,𝑥2
𝜎 𝑖2 𝑤 𝑥2,𝑖2
+ 𝑏 𝑥2 + 𝑏ℎ2)
𝑓 𝑦 = 𝜎(𝑤 𝑦,ℎ1
𝑓 ℎ1 + 𝑤 𝑦,ℎ2
𝑓 ℎ2 + 𝑏 𝑦)
= 𝜎(𝑤 𝑦,ℎ1
𝜎(𝑤ℎ1,𝑥1
𝜎 𝑖1 𝑤 𝑥1 + 𝑏 𝑥1
+ 𝑤1,𝑥2
𝜎 𝑖2 𝑤 𝑥2,𝑖2
+ 𝑏 𝑥2 + 𝑏ℎ1)
+ 𝑤 𝑦,ℎ2
𝜎(𝑤ℎ2,𝑥1
𝜎 𝑖1 𝑤 𝑥1,𝑖1
+ 𝑏 𝑥1
+ 𝑤ℎ2,𝑥2
𝜎 𝑖2 𝑤 𝑥2,𝑖2
+ 𝑏 𝑥2 + 𝑏ℎ2)
+ 𝑏 𝑦)
i1
i2
o
17 parameters θ = {w, b}
Backpropagation
1. Random θ initialization
Iterate:
1. Forward - compute loss
2. Backward - update parameters
forward pass
backward pass
Backpropagation
x1
x2 h2
h1
y
i1
i2
i1 i2 o
0 0 0
0 1 1
1 0 1
1 1 0
𝑦 ≈ 𝑃(𝑜)
XOR
forward pass
backward pass
𝐽 𝑜, 𝑦 =
1
2
(𝑜 − 𝑦)2
𝛻 𝜃 𝐽 𝑜, 𝑦 =
𝜕𝐽
𝜕𝑤 𝑥1,𝑖1
,
𝜕𝐽
𝜕𝑏 𝑥1
,
𝜕𝐽
𝜕𝑤 𝑥2,𝑖2
,
𝜕𝐽
𝜕𝑏 𝑥2
, … ,
𝜕𝐽
𝜕𝑤 𝑦,ℎ2
𝑇
Backpropagation
J
w
𝜕𝐽
𝜕𝑤
forward pass
backward pass
𝑤′ = 𝑤 − 𝛼
𝜕𝐽
𝜕 𝑤
learning rate
Initialize w
Backpropagation
x1
x2 h2
h1
y
i1
i2
𝑦 ≈ 𝑜
𝜕𝐽
𝜕𝑤 𝑦,ℎ1
=
𝜕𝐽
𝜕 𝑦
∗
𝜕 𝑦
𝜕𝑤 𝑦,ℎ1
= −𝜎 𝑦 1 − 𝜎 𝑦 𝑓 ℎ1
…
Backpropagation
x1
x2 h2
h1
y
i1
i2
𝑦 ≈ 𝑜
𝜕𝐽
𝜕𝑤ℎ1,𝑥1
=
𝜕𝐽
𝜕𝑦
∗
𝜕𝑦
𝜕ℎ1
∗
𝜕ℎ1
𝜕𝑤ℎ1,𝑥1
𝜕𝐽
𝜕𝑤ℎ2,𝑥2
=
𝜕𝐽
𝜕𝑦
∗
𝜕𝑦
𝜕ℎ2
∗
𝜕ℎ2
𝜕𝑤ℎ2,𝑥2
Backpropagation
x1
x2 h2
h1
y
i1
i2
𝑦 ≈ 𝑜
𝜕𝐽
𝜕𝑤 𝑥1,𝑖1
=
𝜕𝐽
𝜕𝑦
∗
𝜕𝑦
𝜕ℎ1
∗
𝜕ℎ1
𝜕𝑥1
∗
𝜕𝑥1
𝜕𝑤 𝑥1,𝑖1
+
𝜕𝐽
𝜕𝑦
∗
𝜕𝑦
𝜕ℎ2
∗
𝜕ℎ2
𝜕𝑥1
∗
𝜕𝑥1
𝜕𝑤 𝑥1,𝑖1
Image courtesy Chris Olah, 2014
Data Manifold
Data distribution:
• Class 1
• Class 2
X-Y grid:
• Param (θ) space
Image courtesy Chris Olah, 2014
Data Manifold
Data distribution:
• Class 1
• Class 2
X-Y grid:
• Param (θ) space
Convolutional Neural Networks
CNN/convnet neurons:
1. Have receptive field
2. Share weights
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
Convolutional Neural Networks
90% parametersAlexNet trained using:
1. Dropout
2. Batch Normalization
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet
classification with deep convolutional neural networks." Advances in
neural information processing systems. 2012.
Convolutional Neural Networks
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet
classification with deep convolutional neural networks." Advances in
neural information processing systems. 2012.
Challenges
1. Data quantity
2. Data size
3. Data quality
4. Data variability
5. Unexpected pathology

More Related Content

PDF
ModuLab DLC-Medical3
PPTX
Deep learning study 2
PPTX
Sliced Wasserstein距離と生成モデル
PPTX
Back propagation
PPTX
Find nuclei in images with U-net
PDF
Digital signal processing (2nd ed) (mitra) solution manual
PDF
Lecture 5: Neural Networks II
DOCX
Neural network basic
ModuLab DLC-Medical3
Deep learning study 2
Sliced Wasserstein距離と生成モデル
Back propagation
Find nuclei in images with U-net
Digital signal processing (2nd ed) (mitra) solution manual
Lecture 5: Neural Networks II
Neural network basic

What's hot (14)

PPTX
An introduction to Deep Learning with Apache MXNet (November 2017)
PDF
Introduction to Artificial Neural Network
PDF
Deep Learning for Computer Vision: Saliency Prediction (UPC 2016)
PPT
Warming
PPTX
Digit recognizer by convolutional neural network
PDF
Expectation propagation for latent Dirichlet allocation
PDF
DeepLearning 6_5 ~ 6_5_3
PDF
GPU acceleration of a non-hydrostatic ocean model with a multigrid Poisson/He...
PDF
Deep Neural Network
PDF
How to Use Machine Learning to Improve Your Game Without Understanding Machin...
PPTX
Microsoft Data Wranglers - 8august2017
PDF
Neural Networks: Multilayer Perceptron
PPTX
Backpropagation
DOCX
Ground water prediction screenshots
An introduction to Deep Learning with Apache MXNet (November 2017)
Introduction to Artificial Neural Network
Deep Learning for Computer Vision: Saliency Prediction (UPC 2016)
Warming
Digit recognizer by convolutional neural network
Expectation propagation for latent Dirichlet allocation
DeepLearning 6_5 ~ 6_5_3
GPU acceleration of a non-hydrostatic ocean model with a multigrid Poisson/He...
Deep Neural Network
How to Use Machine Learning to Improve Your Game Without Understanding Machin...
Microsoft Data Wranglers - 8august2017
Neural Networks: Multilayer Perceptron
Backpropagation
Ground water prediction screenshots
Ad

Similar to Introduction to Deep Learning for Neuroimaging (20)

PPTX
Gan seminar
PDF
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...
PDF
Neuromorphic computing for neural networks
PPTX
250721_Thien_Labseminar[Variational Graph Auto-Encoders].pptx
PDF
QTML2021 UAP Quantum Feature Map
PPTX
GDC2019 - SEED - Towards Deep Generative Models in Game Development
PPTX
Neural network
PPTX
20230213_ComputerVision_연구.pptx
PDF
2019-06-14:6 - Reti neurali e compressione immagine
PPTX
Neural networks
PDF
Artificial Intelligence Applications in Petroleum Engineering - Part I
PDF
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
PDF
Feasibility of moment tensor inversion for a single-well microseismic data us...
PDF
Fixed point theorems for random variables in complete metric spaces
PDF
Echo state networks and locomotion patterns
PPTX
DNN.pptx
PDF
20141003.journal club
PDF
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
PDF
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...
PDF
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
Gan seminar
Generalizing Scientific Machine Learning and Differentiable Simulation Beyond...
Neuromorphic computing for neural networks
250721_Thien_Labseminar[Variational Graph Auto-Encoders].pptx
QTML2021 UAP Quantum Feature Map
GDC2019 - SEED - Towards Deep Generative Models in Game Development
Neural network
20230213_ComputerVision_연구.pptx
2019-06-14:6 - Reti neurali e compressione immagine
Neural networks
Artificial Intelligence Applications in Petroleum Engineering - Part I
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
Feasibility of moment tensor inversion for a single-well microseismic data us...
Fixed point theorems for random variables in complete metric spaces
Echo state networks and locomotion patterns
DNN.pptx
20141003.journal club
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
Inversion of Magnetic Anomalies Due to 2-D Cylindrical Structures – By an Art...
INVERSIONOF MAGNETIC ANOMALIES DUE TO 2-D CYLINDRICAL STRUCTURES –BY AN ARTIF...
Ad

Recently uploaded (20)

PPTX
2Systematics of Living Organisms t-.pptx
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPT
protein biochemistry.ppt for university classes
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PPTX
2. Earth - The Living Planet earth and life
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
ECG_Course_Presentation د.محمد صقران ppt
2Systematics of Living Organisms t-.pptx
INTRODUCTION TO EVS | Concept of sustainability
7. General Toxicologyfor clinical phrmacy.pptx
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Derivatives of integument scales, beaks, horns,.pptx
AlphaEarth Foundations and the Satellite Embedding dataset
protein biochemistry.ppt for university classes
TOTAL hIP ARTHROPLASTY Presentation.pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Introduction to Cardiovascular system_structure and functions-1
Placing the Near-Earth Object Impact Probability in Context
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
The KM-GBF monitoring framework – status & key messages.pptx
2. Earth - The Living Planet earth and life
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
ECG_Course_Presentation د.محمد صقران ppt

Introduction to Deep Learning for Neuroimaging