SlideShare a Scribd company logo
Neural Networks
Dr. Randa Elanwar
Lecture 3
Lecture Content
• Basic models of ANN
– Activation functions
– Interconnections (different NN structures)
– Important notations
2Neural Networks Dr. Randa Elanwar
Basic models of ANN
3Neural Networks Dr. Randa Elanwar
Basic Models of
ANN
Activation
function
Interconnections Learning rules
Activation function
• Bipolar binary and unipolar binary are called as
hard limiting activation functions used in discrete
neuron model
• Unipolar continuous and bipolar continuous are
called soft limiting activation functions are called
sigmoidal characteristics.
Neural Networks Dr. Randa Elanwar 4
Activation functions
Neural Networks Dr. Randa Elanwar 5
Bipolar continuous (sigmoidal)
Bipolar binary functions (sign function)
Activation functions
Neural Networks Dr. Randa Elanwar 6
Unipolar continuous (sigmoidal)
Unipolar Binary (Step function)
Activation functions
• An output of 1 represents firing of a neuron down
the axon.
7Neural Networks Dr. Randa Elanwar
f(in) f(in) f(in)
Basic models of ANN
8Neural Networks Dr. Randa Elanwar
Basic Models of
ANN
Activation
function
Interconnections Learning rules
Classification based on interconnections
9Neural Networks Dr. Randa Elanwar
Interconnections
Feed forward
Single layer
Multilayer
Feed Back Recurrent
Single layer
Multilayer
The Perceptron
• First studied in the late 1950s (Rosenblatt).
• Definition: an arrangement of one input layer (more than 1
unit/node) of McCulloch-Pitts neurons feeding forward to one
output layer of McCulloch-Pitts neurons is known as a Perceptron.
• Any number of McCulloch-Pitts neurons can be connected
together in any way we like. Thus, it is also known as Layered
Feed-Forward Networks.
• We can use McCulloch-Pitts neurons to implement the basic logic
gates. All we need to do is find the appropriate connection weights
and neuron thresholds to produce the right outputs for each set of
inputs.
10Neural Networks Dr. Randa Elanwar
11
The Perceptron
Neural Networks Dr. Randa Elanwar
Single layer Feedforward Network
12Neural Networks Dr. Randa Elanwar
Feedforward Network
• Its output and input vectors are respectively
• Weight wij connects the i’th neuron with j’th
input. Activation rule of ith neuron is
where
13Neural Networks Dr. Randa Elanwar
Multilayer feed forward network
Can be used to solve complicated problems
14Neural Networks Dr. Randa Elanwar
Feedback network
15Neural Networks Dr. Randa Elanwar
When outputs are directed back as
inputs to same or preceding layer
nodes it results in the formation of
feedback networks
Lateral feedback
16Neural Networks Dr. Randa Elanwar
If the feedback of the output of the processing elements is directed back as
input to the processing elements in the same layer then it is called lateral
feedback
Recurrent networks
17Neural Networks Dr. Randa Elanwar
• Types:
• Single node with own feedback
• Competitive nets
• Single-layer recurrent networks
• Multilayer recurrent networks
Feedback networks with closed loop are called Recurrent
Networks. The response at the k+1’th instant depends on the
entire history of the network starting at k=0.
A Brief History
• 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron model
• 1949 Hebb published his book The Organization of Behavior, in which the Hebbian learning
rule was proposed.
• 1958 Rosenblatt introduced the simple single layer networks now called Perceptrons.
• 1969 Minsky and Papert’s book Perceptrons demonstrated the limitation of single layer
perceptrons, and almost the whole field went into hibernation.
• 1982 Hopfield published a series of papers on Hopfield networks.
• 1982 Kohonen developed the Self-Organizing Maps that now bear his name.
• 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was re-
discovered and the whole field took off again.
• 1990s The sub-field of Radial Basis Function Networks was developed.
• 2000s The power of Neural Networks Ensembles & Support Vector Machines is apparent.
19Neural Networks Dr. Randa Elanwar
Linearly Separable Functions
• Consider a perceptron:
• Its output is
– 1, if W1X1 + W2X2 > 
– 0, otherwise
• In terms of feature space
– hence, it can only classify examples if a line can separate the
positive examples from the negative examples
20Neural Networks Dr. Randa Elanwar
Learning Linearly Separable Functions
• What can these functions learn ?
• Bad news:
- There are not many linearly separable functions.
• Good news:
- There is a perceptron algorithm that will learn
any linearly separable function, given enough
training examples.
21Neural Networks Dr. Randa Elanwar
22
Important notations
• One neuron can’t do much on its own. Usually we will have
many neurons labeled by indices k, i, j and activation flows
between them via links with strengths wki, wij:
Neural Networks Dr. Randa Elanwar

More Related Content

DOCX
Project Report -Vaibhav
PPTX
Introduction to Neural networks (under graduate course) Lecture 9 of 9
PPTX
Neural network
PPTX
Artifical Neural Network and its applications
PPTX
Introduction to Neural networks (under graduate course) Lecture 8 of 9
PPTX
Artificial Neural Network
PPTX
Artificial nueral network slideshare
PPT
Project Report -Vaibhav
Introduction to Neural networks (under graduate course) Lecture 9 of 9
Neural network
Artifical Neural Network and its applications
Introduction to Neural networks (under graduate course) Lecture 8 of 9
Artificial Neural Network
Artificial nueral network slideshare

What's hot (20)

PPTX
Artificial Neural Networks for NIU
PDF
Artificial Neural Network (draft)
PPT
Dr. kiani artificial neural network lecture 1
PPTX
Neural network & its applications
PPTX
Neural network
PPTX
Artificial neural network
PPTX
Artificial neural network
PPT
Neural Networks
PPTX
Neural network 20161210_jintaekseo
PPT
Artificial neural network model & hidden layers in multilayer artificial neur...
PPTX
Artificial neural networks
ODP
Artificial Neural Network
PPT
Ann by rutul mehta
PPT
Artificial Neural Networks
PPT
Artificial neural network
PPTX
PPTX
Artifical Neural Network
PPTX
Neural networks
PPT
Nural network ER. Abhishek k. upadhyay
PPTX
Artificial neural network
Artificial Neural Networks for NIU
Artificial Neural Network (draft)
Dr. kiani artificial neural network lecture 1
Neural network & its applications
Neural network
Artificial neural network
Artificial neural network
Neural Networks
Neural network 20161210_jintaekseo
Artificial neural network model & hidden layers in multilayer artificial neur...
Artificial neural networks
Artificial Neural Network
Ann by rutul mehta
Artificial Neural Networks
Artificial neural network
Artifical Neural Network
Neural networks
Nural network ER. Abhishek k. upadhyay
Artificial neural network
Ad

Similar to Introduction to Neural networks (under graduate course) Lecture 3 of 9 (20)

PDF
ppt_artificial neural netwroK_module 3_KTU
PPT
artificial-neural-networks Introduction.ppt
PPT
artificial-neural-networks overviewrev.ppt
PPT
artificial-neural-networks details with examples
PPT
artificial-neural-networks-revision .ppt
PPT
How Artificial Neural Network works rev.ppt
PPT
artificial-neural-networks-rev.ppt
PPT
artificial-neural-networks-rev.ppt
PPTX
Introduction to Neural networks (under graduate course) Lecture 2 of 9
PDF
BACKPROPOGATION ALGO.pdfLECTURE NOTES WITH SOLVED EXAMPLE AND FEED FORWARD NE...
PDF
ANN stands for Artificial Neural Network
PPTX
artificialneuralnetwork-200611082546.pptx
PPT
Lec 1-2-3-intr.
PPTX
Artificial Neural Network
PPTX
Artificial neural network
PPTX
Sppu engineering artificial intelligence and data science semester 6th Artif...
PDF
DEEPLEARNING recurrent neural networs.pdf
PPTX
Artificial Neural Network in Medical Diagnosis
PPTX
Introduction to Neural networks (under graduate course) Lecture 1 of 9
ppt_artificial neural netwroK_module 3_KTU
artificial-neural-networks Introduction.ppt
artificial-neural-networks overviewrev.ppt
artificial-neural-networks details with examples
artificial-neural-networks-revision .ppt
How Artificial Neural Network works rev.ppt
artificial-neural-networks-rev.ppt
artificial-neural-networks-rev.ppt
Introduction to Neural networks (under graduate course) Lecture 2 of 9
BACKPROPOGATION ALGO.pdfLECTURE NOTES WITH SOLVED EXAMPLE AND FEED FORWARD NE...
ANN stands for Artificial Neural Network
artificialneuralnetwork-200611082546.pptx
Lec 1-2-3-intr.
Artificial Neural Network
Artificial neural network
Sppu engineering artificial intelligence and data science semester 6th Artif...
DEEPLEARNING recurrent neural networs.pdf
Artificial Neural Network in Medical Diagnosis
Introduction to Neural networks (under graduate course) Lecture 1 of 9
Ad

More from Randa Elanwar (20)

PDF
الجزء السادس ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
PDF
الجزء الخامس ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
PDF
الجزء الرابع ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
PDF
الجزء الثالث ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
PDF
الجزء الثاني ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
PDF
الجزء الأول ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
PDF
تدريب مدونة علماء مصر على الكتابة الفنية (الترجمة والتلخيص )_Pdf5of5
PDF
تدريب مدونة علماء مصر على الكتابة الفنية (القصة القصيرة والخاطرة والأخطاء ال...
PDF
تدريب مدونة علماء مصر على الكتابة الفنية (مقالات الموارد )_Pdf3of5
PDF
تدريب مدونة علماء مصر على الكتابة الفنية (المقالات الإخبارية )_Pdf2of5
PDF
تدريب مدونة علماء مصر على الكتابة الفنية (المقالات المبنية على البحث )_Pdf1of5
PDF
تعريف بمدونة علماء مصر ومحاور التدريب على الكتابة للمدونين
PDF
Entrepreneurship_who_is_your_customer_(arabic)_7of7
PDF
Entrepreneurship_who_is_your_customer_(arabic)_5of7
PDF
Entrepreneurship_who_is_your_customer_(arabic)_4of7
PDF
Entrepreneurship_who_is_your_customer_(arabic)_2of7
PDF
يوميات طالب بدرجة مشرف (Part 19 of 20)
PDF
يوميات طالب بدرجة مشرف (Part 18 of 20)
PDF
يوميات طالب بدرجة مشرف (Part 17 of 20)
PDF
يوميات طالب بدرجة مشرف (Part 16 of 20)
الجزء السادس ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
الجزء الخامس ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
الجزء الرابع ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
الجزء الثالث ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
الجزء الثاني ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
الجزء الأول ماذا ستقدم لعميلك ريادة الأعمال خطوة بخطوة
تدريب مدونة علماء مصر على الكتابة الفنية (الترجمة والتلخيص )_Pdf5of5
تدريب مدونة علماء مصر على الكتابة الفنية (القصة القصيرة والخاطرة والأخطاء ال...
تدريب مدونة علماء مصر على الكتابة الفنية (مقالات الموارد )_Pdf3of5
تدريب مدونة علماء مصر على الكتابة الفنية (المقالات الإخبارية )_Pdf2of5
تدريب مدونة علماء مصر على الكتابة الفنية (المقالات المبنية على البحث )_Pdf1of5
تعريف بمدونة علماء مصر ومحاور التدريب على الكتابة للمدونين
Entrepreneurship_who_is_your_customer_(arabic)_7of7
Entrepreneurship_who_is_your_customer_(arabic)_5of7
Entrepreneurship_who_is_your_customer_(arabic)_4of7
Entrepreneurship_who_is_your_customer_(arabic)_2of7
يوميات طالب بدرجة مشرف (Part 19 of 20)
يوميات طالب بدرجة مشرف (Part 18 of 20)
يوميات طالب بدرجة مشرف (Part 17 of 20)
يوميات طالب بدرجة مشرف (Part 16 of 20)

Recently uploaded (20)

PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Classroom Observation Tools for Teachers
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Cell Types and Its function , kingdom of life
PPTX
master seminar digital applications in india
PDF
Computing-Curriculum for Schools in Ghana
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Complications of Minimal Access Surgery at WLH
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Classroom Observation Tools for Teachers
TR - Agricultural Crops Production NC III.pdf
PPH.pptx obstetrics and gynecology in nursing
01-Introduction-to-Information-Management.pdf
Cell Types and Its function , kingdom of life
master seminar digital applications in india
Computing-Curriculum for Schools in Ghana
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
2.FourierTransform-ShortQuestionswithAnswers.pdf
O7-L3 Supply Chain Operations - ICLT Program
Complications of Minimal Access Surgery at WLH
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
human mycosis Human fungal infections are called human mycosis..pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
VCE English Exam - Section C Student Revision Booklet
102 student loan defaulters named and shamed – Is someone you know on the list?
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx

Introduction to Neural networks (under graduate course) Lecture 3 of 9

  • 1. Neural Networks Dr. Randa Elanwar Lecture 3
  • 2. Lecture Content • Basic models of ANN – Activation functions – Interconnections (different NN structures) – Important notations 2Neural Networks Dr. Randa Elanwar
  • 3. Basic models of ANN 3Neural Networks Dr. Randa Elanwar Basic Models of ANN Activation function Interconnections Learning rules
  • 4. Activation function • Bipolar binary and unipolar binary are called as hard limiting activation functions used in discrete neuron model • Unipolar continuous and bipolar continuous are called soft limiting activation functions are called sigmoidal characteristics. Neural Networks Dr. Randa Elanwar 4
  • 5. Activation functions Neural Networks Dr. Randa Elanwar 5 Bipolar continuous (sigmoidal) Bipolar binary functions (sign function)
  • 6. Activation functions Neural Networks Dr. Randa Elanwar 6 Unipolar continuous (sigmoidal) Unipolar Binary (Step function)
  • 7. Activation functions • An output of 1 represents firing of a neuron down the axon. 7Neural Networks Dr. Randa Elanwar f(in) f(in) f(in)
  • 8. Basic models of ANN 8Neural Networks Dr. Randa Elanwar Basic Models of ANN Activation function Interconnections Learning rules
  • 9. Classification based on interconnections 9Neural Networks Dr. Randa Elanwar Interconnections Feed forward Single layer Multilayer Feed Back Recurrent Single layer Multilayer
  • 10. The Perceptron • First studied in the late 1950s (Rosenblatt). • Definition: an arrangement of one input layer (more than 1 unit/node) of McCulloch-Pitts neurons feeding forward to one output layer of McCulloch-Pitts neurons is known as a Perceptron. • Any number of McCulloch-Pitts neurons can be connected together in any way we like. Thus, it is also known as Layered Feed-Forward Networks. • We can use McCulloch-Pitts neurons to implement the basic logic gates. All we need to do is find the appropriate connection weights and neuron thresholds to produce the right outputs for each set of inputs. 10Neural Networks Dr. Randa Elanwar
  • 12. Single layer Feedforward Network 12Neural Networks Dr. Randa Elanwar
  • 13. Feedforward Network • Its output and input vectors are respectively • Weight wij connects the i’th neuron with j’th input. Activation rule of ith neuron is where 13Neural Networks Dr. Randa Elanwar
  • 14. Multilayer feed forward network Can be used to solve complicated problems 14Neural Networks Dr. Randa Elanwar
  • 15. Feedback network 15Neural Networks Dr. Randa Elanwar When outputs are directed back as inputs to same or preceding layer nodes it results in the formation of feedback networks
  • 16. Lateral feedback 16Neural Networks Dr. Randa Elanwar If the feedback of the output of the processing elements is directed back as input to the processing elements in the same layer then it is called lateral feedback
  • 17. Recurrent networks 17Neural Networks Dr. Randa Elanwar • Types: • Single node with own feedback • Competitive nets • Single-layer recurrent networks • Multilayer recurrent networks Feedback networks with closed loop are called Recurrent Networks. The response at the k+1’th instant depends on the entire history of the network starting at k=0.
  • 18. A Brief History • 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron model • 1949 Hebb published his book The Organization of Behavior, in which the Hebbian learning rule was proposed. • 1958 Rosenblatt introduced the simple single layer networks now called Perceptrons. • 1969 Minsky and Papert’s book Perceptrons demonstrated the limitation of single layer perceptrons, and almost the whole field went into hibernation. • 1982 Hopfield published a series of papers on Hopfield networks. • 1982 Kohonen developed the Self-Organizing Maps that now bear his name. • 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was re- discovered and the whole field took off again. • 1990s The sub-field of Radial Basis Function Networks was developed. • 2000s The power of Neural Networks Ensembles & Support Vector Machines is apparent. 19Neural Networks Dr. Randa Elanwar
  • 19. Linearly Separable Functions • Consider a perceptron: • Its output is – 1, if W1X1 + W2X2 >  – 0, otherwise • In terms of feature space – hence, it can only classify examples if a line can separate the positive examples from the negative examples 20Neural Networks Dr. Randa Elanwar
  • 20. Learning Linearly Separable Functions • What can these functions learn ? • Bad news: - There are not many linearly separable functions. • Good news: - There is a perceptron algorithm that will learn any linearly separable function, given enough training examples. 21Neural Networks Dr. Randa Elanwar
  • 21. 22 Important notations • One neuron can’t do much on its own. Usually we will have many neurons labeled by indices k, i, j and activation flows between them via links with strengths wki, wij: Neural Networks Dr. Randa Elanwar