This document provides a high-level overview of MapReduce and Hadoop. It begins with an introduction to MapReduce, describing it as a distributed computing framework that decomposes work into parallelized map and reduce tasks. Key concepts like mappers, reducers, and job tracking are defined. The structure of a MapReduce job is then outlined, showing how input is divided and processed by mappers, then shuffled and sorted before being combined by reducers. Example map and reduce functions for a word counting problem are presented to demonstrate how a full MapReduce job works.