SlideShare a Scribd company logo
James Ward
Platform Evangelist
jamesward.com
@_JamesWard
Introduction to
Machine Learning
Machine Learning • Deep Learning • Predictive Analytics • NLP • Smart Data Discovery
AI in the Salesforce Platform
Salesforce Einstein
Introducing
World’s smartest
CRM
Empowering Sales,
Service, Marketing & IT
Everyone can build
AI-powered apps fast
How Humans Learn
Observe
world
Compare to
expectations
Analyze
differences
Refine
model
How Machines Learn
Data to
Model
Evaluate
model
Feedback
signals
Refine
model
What is Machine Learning?
Decision
if (a == “foo”) {
if (b == “bar”) {
if (c == “baz”) {
Data
Ask Model
Prediction Categorization
Apply Algorithm
Create Model
Data
Pattern Recognition via Zeros & Ones
Machine Learning
Machine Learning Spectrum
Use Cases
• Search Relevance
• Collaborative Filtering
• Decision Support
• Time Series Forecasting
Core Methods
• Compression
• Classification
• Regression
• Reinforcement
Frameworks
• Neural Networks
• Support Vector Machines
• Decision Trees
• Bayesian Models
• K-Nearest Neighbor
• Logistic Regression
Use Cases
o Rate leads with how likely they are to close
o Categorize this text as offensive or not
o Recommend products based on what I’ve liked
o Detect anomalies in credit card purchase behavior
ML Core Methods
• Compression – Determine the pattern
• Classification – Determine if “thing” is an x or y
• Regression – Determine the correct output for an input
• Reinforcement – Determine what action yields an award
Product Recommendation
User Likes Prediction
Collaborative Filtering
Demo!
https://dreamhouseapp.io/pio
Prediction IO = Open Source Machine Learning Server
Heroku = Cloud platform to deliver, scale, and monitor apps built in any technology
Heroku Postgres = Relational database in the cloud, managed by Heroku
Heroku Connect = Data sync between Salesforce and Heroku Postgres
Apache Spark = Big Data Framework
Spark ML = Machine Learning libraries built on Apache Spark
Pieces of the Puzzle
Product Recommendation
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
Property 2 ✔ ✔
Property 3 ✔ ✔ ✔
Property 4 ✔ ✔
Property 5 ✔
Human Intelligence First
★
★
★ ★
★

 
Product Recommendation
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔ ✔
Property 4 ✔
Property 5 ✔ ✔
Features
4 Bedroom Near Park Good School Views New Build
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔ ✔
User 4 ✔ ✔
User 5 ✔ ✔
Product Recommendation
Deriving Features from Favorites
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔ ✔
Property 4 ✔
Property 5 ✔ ✔
×
4 Bedroom Near Park Good School Views New Build
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔ ✔
User 4 ✔ ✔
User 5 ✔ ✔
Property Features User FeaturesFavorites
=
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
Property 2 ✔ ✔
Property 3 ✔ ✔ ✔
Property 4 ✔ ✔
Property 5 ✔
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔ ✔
Property 4 ✔
Property 5 ✔ ✔
×
4 Bedroom Near Park Good School Views New Build
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔ ✔
User 4 ✔ ✔
User 5 ✔ ✔
Property FeaturesUser FeaturesFavorites
=
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
Property 2 ✔ ✔
Property 3 ✔ ✔ ✔
Property 4 ✔ ✔
Property 5 ✔
Product Recommendation
Deriving Recommendations from Features
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔ ✔
Property 4 ✔
Property 5 ✔ ✔
×
4 Bedroom Near Park Good School Views New Build
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔ ✔
User 4 ✔ ✔
User 5 ✔ ✔
Property Features User Features Recommendations
=
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
★
Property 2 ✔ ✔
★ ★
Property 3 ✔ ✔ ✔
Property 4
★ ✔ ✔
Property 5 ✔
Favorites
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
Property 2 ✔ ✔
Property 3 ✔ ✔ ✔
Property 4 ✔ ✔
Property 5 ✔
?
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔ ✔
Property 4 ✔
Property 5 ✔ ✔
&
4 Bedroom Near Park Good School Views New Build
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔ ✔
User 4 ✔ ✔
User 5 ✔ ✔
Property Features User Features
Alternating Least Squares
4 Bedroom Near Park Good School Views New Build
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔
User 4 ✔ ✔
User 5 ✔
1. Generate Random User Feature Data
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔
Property 4 ✔
Property 5 ✔
2. Using Favorites, Compute Optimal Property Features
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
Property 2 ✔ ✔
Property 3 ✔ ✔ ✔
Property 4 ✔ ✔
Property 5 ✔
× =
3. Using Property Features and Favorites, Compute Optimal User Features
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
Property 2 ✔ ✔
Property 3 ✔ ✔ ✔
Property 4 ✔ ✔
Property 5 ✔
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔
Property 4 ✔
Property 5 ✔
×
4 Bedroom Near Park Good School Views New Build
User 1 ✔
User 2 ✔ ✔ ✔
User 3 ✔
User 4 ✔ ✔
User 5 ✔ ✔
=
4. Repeat
The User Features & Property Features converge to a model that fits the training data
Latent Features
Feature 1 Feature 2 Feature 3 Feature 4 Feature N
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔ ✔
Property 4 ✔
Property 5 ✔ ✔
Feature 1 Feature 2 Feature 3 Feature 4 Feature N
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔ ✔
User 4 ✔ ✔
User 5 ✔ ✔
Data -> Model -> Prediction
Recommendations
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
★
Property 2 ✔ ✔
★ ★
Property 3 ✔ ✔ ✔
Property 4
★ ✔ ✔
Property 5 ✔
Favorites
User 1 User 2 User 3 User 4 User 5
Property 1 ✔
Property 2 ✔ ✔
Property 3 ✔ ✔ ✔
Property 4 ✔ ✔
Property 5 ✔
4 Bedroom Near Park Good School Views New Build
Property 1 ✔ ✔
Property 2 ✔ ✔
Property 3 ✔ ✔
Property 4 ✔
Property 5 ✔ ✔
4 Bedroom Near Park Good School Views New Build
User 1 ✔ ✔
User 2 ✔ ✔
User 3 ✔ ✔
User 4 ✔ ✔
User 5 ✔ ✔
Property Features
User Features
Dot Product
Calculating Predictions
Feature 1 Feature 2 Feature 3 Feature 4 Feature N
Property 1 ✔ ✔
Feature 1 Feature 2 Feature 3 Feature 4 Feature N
User 1 ✔ ✔
0 × 0 ++ ++ 1 × 1 1 × 0 0 × 1 0 × 0
Recommendations
Matrix Factorization Model
User 1 User 2 User 3 User 4 User 5
Property 1
9 7 5 5 0
Property 2
9 9 7 7 0
Property 3
7 9 9 9 0
Property 4
5 9 9 9 0
Property 5
0 0 0 0 9
ALS Storage Efficiency
User 1 User 2 User 3 User 4 User 5 User6 User7 User8 User9 User10
Propert
y 1 9 7 5 5 0 9 7 5 5 0
Propert
y 2 9 9 7 7 0 9 9 7 7 0
Propert
y 3 7 9 9 9 0 7 9 9 9 0
Propert
y 4 5 9 9 9 0 5 9 9 9 0
Propert
y 5 0 0 0 0 9 0 0 0 0 9
Propert
y6 9 7 5 5 0 9 7 5 5 0
Propert
y7 9 9 7 7 0 9 9 7 7 0
Propert
y8 7 9 9 9 0 7 9 9 9 0
Propert
y9 5 9 9 9 0 5 9 9 9 0
Propert
y10 0 0 0 0 9 0 0 0 0 9
User
1
User
2
User
3
User
4
User
5
User
6
User
7
User
8
User
9
User
10
Featu
re1
9 7 5 5 0 9 7 5 5 0
Featu
re2
9 9 7 7 0 9 9 7 7 0
Featu
re3
7 9 9 9 0 7 9 9 9 0
Users x Properties
10 x 10
Feature1 Feature2 Feature3
Property 1 9 7 5
Property 2 9 9 7
Property 3 7 9 9
Property 4 5 9 9
Property 5 0 0 0
Property 6 9 7 5
Property 7 9 9 7
Property 8 7 9 9
Property 9 5 9 9
Property 10 0 0 0
Features x Properties
3 x 10
+
Users x Features
10 x 3
Alternating Least Squares
val favorites: Seq[Favorite] = ...
val ratings = favorites.map(fav => Rating(fav.user, fav.prop, 1))
val (userFeatures, propertyFeatures) = ALS.train(ratings = ratings, rank = 5)
val predictions = userFeatures * propertyFeatures
val predictionsForUser = predictions.filter(_.userId == userId)
Spark ML Makes it Easy
Code!
https://github.com/jamesward/dreamhouse-sparkml
Deployment
• Deploy it on Heroku
• Run on a Spark Cluster
• When to train?
• Where to put the model?
PredictionIO
• Template Gallery
• Event Server
• Model Persistence
• Engine Tuning & Versioning
• REST Endpoint for Predictions
Open Source Machine Learning Server
Introducing: Predictive Vision & Sentiment Services `
Leverage existing and train your own deep learning
models to recognize and classify images
Access deep learning models to classify the
sentiment of text
Predictive Vision Service Predictive Sentiment Service
Predictive Sentiment Service
Get started today!
metamind.io
Introducing: Predictive Vision & Sentiment Services
Predictive Services
Thank Y u

More Related Content

PDF
Data science and Artificial Intelligence
PPTX
Machine learning module 2
PPTX
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
PPTX
Anomaly Detection Technique
PDF
Unsupervised Machine Learning Ml And How It Works
PDF
Machine Learning for dummies!
PDF
EM Algorithm
PPTX
Machine learning
Data science and Artificial Intelligence
Machine learning module 2
Machine Learning Tutorial Part - 2 | Machine Learning Tutorial For Beginners ...
Anomaly Detection Technique
Unsupervised Machine Learning Ml And How It Works
Machine Learning for dummies!
EM Algorithm
Machine learning

What's hot (20)

PDF
Module 4: Model Selection and Evaluation
PDF
Machine learning
PPTX
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
PPTX
Machine learning
PPTX
Machine Learning: A Fast Review
PDF
Building a performing Machine Learning model from A to Z
PDF
What is Machine Learning | Introduction to Machine Learning | Machine Learnin...
PPTX
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)
PDF
Introduction to data science
PDF
Data Science - Part V - Decision Trees & Random Forests
PPTX
Introduction to Machine Learning
PPT
Machine Learning presentation.
PDF
Machine learning
PPTX
Feature Engineering
PPTX
Introduction to Machine Learning
PPT
Machine learning
PPTX
Machine learning and types
PDF
Data Science Training | Data Science Tutorial | Data Science Certification | ...
PPTX
Machine learning introduction
PPTX
Machine Can Think
Module 4: Model Selection and Evaluation
Machine learning
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Machine learning
Machine Learning: A Fast Review
Building a performing Machine Learning model from A to Z
What is Machine Learning | Introduction to Machine Learning | Machine Learnin...
MACHINE LEARNING PRESENTATION (ARTIFICIAL INTELLIGENCE)
Introduction to data science
Data Science - Part V - Decision Trees & Random Forests
Introduction to Machine Learning
Machine Learning presentation.
Machine learning
Feature Engineering
Introduction to Machine Learning
Machine learning
Machine learning and types
Data Science Training | Data Science Tutorial | Data Science Certification | ...
Machine learning introduction
Machine Can Think
Ad

Viewers also liked (20)

PDF
Machine Learning by Example - Apache Spark
PPTX
Transformation Processing Smackdown; Spark vs Hive vs Pig
PDF
Machine Learning for Dummies
PPTX
Introduction to Machine Learning
PPTX
Machine Learning, Deep Learning and Data Analysis Introduction
PDF
Deep learning - Part I
PDF
Boosting spark performance: An Overview of Techniques
PPTX
An introduction to Machine Learning (and a little bit of Deep Learning)
PDF
Developing microservices with aggregates (devnexus2017)
PPTX
Real time Analytics with Apache Kafka and Apache Spark
PPTX
The hardest part of microservices: your data
PDF
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
PDF
Developing Real-Time Data Pipelines with Apache Kafka
PDF
Avoid the Fail Whale - Design for Availability
PPTX
Salesforce Campus Tour - Developer Advanced
PPTX
Salesforce Campus Tour - Developer Intro
PPTX
Salesforce Campus Tour - Declarative
PPTX
Salesforce X AWS Machine Learning
PPTX
Mastering MapReduce: MapReduce for Big Data Management and Analysis
PDF
Spark Tuning for Enterprise System Administrators
Machine Learning by Example - Apache Spark
Transformation Processing Smackdown; Spark vs Hive vs Pig
Machine Learning for Dummies
Introduction to Machine Learning
Machine Learning, Deep Learning and Data Analysis Introduction
Deep learning - Part I
Boosting spark performance: An Overview of Techniques
An introduction to Machine Learning (and a little bit of Deep Learning)
Developing microservices with aggregates (devnexus2017)
Real time Analytics with Apache Kafka and Apache Spark
The hardest part of microservices: your data
Top 5 Mistakes to Avoid When Writing Apache Spark Applications
Developing Real-Time Data Pipelines with Apache Kafka
Avoid the Fail Whale - Design for Availability
Salesforce Campus Tour - Developer Advanced
Salesforce Campus Tour - Developer Intro
Salesforce Campus Tour - Declarative
Salesforce X AWS Machine Learning
Mastering MapReduce: MapReduce for Big Data Management and Analysis
Spark Tuning for Enterprise System Administrators
Ad

Similar to Introduction to Machine Learning (20)

PDF
Real-world News Recommender Systems
PPTX
Bathi%20Ram%20PPT.pptx
PDF
Hadoop France meetup Feb2016 : recommendations with spark
PDF
Frequently Bought Together Recommendations Based on Embeddings
PPTX
House price prediction
PDF
Demystifying Machine Learning
PDF
IRJET- An Efficient Ensemble Machine Learning System for Restaurant Recom...
PDF
REAL ESTATE PRICE PREDICTION
PPTX
Retail products - machine learning recommendation engine
PDF
Real Estate Investment Advising Using Machine Learning
PDF
IRJET - House Price Prediction using Machine Learning and RPA
PDF
Machine learning @ Spotify - Madison Big Data Meetup
PDF
Recommender Systems with Apache Spark's ALS Function
PDF
Web Application for House Price Prediction
PPTX
housepriceprediction.pptx
PPTX
Data Mining Neural Network for House Price Prediction
PDF
IntroductionRecommenderSystems_Petroni.pdf
PPTX
housepriceprediction-ml.pptx
PDF
Introduction to behavior based recommendation system
PPTX
House_Price_Prediction using python and ML
Real-world News Recommender Systems
Bathi%20Ram%20PPT.pptx
Hadoop France meetup Feb2016 : recommendations with spark
Frequently Bought Together Recommendations Based on Embeddings
House price prediction
Demystifying Machine Learning
IRJET- An Efficient Ensemble Machine Learning System for Restaurant Recom...
REAL ESTATE PRICE PREDICTION
Retail products - machine learning recommendation engine
Real Estate Investment Advising Using Machine Learning
IRJET - House Price Prediction using Machine Learning and RPA
Machine learning @ Spotify - Madison Big Data Meetup
Recommender Systems with Apache Spark's ALS Function
Web Application for House Price Prediction
housepriceprediction.pptx
Data Mining Neural Network for House Price Prediction
IntroductionRecommenderSystems_Petroni.pdf
housepriceprediction-ml.pptx
Introduction to behavior based recommendation system
House_Price_Prediction using python and ML

Recently uploaded (20)

PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Approach and Philosophy of On baking technology
PDF
Modernizing your data center with Dell and AMD
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
KodekX | Application Modernization Development
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Electronic commerce courselecture one. Pdf
CIFDAQ's Market Insight: SEC Turns Pro Crypto
MYSQL Presentation for SQL database connectivity
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Review of recent advances in non-invasive hemoglobin estimation
Spectral efficient network and resource selection model in 5G networks
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Unlocking AI with Model Context Protocol (MCP)
Approach and Philosophy of On baking technology
Modernizing your data center with Dell and AMD
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Advanced methodologies resolving dimensionality complications for autism neur...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
KodekX | Application Modernization Development
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Mobile App Security Testing_ A Comprehensive Guide.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Electronic commerce courselecture one. Pdf

Introduction to Machine Learning

  • 2. Machine Learning • Deep Learning • Predictive Analytics • NLP • Smart Data Discovery AI in the Salesforce Platform Salesforce Einstein Introducing World’s smartest CRM Empowering Sales, Service, Marketing & IT Everyone can build AI-powered apps fast
  • 3. How Humans Learn Observe world Compare to expectations Analyze differences Refine model
  • 4. How Machines Learn Data to Model Evaluate model Feedback signals Refine model
  • 5. What is Machine Learning? Decision if (a == “foo”) { if (b == “bar”) { if (c == “baz”) { Data Ask Model Prediction Categorization Apply Algorithm Create Model Data Pattern Recognition via Zeros & Ones
  • 7. Machine Learning Spectrum Use Cases • Search Relevance • Collaborative Filtering • Decision Support • Time Series Forecasting Core Methods • Compression • Classification • Regression • Reinforcement Frameworks • Neural Networks • Support Vector Machines • Decision Trees • Bayesian Models • K-Nearest Neighbor • Logistic Regression
  • 8. Use Cases o Rate leads with how likely they are to close o Categorize this text as offensive or not o Recommend products based on what I’ve liked o Detect anomalies in credit card purchase behavior
  • 9. ML Core Methods • Compression – Determine the pattern • Classification – Determine if “thing” is an x or y • Regression – Determine the correct output for an input • Reinforcement – Determine what action yields an award
  • 10. Product Recommendation User Likes Prediction Collaborative Filtering
  • 12. Prediction IO = Open Source Machine Learning Server Heroku = Cloud platform to deliver, scale, and monitor apps built in any technology Heroku Postgres = Relational database in the cloud, managed by Heroku Heroku Connect = Data sync between Salesforce and Heroku Postgres Apache Spark = Big Data Framework Spark ML = Machine Learning libraries built on Apache Spark Pieces of the Puzzle
  • 13. Product Recommendation User 1 User 2 User 3 User 4 User 5 Property 1 ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ ✔ Property 4 ✔ ✔ Property 5 ✔ Human Intelligence First ★ ★ ★ ★ ★   
  • 14. Product Recommendation 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ Property 4 ✔ Property 5 ✔ ✔ Features 4 Bedroom Near Park Good School Views New Build User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ ✔ User 4 ✔ ✔ User 5 ✔ ✔
  • 15. Product Recommendation Deriving Features from Favorites 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ Property 4 ✔ Property 5 ✔ ✔ × 4 Bedroom Near Park Good School Views New Build User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ ✔ User 4 ✔ ✔ User 5 ✔ ✔ Property Features User FeaturesFavorites = User 1 User 2 User 3 User 4 User 5 Property 1 ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ ✔ Property 4 ✔ ✔ Property 5 ✔ 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ Property 4 ✔ Property 5 ✔ ✔ × 4 Bedroom Near Park Good School Views New Build User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ ✔ User 4 ✔ ✔ User 5 ✔ ✔ Property FeaturesUser FeaturesFavorites = User 1 User 2 User 3 User 4 User 5 Property 1 ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ ✔ Property 4 ✔ ✔ Property 5 ✔
  • 16. Product Recommendation Deriving Recommendations from Features 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ Property 4 ✔ Property 5 ✔ ✔ × 4 Bedroom Near Park Good School Views New Build User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ ✔ User 4 ✔ ✔ User 5 ✔ ✔ Property Features User Features Recommendations = User 1 User 2 User 3 User 4 User 5 Property 1 ✔ ★ Property 2 ✔ ✔ ★ ★ Property 3 ✔ ✔ ✔ Property 4 ★ ✔ ✔ Property 5 ✔ Favorites User 1 User 2 User 3 User 4 User 5 Property 1 ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ ✔ Property 4 ✔ ✔ Property 5 ✔ ? 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ Property 4 ✔ Property 5 ✔ ✔ & 4 Bedroom Near Park Good School Views New Build User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ ✔ User 4 ✔ ✔ User 5 ✔ ✔ Property Features User Features
  • 17. Alternating Least Squares 4 Bedroom Near Park Good School Views New Build User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ User 4 ✔ ✔ User 5 ✔ 1. Generate Random User Feature Data 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ Property 4 ✔ Property 5 ✔ 2. Using Favorites, Compute Optimal Property Features User 1 User 2 User 3 User 4 User 5 Property 1 ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ ✔ Property 4 ✔ ✔ Property 5 ✔ × = 3. Using Property Features and Favorites, Compute Optimal User Features User 1 User 2 User 3 User 4 User 5 Property 1 ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ ✔ Property 4 ✔ ✔ Property 5 ✔ 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ Property 4 ✔ Property 5 ✔ × 4 Bedroom Near Park Good School Views New Build User 1 ✔ User 2 ✔ ✔ ✔ User 3 ✔ User 4 ✔ ✔ User 5 ✔ ✔ = 4. Repeat The User Features & Property Features converge to a model that fits the training data
  • 18. Latent Features Feature 1 Feature 2 Feature 3 Feature 4 Feature N Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ Property 4 ✔ Property 5 ✔ ✔ Feature 1 Feature 2 Feature 3 Feature 4 Feature N User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ ✔ User 4 ✔ ✔ User 5 ✔ ✔
  • 19. Data -> Model -> Prediction Recommendations User 1 User 2 User 3 User 4 User 5 Property 1 ✔ ★ Property 2 ✔ ✔ ★ ★ Property 3 ✔ ✔ ✔ Property 4 ★ ✔ ✔ Property 5 ✔ Favorites User 1 User 2 User 3 User 4 User 5 Property 1 ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ ✔ Property 4 ✔ ✔ Property 5 ✔ 4 Bedroom Near Park Good School Views New Build Property 1 ✔ ✔ Property 2 ✔ ✔ Property 3 ✔ ✔ Property 4 ✔ Property 5 ✔ ✔ 4 Bedroom Near Park Good School Views New Build User 1 ✔ ✔ User 2 ✔ ✔ User 3 ✔ ✔ User 4 ✔ ✔ User 5 ✔ ✔ Property Features User Features
  • 20. Dot Product Calculating Predictions Feature 1 Feature 2 Feature 3 Feature 4 Feature N Property 1 ✔ ✔ Feature 1 Feature 2 Feature 3 Feature 4 Feature N User 1 ✔ ✔ 0 × 0 ++ ++ 1 × 1 1 × 0 0 × 1 0 × 0
  • 21. Recommendations Matrix Factorization Model User 1 User 2 User 3 User 4 User 5 Property 1 9 7 5 5 0 Property 2 9 9 7 7 0 Property 3 7 9 9 9 0 Property 4 5 9 9 9 0 Property 5 0 0 0 0 9
  • 22. ALS Storage Efficiency User 1 User 2 User 3 User 4 User 5 User6 User7 User8 User9 User10 Propert y 1 9 7 5 5 0 9 7 5 5 0 Propert y 2 9 9 7 7 0 9 9 7 7 0 Propert y 3 7 9 9 9 0 7 9 9 9 0 Propert y 4 5 9 9 9 0 5 9 9 9 0 Propert y 5 0 0 0 0 9 0 0 0 0 9 Propert y6 9 7 5 5 0 9 7 5 5 0 Propert y7 9 9 7 7 0 9 9 7 7 0 Propert y8 7 9 9 9 0 7 9 9 9 0 Propert y9 5 9 9 9 0 5 9 9 9 0 Propert y10 0 0 0 0 9 0 0 0 0 9 User 1 User 2 User 3 User 4 User 5 User 6 User 7 User 8 User 9 User 10 Featu re1 9 7 5 5 0 9 7 5 5 0 Featu re2 9 9 7 7 0 9 9 7 7 0 Featu re3 7 9 9 9 0 7 9 9 9 0 Users x Properties 10 x 10 Feature1 Feature2 Feature3 Property 1 9 7 5 Property 2 9 9 7 Property 3 7 9 9 Property 4 5 9 9 Property 5 0 0 0 Property 6 9 7 5 Property 7 9 9 7 Property 8 7 9 9 Property 9 5 9 9 Property 10 0 0 0 Features x Properties 3 x 10 + Users x Features 10 x 3
  • 23. Alternating Least Squares val favorites: Seq[Favorite] = ... val ratings = favorites.map(fav => Rating(fav.user, fav.prop, 1)) val (userFeatures, propertyFeatures) = ALS.train(ratings = ratings, rank = 5) val predictions = userFeatures * propertyFeatures val predictionsForUser = predictions.filter(_.userId == userId) Spark ML Makes it Easy
  • 25. Deployment • Deploy it on Heroku • Run on a Spark Cluster • When to train? • Where to put the model?
  • 26. PredictionIO • Template Gallery • Event Server • Model Persistence • Engine Tuning & Versioning • REST Endpoint for Predictions Open Source Machine Learning Server
  • 27. Introducing: Predictive Vision & Sentiment Services ` Leverage existing and train your own deep learning models to recognize and classify images Access deep learning models to classify the sentiment of text Predictive Vision Service Predictive Sentiment Service Predictive Sentiment Service Get started today! metamind.io Introducing: Predictive Vision & Sentiment Services

Editor's Notes

  • #3: Talk track And today we are excited to announce Salesforce Einstein. Einstein is bringing AI to Everyone. First, it makes the World’s #1 CRM the World’s Smartest CRM Second, Einstein empowers all our users - Sales, Service, Marketing, and IT - to be their best and be smarter about their customers. And finally, we went beyond the apps and extended Einstein to our platform so everyone can build AI Powered apps. ### more copy ### The power of Einstein comes from combining our leadership in cloud technology with this comprehensive set of technologies that we acquired or built - machine learning, deep learning, smart discovery and NLP. When applied to customer data and a deep understanding of the customer experience we will make our apps smarter, and have Intelligence built into Salesforce. Namely: • Sales users can prospect better, improve forecasting, and automate routine tasks • Service users can leverage IoT, intelligent communities, and aided case recommendations to deliver new levels of service • Marketing users can personalize campaigns so every customer receives the right content on the right channel at the right time