- The document presents a neural network model for recognizing handwritten digits. It uses a dataset of 20x20 pixel grayscale images of digits 0-9.
- The proposed neural network has an input layer of 400 nodes, a hidden layer of 25 nodes, and an output layer of 10 nodes. It is trained using backpropagation to classify images.
- The model achieves an accuracy of over 96.5% on test data after 200 iterations of training, outperforming a logistic regression model which achieved 91.5% accuracy. Future work could involve classifying more complex natural images.
Related topics: