SlideShare a Scribd company logo
Introduction to
Julia Taiwan發起人 杜岳華
1
自我介紹
 杜岳華
 疾病管制署小小研發替代役
 想成為生醫資料科學家
 陽明生醫資訊所碩士
 成大醫學檢驗生物技術系學士
 成大資訊工程系學士
2
Why Julia?
3
In scientific computing and data science…
4
Other users
5
Avoid two language problem
 One language for rapid development
 The other for performance
 Example:
 Python for rapid development
 C for performance
6
itertools的效能
 一篇文章描述兩者的取捨
 「一般來說,我們不會去優化所有的程式碼,因為優化有很
大的代價:一般性與可讀性。 通常跑得快與寫的快,是要做
取捨的。 這裡的例子很好想像,大家只要比較R的程式碼與
Rcpp的程式碼就好了。」
http://wush.ghost.io/itertools-performance/
7
使用Julia就不用做取捨了阿!!
8
Julia的特色
 Write like Python, run like C.
 擁有python的可讀性 (readibility)
 擁有C的效能
 Easy to parallelism
 內建套件管理器
 ……
9
Julia code
a = [1, 2, 3, 4, 5]
function square(x)
return x^2
end
for x in a
println(square(x))
end
10
https://julialang.org/benchmarks/
Julia performance
11
Who use Julia?
12
 Nobel prize in economic sciences
 The founder of QuantEcon
 “His team at NYU uses Julia for macroeconomic modeling and contributes
to the Julia ecosystem.”
https://juliacomputing.com/case-studies/thomas-sargent.html
13
 In 2015, economists at the Federal Reserve Bank of New York (FRBNY)
published FRBNY’s most comprehensive and complex macroeconomic
models, known as Dynamic Stochastic General Equilibrium, or DSGE
models, in Julia.
https://juliacomputing.com/case-studies/ny-fed.html
14
 UK cancer researchers turned to Julia to run simulations of tumor growth.
Nature Genetics, 2016
 Approximate Bayesian Computation (ABC) algorithms require potentially millions of
simulations - must be fast
 BioJulia project for analyzing biological data in Julia
 Bayesian MCMC methods Lora.jl and Mamba.jl
https://juliacomputing.com/case-studies/nature.html
15
 IBM and Julia Computing analyzed eye fundus images provided by Drishti
Eye Hospitals.
 Timely screening for changes in the retina can help get them to treatment
and prevent vision loss. Julia Computing’s work using deep learning
makes retinal screening an activity that can be performed by a trained
technician using a low cost fundus camera.
https://juliacomputing.com/case-studies/ibm.html
16
 Path BioAnalytics is a computational biotech company developing novel
precision medicine assays to support drug discovery and development,
and treatment of disease.
https://juliacomputing.com/case-studies/pathbio.html
17
 The Sloan Digital Sky Survey contains nearly 5 million telescopic images of
12 megabytes each – a dataset of 55 terabytes.
 In order to analyze this massive dataset, researchers at UC Berkeley and
Lawrence Berkeley National Laboratory created a new code named
Celeste.
https://juliacomputing.com/case-studies/intel-astro.html
18
http://pkg.julialang.org/pulse.html
Julia Package Ecosystem Pulse
19
Introduction to Julia
20
一切都從數字開始…
 在Julia中數字有下列幾種形式
 整數
 浮點數
 有理數
 複數
21
Integer
Int8
Int16
Int32
Int64
Int128
Unsigned
Uint8
Uint16
Uint32
Uint64
Uint128
Float
Float16
Float32
Float64
有理數
 有理數表示
 自動約分
 自動調整負號
 接受分母為0
2//3 # 2//3
-6//12 # -1//2
5//-20 # -1//4
5//0 # 1//0
num(2//10) # 1
den(7//14) # 2
2//4 + 1//7 # 9//14
3//10 * 6//9 # 1//5
10//15 == 8//12 # true
float(3//4) # 0.7522
複數
1 + 2im
(1 + 2im) + (3 - 4im) # 4 - 2im
(1 + 2im)*(3 - 4im) # 11 + 2im
(-4 + 3im)^(2 + 1im) # 1.950 + 0.651im
real(1 + 2im) # 1
imag(3 + 4im) # 4
conj(1 + 2im) # 1 - 2im
abs(3 + 4im) # 5.0
angle(3 + 3im)/pi*180 # 45.0
23
變數
 動態型別語言特性
 Value is immutable
x = 5
println(x) # 5
println(typeof(x)) # Int64
x = 6.0
println(x) # 6.0
println(typeof(x)) # Float64
24
算術運算子
 +x: 就是x本身
 -x: 變號
 x + y, x - y, x * y, x / y: 一般四則運算
 div(x, y): 商
 x % y: 餘數,也可以用rem(x, y)
 x  y: 反除,等價於y / x
 x ^ y: 次方
25
位元運算子
 ~x: bitwise not
 x & y: bitwise and
 x | y: bitwise or
 x $ y: bitwise xor
 x >>> y:無正負號,將x的位元右移y個位數
 x >> y:保留正負號,將x的位元右移y個位數
 x << y: 將x的位元左移y個位數
https://www.technologyuk.net/mathematics/number-systems/images/binary_number.gif
26
更新運算子
 +=
 -=
 *=
 /=
 =
 %=
 ^=
 &=
 |=
 $=
 >>>=
 >>=
 <<=
x += 5
等價於
x = x + 5
27
比較運算子
 x == y:等於
 x != y, x ≠ y:不等於
 x < y:小於
 x > y:大於
 x <= y, x ≤ y:小於或等於
 x >= y, x ≥ y:大於或等於
a, b, c = (1, 3, 5)
a < b < c # true
28
不同型別的運算與轉換
 算術運算會自動轉換
 強型別
3.14 * 4 # 12.56
parse(“5”) # 5
convert(AbstractString, 5) # “5”
29
If判斷式
 短路邏輯
if <判斷式>
<程式碼>
end
if 3 > 5 && 10 > 0
…
end
30
While loop
while <判斷式>
<程式碼>
end
x = …
while <持續條件>
...
x = …
end
31
For loop
for i = 1:5 # for迴圈,有限的迴圈次數
println(i)
end
32
Array 搭配 for loop
strings = ["foo","bar","baz"]
for s in strings
println(s)
end
33
Rand()
 rand(): 隨機0~1
 rand([]): 從裡面選一個出來
y = rand([1, 2, 3])
34
Array
 homogenous
 start from 1
 mutable
[ ]2 3 5
A = [2, 3, 5]
A[2] # 3
35
多維陣列
A = [0 -1 1;
1 0 -1;
-1 1 0]
A[1, 2]
36
函式
function add(a, b)
c = a + b
return c
end
37
數值運算
 介紹各種Array函式
zeros(Float64, 2, 2) # 2-by-2 matrix with 0
ones(Float64, 3, 3) # 3-by-3 matrix with 1
trues(2, 2) # 2-by-2 matrix with true
eye(3) # 3-by-3 diagnal matrix
rand(2, 2) # 2-by-2 matrix with random number
38
參數傳遞
 pass-by-sharing
5x
function foo(a)
end
a
39
Comprehension
[x for x = 1:3]
[x for x = 1:20 if x % 2 == 0]
["$x * $y = $(x*y)" for x=1:9, y=1:9]
[1, 2, 3]
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
[“1 * 1 = 1“, “1 * 2 = 2“, “1 * 3 = 3“ ...]
40
Tuple
 Immutable
tup = (1, 2, 3)
tup[1] # 1
tup[1:2] # (1, 2)
(a, b, c) = (1, 2, 3)
41
Set
 Mutable
filled = Set([1, 2, 2, 3, 4])
push!(filled, 5)
intersect(filled, other)
union(filled, other)
setdiff(Set([1, 2, 3, 4]), Set([2, 3, 5]))
Set([i for i=1:10])
42
Dict
 Mutable
filled = Dict("one"=> 1, "two"=> 2, "three"=> 3)
keys(filled)
values(filled)
Dict(x=> i for (i, x) in enumerate(["one", "two",
"three", "four"]))
43
Julia special features
44
支援UTF8符號
 打`alpha<tab>` => α
 α = 1 # 作為變數名稱
 μ = 0
 σ = 1
 normal = Normal(μ, σ)
45
Easy to optimize
 Allow generalization and flexibility, and enable to optimize.
 Hints:
 Avoid global variables
 Add type declarations
 Measure performance with @time and pay attention to memory
allocation
 ……
46
Easy to profile
 Use @time
 ProfileView.view()
47
增進MATLAB-style的程式效能
 有人在論壇上提到如何增進程式效能,作者發現原本的程式
碼約有50%的時間用在garbage collection,意味著有一半的
時間花在記憶體的分配及釋放
 作者進一步提到,以array-by-array的操作方式是在自
MATLAB背景的人會寫出的程式,若改成element-by-
element的方式就有大幅的改善
 P.S. 在v0.6之後加入了新的功能,不再讓cos(aEll).*gridX .-
sin(aEll).*gridY這樣的運算分配三次記憶體,而是只有一次
http://kristofferc.github.io/post/vectorization_performance_study/
48
Easy to parallelize
for i = 1:100000
do_something()
end
@parallel for i = 1:100000
do_something()
end
49
Built-in package manager
julia> Pkg.update()
julia> Pkg.add(“Foo”)
julia> Pkg.rm(“Foo”)
50
@code_native
julia> @code_native add(1, 2)
.text
Filename: REPL[2]
pushq %rbp
movq %rsp, %rbp
Source line: 2
leaq (%rcx,%rdx), %rax
popq %rbp
retq
nopw (%rax,%rax)
function add(a, b)
return a+b
end
51
@code_llvm
julia> @code_llvm add(1, 2.0)
; Function Attrs: uwtable
define double @julia_add_71636(i64, double) #0 {
top:
%2 = sitofp i64 %0 to double
%3 = fadd double %2, %1
ret double %3
}
function add(a, b)
return a+b
end
52
Julia packages
53
54
55
56
57
58
DataFrames.jl
julia> using DataFrames
julia> df = DataFrame(A = 1:4, B = ["M", "F", "F", "M"])
4×2 DataFrames.DataFrame
│ Row │ A │ B │
├─────┼───┼───┤
│ 1 │ 1 │ M │
│ 2 │ 2 │ F │
│ 3 │ 3 │ F │
│ 4 │ 4 │ M │
59
DataFrames.jl
julia> df[:A]
4-element NullableArrays.NullableArray{Int64,1}:
1
2
3
4
julia> df[2, :A]
Nullable{Int64}(2)
60
DataFrames.jl
julia> df = CSV.read ("data.csv")
julia> df = DataFrame(A = 1:10);
julia> CSV.writetable("output.csv", df)
61
DataFrames.jl
julia> names = DataFrame(ID = [1, 2], Name = ["John
Doe", "Jane Doe"])
julia> jobs = DataFrame(ID = [1, 2], Job = ["Lawyer",
"Doctor"])
julia> full = join(names, jobs, on = :ID)
2×3 DataFrames.DataFrame
│ Row │ ID │ Name │ Job │
├─────┼────┼──────────┼────────┤
│ 1 │ 1 │ John Doe │ Lawyer │
│ 2 │ 2 │ Jane Doe │ Doctor │ 62
Query.jl
julia> q1 = @from i in dt begin
@where i.age > 40
@select {number_of_children=i.children, i.name}
@collect DataFrame
end
63
StatsBase.jl
 Mean Functions
 mean(x, w)
 geomean(x)
 harmmean(x)
 Scalar Statistics
 var(x, wv[; mean=...])
 std(x, wv[; mean=...])
 mean_and_var(x[, wv][, dim])
 mean_and_std(x[, wv][, dim])
 zscore(X, μ, σ)
 entropy(p)
 crossentropy(p, q)
 kldivergence(p, q)
 percentile(x, p)
 nquantile(x, n)
 quantile(x)
 median(x, w)
 mode(x)
64
StatsBase.jl
 Sampling from Population
 sample(a)
 Correlation Analysis of Signals
 autocov(x, lags[; demean=true])
 autocor(x, lags[; demean=true])
 corspearman(x, y)
 corkendall(x, y)
65
Distributions.jl
 Continuous Distributions
 Beta(α, β)
 Chisq(ν)
 Exponential(θ)
 Gamma(α, θ)
 LogNormal(μ, σ)
 Normal(μ, σ)
 Uniform(a, b)
 Discrete Distributions
 Bernoulli(p)
 Binomial(n, p)
 DiscreteUniform(a, b)
 Geometric(p)
 Hypergeometric(s, f, n)
 NegativeBinomial(r, p)
 Poisson(λ)
66
GLM.jl
67
julia> data = DataFrame(X=[1,2,3], Y=[2,4,7])
3x2 DataFrame
|-------|---|---|
| Row # | X | Y |
| 1 | 1 | 2 |
| 2 | 2 | 4 |
| 3 | 3 | 7 |
GLM.jl
68
julia> OLS = glm(@formula(Y ~ X), data, Normal(),
IdentityLink())
DataFrameRegressionModel{GeneralizedLinearModel,Float64
}:
Coefficients:
Estimate Std.Error z value Pr(>|z|)
(Intercept) -0.666667 0.62361 -1.06904 0.2850
X 2.5 0.288675 8.66025 <1e-17
GLM.jl
69
julia> newX = DataFrame(X=[2,3,4]);
julia> predict(OLS, newX, :confint)
3×3 Array{Float64,2}:
4.33333 1.33845 7.32821
6.83333 2.09801 11.5687
9.33333 1.40962 17.257
# The columns of the matrix are prediction, 95% lower
and upper confidence bounds
Gadfly.jl
70
Plots.jl
71
# initialize the attractor
n = 1500
dt = 0.02
σ, ρ, β = 10., 28., 8/3
x, y, z = 1., 1., 1.
# initialize a 3D plot with 1 empty series
plt = path3d(1, xlim=(-25,25), ylim=(-25,25), zlim=(0,50), xlab =
"x", ylab = "y", zlab = "z", title = "Lorenz Attractor", marker = 1)
# build an animated gif, saving every 10th frame
@gif for i=1:n
dx = σ*(y - x) ; x += dt * dx
dy = x*(ρ - z) - y ; y += dt * dy
dz = x*y - β*z ; z += dt * dz
push!(plt, x, y, z)
end every 10
Data
 JuliaData
 DataFrames.jl
 CSV.jl
 DataStreams.jl
 CategoricalArrays.jl
 JuliaDB
72
File
 JuliaIO
 FileIO.jl
 JSON.jl
 LightXML.jl
 HDF5.jl
 GZip.jl
73
Differential equation
 JuliaDiff
 ForwardDiff.jl: Forward Mode Automatic Differentiation for Julia
 ReverseDiff.jl: Reverse Mode Automatic Differentiation for Julia
 TaylorSeries.jl
 JuliaDiffEq
 DifferentialEquations.jl
 Discrete Equations (function maps, discrete stochastic (Gillespie/Markov) simulations)
 Ordinary Differential Equations (ODEs)
 Stochastic Differential Equations (SDEs)
 Algebraic Differential Equations (DAEs)
 Delay Differential Equations (DDEs)
 (Stochastic) Partial Differential Equations ((S)PDEs) 74
Probability
 JuliaStats
 JuliaOpt
 JuMP.jl
 Convex.jl
 JuliaML
 LearnBase.jl
 LossFunctions.jl
 ObjectiveFunctions.jl
 PenaltyFunctions.jl
 Klara.jl: MCMC inference in Julia
 Mamba.jl: Markov chain Monte
Carlo (MCMC) for Bayesian
analysis in julia
75
Graph / Network
 JuliaGraphs
 LightGraphs.jl
 GraphPlot.jl
76
Plot
 Gadfly.jl
 JuliaPlots
 Plots.jl
77
Glue
 JuliaPy
 PyCall.jl
 pyjulia
 Conda.jl
 PyPlot.jl
 Pandas.jl
 Seaborn.jl
 SymPy.jl
 JuliaInterop
 RCall.jl
 JavaCall.jl
 CxxWrap.jl
 MATLAB.jl
78
Programming
 JuliaCollections
 Iterators.jl
 DataStructures.jl
 SortingAlgorithms.jl
 FunctionalCollections.jl
 Combinatorics.jl
79
Web
 JuliaWeb
 Requests.jl
 HttpServer.jl
 WebSockets.jl
 HTTPClient.jl
80
跟其他語言的比較
 Python
 R
 Perl
81
Jobs
 Apple, Amazon, Facebook, BlackRock, Ford, Oracle
 Comcast, Massachusetts General Hospital
 Farmers Insurance
 Los Alamos National Laboratory and the National
Renewable Energy Laboratory
82
https://juliacomputing.com/press/2017/01/18/jobs.html
Julia Taiwan
 FB社群: https://www.facebook.com/groups/JuliaTaiwan/
 新知發布: https://www.facebook.com/juliannewstw/
83
Backup
84
靜態型別與動態型別
 靜態型別跟動態型別最大的差別在於型別是跟著變數還是值。
5
5
x
x
85
強型別與弱型別
5 “5”
5 “5”
+
+
Implicitly
86

More Related Content

PPTX
20171127 當julia遇上資料科學
PPTX
20170415 當julia遇上資料科學
PPTX
Metaprogramming in julia
PPTX
Introduction to julia
PDF
The Language for future-julia
PDF
[系列活動] 手把手的深度學實務
PDF
[系列活動] 手把手的深度學習實務
PPTX
Introduction to Julia Language
20171127 當julia遇上資料科學
20170415 當julia遇上資料科學
Metaprogramming in julia
Introduction to julia
The Language for future-julia
[系列活動] 手把手的深度學實務
[系列活動] 手把手的深度學習實務
Introduction to Julia Language

What's hot (20)

PDF
[系列活動] Data exploration with modern R
PDF
기계학습을 이용하여 정적 분석기의 안전성을 선별적으로 조절하는 방법
PDF
Extracting Executable Transformations from Distilled Code Changes
PDF
PVS-Studio in 2021 - Error Examples
PDF
Beauty and the beast - Haskell on JVM
PDF
Python Puzzlers
PPTX
How Data Flow analysis works in a static code analyzer
PPTX
Software engineering
PDF
PDF
Java Beagle
PDF
NSC #2 - D2 06 - Richard Johnson - SAGEly Advice
PPTX
Baisc Deep Learning HandsOn
PDF
Declarative Datalog Debugging for Mere Mortals
PDF
Java Basics - Part2
PDF
Python opcodes
PDF
Being functional in PHP (PHPDay Italy 2016)
PPT
PPT
C chap08
PPTX
Lecture08 stacks and-queues_v3
[系列活動] Data exploration with modern R
기계학습을 이용하여 정적 분석기의 안전성을 선별적으로 조절하는 방법
Extracting Executable Transformations from Distilled Code Changes
PVS-Studio in 2021 - Error Examples
Beauty and the beast - Haskell on JVM
Python Puzzlers
How Data Flow analysis works in a static code analyzer
Software engineering
Java Beagle
NSC #2 - D2 06 - Richard Johnson - SAGEly Advice
Baisc Deep Learning HandsOn
Declarative Datalog Debugging for Mere Mortals
Java Basics - Part2
Python opcodes
Being functional in PHP (PHPDay Italy 2016)
C chap08
Lecture08 stacks and-queues_v3
Ad

Similar to Introduction to Julia (20)

PPTX
COSCUP: Introduction to Julia
PDF
numdoc
PPTX
20170317 functional programming in julia
PDF
Migrating from matlab to python
PDF
Julia - Easier, Better, Faster, Stronger
PDF
Statistical computing 03
PDF
Solution Manual for Python for Everyone 2nd Edition Horstmann
PPTX
ESIT135 : Unit 1 Python Basics Concepts
PDF
Python for Scientific Computing
PDF
Introduction to Julia for bioinformacis
PPTX
第二讲 Python基礎
PPTX
第二讲 预备-Python基礎
PPTX
R language
PDF
Engineering Computation: An Introduction Using MATLAB and Exce, 2nd Edition M...
PDF
GE3171-PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY
PPTX
Introduction to Python 01-08-2023.pon by everyone else. . Hence, they must be...
PPTX
app4.pptx
PDF
SunPy: Python for solar physics
PPTX
IoT Heaps 4
PDF
GE3151_PSPP_All unit _Notes
COSCUP: Introduction to Julia
numdoc
20170317 functional programming in julia
Migrating from matlab to python
Julia - Easier, Better, Faster, Stronger
Statistical computing 03
Solution Manual for Python for Everyone 2nd Edition Horstmann
ESIT135 : Unit 1 Python Basics Concepts
Python for Scientific Computing
Introduction to Julia for bioinformacis
第二讲 Python基礎
第二讲 预备-Python基礎
R language
Engineering Computation: An Introduction Using MATLAB and Exce, 2nd Edition M...
GE3171-PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY
Introduction to Python 01-08-2023.pon by everyone else. . Hence, they must be...
app4.pptx
SunPy: Python for solar physics
IoT Heaps 4
GE3151_PSPP_All unit _Notes
Ad

More from 岳華 杜 (20)

PDF
[COSCUP 2023] 我的Julia軟體架構演進之旅
PDF
Julia: The language for future
PDF
20190907 Julia the language for future
PDF
自然語言處理概覽
PPTX
Introduction to machine learning
PDF
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
PDF
Batch normalization 與他愉快的小伙伴
PDF
從 VAE 走向深度學習新理論
PDF
COSCUP: Foreign Function Call in Julia
PDF
COSCUP: Metaprogramming in Julia
PPTX
20180506 Introduction to machine learning
PPTX
20171117 oop and design patterns in julia
PPTX
20171014 tips for manipulating filesystem in julia
PDF
20170807 julia的簡單而高效資料處理
PDF
20170715 北Bio meetup
PPTX
20170714 concurrency in julia
PDF
201705 metaprogramming in julia
PPTX
20170217 julia小程式到專案發布之旅
PPTX
20170113 julia’s type system and multiple dispatch
PDF
手把手Julia及簡易IDE安裝
[COSCUP 2023] 我的Julia軟體架構演進之旅
Julia: The language for future
20190907 Julia the language for future
自然語言處理概覽
Introduction to machine learning
Semantic Segmentation - Fully Convolutional Networks for Semantic Segmentation
Batch normalization 與他愉快的小伙伴
從 VAE 走向深度學習新理論
COSCUP: Foreign Function Call in Julia
COSCUP: Metaprogramming in Julia
20180506 Introduction to machine learning
20171117 oop and design patterns in julia
20171014 tips for manipulating filesystem in julia
20170807 julia的簡單而高效資料處理
20170715 北Bio meetup
20170714 concurrency in julia
201705 metaprogramming in julia
20170217 julia小程式到專案發布之旅
20170113 julia’s type system and multiple dispatch
手把手Julia及簡易IDE安裝

Recently uploaded (20)

PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Approach and Philosophy of On baking technology
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
Unlocking AI with Model Context Protocol (MCP)
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
Per capita expenditure prediction using model stacking based on satellite ima...
Approach and Philosophy of On baking technology
Understanding_Digital_Forensics_Presentation.pptx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Reach Out and Touch Someone: Haptics and Empathic Computing
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
The Rise and Fall of 3GPP – Time for a Sabbatical?
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Encapsulation_ Review paper, used for researhc scholars
NewMind AI Weekly Chronicles - August'25 Week I
Spectral efficient network and resource selection model in 5G networks
Chapter 3 Spatial Domain Image Processing.pdf
Programs and apps: productivity, graphics, security and other tools
20250228 LYD VKU AI Blended-Learning.pptx

Introduction to Julia

Editor's Notes

  • #14: the next generation of macroeconomic models is very computationally intensive with large datasets and large numbers of variables
  • #15: First, as free software Second, as the models that we use for forecasting and policy analysis grow more complicated, we need a language that can perform computations at a high speed
  • #16: Fast and easy to code