SlideShare a Scribd company logo
By: Elaine Wang and Ananya Murali
Introduction: Pioneers In a New World
• Transition from water -> land
  began in the precambrian
  period with cyanobacteria
  (green algae)
• Developed into world’s 1st
  plants
• Adaptations necessary for
  survival on land
      - Obtaining and
      preserving water
      - Reproduction
23.1: Trends In Plant Evolution
 •   Vascular plants: most diverse plants w/ internal tissue systems that conduct water
     and solutes through roots, stems and leaves
 •   Seedless vascular plants: whisk ferns, lycophytes, horsetails, ferns
 •   Gymnosperms: seed-bearing vascular plants
      – Cycads, ginkgos, gnetophytes, conifers
 •   Angiosperms: vascular plants w/ flowers and seeds
      – Magnoliids, eudicots, monocots
 •   Bryophytes: nonvascular plants
      – Liverworts, hornworts, mosses
 •   Root systems: underground absorptive structures of a cumulatively large surface
     area
      – Rapidly take up soil water and mineral ions
      – Anchor for plants
 •   Shoot systems: stems and leaves absorb energy from sun, CO2 from the air
      – Developed taller/branched stems after developing the capacity to
         synthesize/deposit lignin in cell walls
 •   Xylem: vascular tissue that distributes water and dissolved ions in plants
 •   Phloem: vascular tissue that distributes dissolved sugars and other photosynthetic
     products
23.1: Trends In Plant Evolution
 •   Cuticle: protective waxy coat that helps conserve water on hot, dry days
 •   Stomata (stoma): tiny openings across surfaces of leaves and some stems to
     control CO2 absorption and restrict evaporative water loss
 •   Gametophytes: gamete-producing bodies that dominate the haploid phase of algal
     life cycles
       – mostly aquatic plants
 •   Sporophyte: multicelled diploid plant body
 •   After a diploid zygote undergoes mitosis->Forms spores: haploid resting cells
       – fertilization could be timed with suitable environmental conditions
       – Diploid dominance is an adaptation to land
 •   Heterospory: plants that produce 2 types of spores (both seedless an seed-
     bearing)
 •   Homospory: plants that produce one type of spore
 •   Pollen grains: cellular structures that become mature, sperm-bearing male
     gametophytes
       – Microspores that reach eggs via air currents, insects, and birds
       – Contributed to radiation of seed-bearing plants to high/dry habitats
 •   Seed: an embryo sporophyte, nutritious tissues, and outer coat; Developed from
     female gametophytes
23.2: The Bryophytes
 •   Species of mosses, liverworts, hornworts
       – Adapted to moist habitats
       – Mosses, however, can be found in deserts as well
             • Sensitive to air pollution
             • Most common
 •   Nonvascular: leaf/stem/root parts lack a xylem or phloem
       – Instead, have rhizoids: elongated cells/threadlike absorptive structures that attach the gametophytes
          to the soil, and absorb water and minerals
 •   Show three features that were adaptive during the transition to land
       – 1. Cuticle: stomata to prevent water loss
       – 2. Cellular jacket around parts that produce sperm/eggs: holds in moisture
       – 3. Embryo sporophyte: sporophytes that begin life inside a female gametophyte
             • Sporophytes remain attached to the gamete-producing body for nutrition (do not disperse)
 •   Mosses (most common)
       – Gametophytes grow in clusters to form cushiony mounds, or grow in branched patterns on tree
          trunks (humid conditions)
       – Eggs and sperm develop in gametangia at shoot tips of familiar moss plants
       – After fertilization, the zygote develops into a mature sporophyte
             • Develop a sporangium: stalk and jacketed structure where spores develop
 •   o Examples
             • Peat mosses: used to soak up water (5x more than cotton), used as antiseptic, and also burned
                for electricity
             • peat bogs: moist mats of the remains of peat mosses
Introduction to Plants PPT
23.3: Existing Seedless Vascular Plants
•   Whisk ferns, lycophytes, horsetails, and ferns
•   Different from bryophytes b/c sporophytes that develop independently of gametophytes
      – sporophytes that have well-developed vascular tissues
      – larger, longer-lived sporophyte phase of its life cycle
•   Sporophytes can live on land, while gametophytes cannot
•   Lycophytes: small club mosses on the forest floor
      – “ground pines”
      – sporophytes with true roots, stems, small leaves with vascular tissue
      – strobili (strobilius) bear spores that germinate, forming small, free-living gametophytes
            • heterosporous
•   Whisk ferns: not true ferns; resemble whisk brooms
      – have rhizomes: short, branched, mainly horizontal absorptive stems that grow underground
      – no leaves, made of scale-like branches
      – popular ornamental plants common to tropical/subtropical areas
•   Horsetails
      – sporophytes have rhizosomes
      – scalelike leaves whorl around a hollow, photosynthetic stem
      – spores produced inside cone-shaped clusters of leaves at shoot tip
      – found in streambank muds and other disrupted habitats
•   Ferns
      – have rhizosomes and fronds: aerial leaves that coil into what resembles a fiddlehead
      – sporangia: clusters of spores on the lower surface of the fronds
23.4: Ancient Carbon Treasures
• Lycophyte trees: giant club mosses that developed during the
  Carboniferous era
   – strobili that produced 8 billion microspores or hundreds of
      megaspores
   – 40m tall
• 20m tall horsetails
• Many swamp forests had sediments that compressed undecayed remains
  of plants into peat mosses
   – Pressure transformed the peat into coal: a renewable fossil fuel
23.5: The Rise Of Seed-Bearing Plants

• Most successful vascular plants because
  independent of water for fertilization
    – Seed ferns, gymnosperms, angiosperms
• Different than seedless vascular plants because:
    – Microspores: develop into pollen grains to carry
      sperm to female structures (pollination)
    – Megaspores: develop within ovules: female
      reproductive structures that, when mature, produce
      seed
• § female gametophyte, nutrient rich tissue, jacket of
  cell layers (to develop a seed coat)
    – Traits to conserve water: Thicker cuticles, stomata
      underneath leaves
• Pre-Carboniferous: dominated by seed ferns (simlar
  to progymnosperms): earliest seed-producing
  plants
23.6: Gymnosperms-Plants With “Naked” Seeds

•   Gymnosperm sporophyte stages are conspicuous trees and shrubs; the seeds are rather
    unprotected ("naked seeds") perched at the surface of reproductive parts.
•   Conifers (Coniferophyta)
     – The conifers (cone-bearers) are woody trees with needlelike or scalelike
           leaves.
     – Most are evergreens, some are deciduous.
     – Produce true cones: repro. structures in clusters of papery/wood-like
            scales that bear exposed to ovules on upper surface
•   Lesser Known Gymnosperms
     – Cycads (Cycadophyta)
           • These palmlike trees flourished during the Mesozoic era, but only about 100
              species still exist--confined to the tropics and subtropics.
           • They bear massive cone-shaped strobili that produce either pollen (transferred by
              air currents or insects) or ovules.
     – Ginkgos (Ginkgophyta)
           • From the diversity of this group during the Mesozoic, only one species has survived.
           • They are remarkably hardy, showing resistance to insects, disease, and air
              pollutants.
     – Gnetophytes (Gnetophyta) are the most unusual gymnosperms; they live in tropical and
         desert areas.
23.7: A Closer Look At The Conifers
• Pine Life Cycle
   – The pine tree produces two kinds of cones:
       • Male cones produce sporangia which yield microspores
         that develop into pollen grains (male gametophyte).
       • Female cones produce ovules that yield megaspores
         (female gametophyte).
   – Pollination is the arrival of a pollen grain on the
     female reproductive parts, after which a pollen tube
     grows toward the egg.
   – Fertilization, which is delayed for up to a year,
     results in a zygote that develops into an embryo
     within the conifer seed.
• Deforestation and the Conifers
   – Although conifers still dominate in certain climates,
     their slow reproductive pace puts them at a
     disadvantage compared to angiosperms.
   – However, deforestation by clear-cutting for their
     commercial value has put them at even greater risk.
Introduction to Plants PPT
23.8: Angiosperms - Flowering,
      Seed-Bearing Plants
•   Characteristics of Flowering Plants
     – Only angiosperms produce specialized reproductive structures called flowers.
          • Of all the divisions of plants, angiosperms ("vessel seed") are the most
            successful and most diverse.
          • Most flowering plants coevolved with pollinators--insects, bats, birds, etc.
     – There are three major groups of flowering plants:
          • Magnoliids include magnolias, avocados, nutmeg, and black pepper
            plants.
          • Eudicots include familiar shrubs, trees (except conifers), and herbaceous
            plants.
          • Monocots include grasses, lilies, and the major food-crop grains.
•   Representative Life Cycle--A Monocot
     – The diploid sporophyte has extensive root and shoot systems; it also retains
        and nourishes the gametophyte.
     – Embryos are nourished by the endosperm within the seeds, which are
        packaged inside fruits.
23.9: Seed Plants And People

• Artificial selection of plants led to the
  development of domesticated grains including
  wheat and barley (11,000 yrs ago)
• Different trees have been used for their wood
  pliability (paper, furniture, rope)
Works Cited
Starr, Cecie and Ralph Taggart. Biology: The
  Unity and Diversity of Life. 10th Ed. Belmont:
  Brooks/Cole, 2004. Print.

More Related Content

PPT
honey bees in India
PDF
Pra embryonic and post-embryonic development in insect
PPTX
Digestive system animals
PPTX
12th - the flower - biology
PPTX
Importance of pollinator in fruit crops
PPTX
Excretion in animals (class X)
PPTX
Seed structure and germination
PPTX
Plant structure function and transport
honey bees in India
Pra embryonic and post-embryonic development in insect
Digestive system animals
12th - the flower - biology
Importance of pollinator in fruit crops
Excretion in animals (class X)
Seed structure and germination
Plant structure function and transport

What's hot (20)

PPTX
BOTANY LECTURE 1
PPTX
SEED GERMINATION- CLASS-V ENVIRONMENTAL STUDIES
PPT
04 plant responses to stimuli
PPT
Chapter 7 plant nutrition
ODP
Plant physiology
PPTX
Plant reproduction final
PPTX
PPT
PPTX
INSECTS
PPT
Fern reproduction
PPTX
Plants powerpoint
PPT
Chapter 7 Nutrition in Plants Lesson 1 - Structure of plants and leaves, Gase...
PPTX
Economic Importance Of Insects.pptx
PPTX
Morphology of flowering plants part2
PPT
3. world farming systems
DOC
Plant transport and nutrition 2
PPTX
STEMS STRUCTURE AND MODIFICATION.pptx
PPT
Mechanisms of seed dispersal
PPTX
Class 5 Chapter 1- super senses (EVS)
PPT
Insect respiratory system
BOTANY LECTURE 1
SEED GERMINATION- CLASS-V ENVIRONMENTAL STUDIES
04 plant responses to stimuli
Chapter 7 plant nutrition
Plant physiology
Plant reproduction final
INSECTS
Fern reproduction
Plants powerpoint
Chapter 7 Nutrition in Plants Lesson 1 - Structure of plants and leaves, Gase...
Economic Importance Of Insects.pptx
Morphology of flowering plants part2
3. world farming systems
Plant transport and nutrition 2
STEMS STRUCTURE AND MODIFICATION.pptx
Mechanisms of seed dispersal
Class 5 Chapter 1- super senses (EVS)
Insect respiratory system
Ad

Similar to Introduction to Plants PPT (20)

PPT
Chapter 3 plants
PPTX
Chapter_ 5_Plant Evolution (Part 1).pptx
PDF
Plant Diversity presentation (1).pdf biology
PPTX
How plants colonized the land and evolution
PPTX
project in science
PPT
18 Lecture Ppt
PDF
2 3-plants in general
PPT
Introduction to-plants-1233859493415311-3
PPT
Ap bio lecture ch24 evolution and diversity of life
PPT
Plant APBio
PPT
Overview of Green Plants
PDF
Chapter 22- Plant Diversity
PPT
Plant kingdom
PPT
Introduction to plants 1233859493415311-3
PPT
16 lecture presentation
PPT
Plant lecture 7
PPT
biodiversity of plants
PDF
Lesson 1 bio101 (c)Dr. Evangelista
PPTX
Plant Biodiversity – Concepts of evolution - Novel features of plant growth a...
Chapter 3 plants
Chapter_ 5_Plant Evolution (Part 1).pptx
Plant Diversity presentation (1).pdf biology
How plants colonized the land and evolution
project in science
18 Lecture Ppt
2 3-plants in general
Introduction to-plants-1233859493415311-3
Ap bio lecture ch24 evolution and diversity of life
Plant APBio
Overview of Green Plants
Chapter 22- Plant Diversity
Plant kingdom
Introduction to plants 1233859493415311-3
16 lecture presentation
Plant lecture 7
biodiversity of plants
Lesson 1 bio101 (c)Dr. Evangelista
Plant Biodiversity – Concepts of evolution - Novel features of plant growth a...
Ad

Recently uploaded (20)

PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
International_Financial_Reporting_Standa.pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Empowerment Technology for Senior High School Guide
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
advance database management system book.pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
TNA_Presentation-1-Final(SAVE)) (1).pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Computer Architecture Input Output Memory.pptx
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
International_Financial_Reporting_Standa.pdf
History, Philosophy and sociology of education (1).pptx
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Paper A Mock Exam 9_ Attempt review.pdf.
Empowerment Technology for Senior High School Guide
Unit 4 Computer Architecture Multicore Processor.pptx
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Cambridge-Practice-Tests-for-IELTS-12.docx
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
advance database management system book.pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
B.Sc. DS Unit 2 Software Engineering.pptx

Introduction to Plants PPT

  • 1. By: Elaine Wang and Ananya Murali
  • 2. Introduction: Pioneers In a New World • Transition from water -> land began in the precambrian period with cyanobacteria (green algae) • Developed into world’s 1st plants • Adaptations necessary for survival on land - Obtaining and preserving water - Reproduction
  • 3. 23.1: Trends In Plant Evolution • Vascular plants: most diverse plants w/ internal tissue systems that conduct water and solutes through roots, stems and leaves • Seedless vascular plants: whisk ferns, lycophytes, horsetails, ferns • Gymnosperms: seed-bearing vascular plants – Cycads, ginkgos, gnetophytes, conifers • Angiosperms: vascular plants w/ flowers and seeds – Magnoliids, eudicots, monocots • Bryophytes: nonvascular plants – Liverworts, hornworts, mosses • Root systems: underground absorptive structures of a cumulatively large surface area – Rapidly take up soil water and mineral ions – Anchor for plants • Shoot systems: stems and leaves absorb energy from sun, CO2 from the air – Developed taller/branched stems after developing the capacity to synthesize/deposit lignin in cell walls • Xylem: vascular tissue that distributes water and dissolved ions in plants • Phloem: vascular tissue that distributes dissolved sugars and other photosynthetic products
  • 4. 23.1: Trends In Plant Evolution • Cuticle: protective waxy coat that helps conserve water on hot, dry days • Stomata (stoma): tiny openings across surfaces of leaves and some stems to control CO2 absorption and restrict evaporative water loss • Gametophytes: gamete-producing bodies that dominate the haploid phase of algal life cycles – mostly aquatic plants • Sporophyte: multicelled diploid plant body • After a diploid zygote undergoes mitosis->Forms spores: haploid resting cells – fertilization could be timed with suitable environmental conditions – Diploid dominance is an adaptation to land • Heterospory: plants that produce 2 types of spores (both seedless an seed- bearing) • Homospory: plants that produce one type of spore • Pollen grains: cellular structures that become mature, sperm-bearing male gametophytes – Microspores that reach eggs via air currents, insects, and birds – Contributed to radiation of seed-bearing plants to high/dry habitats • Seed: an embryo sporophyte, nutritious tissues, and outer coat; Developed from female gametophytes
  • 5. 23.2: The Bryophytes • Species of mosses, liverworts, hornworts – Adapted to moist habitats – Mosses, however, can be found in deserts as well • Sensitive to air pollution • Most common • Nonvascular: leaf/stem/root parts lack a xylem or phloem – Instead, have rhizoids: elongated cells/threadlike absorptive structures that attach the gametophytes to the soil, and absorb water and minerals • Show three features that were adaptive during the transition to land – 1. Cuticle: stomata to prevent water loss – 2. Cellular jacket around parts that produce sperm/eggs: holds in moisture – 3. Embryo sporophyte: sporophytes that begin life inside a female gametophyte • Sporophytes remain attached to the gamete-producing body for nutrition (do not disperse) • Mosses (most common) – Gametophytes grow in clusters to form cushiony mounds, or grow in branched patterns on tree trunks (humid conditions) – Eggs and sperm develop in gametangia at shoot tips of familiar moss plants – After fertilization, the zygote develops into a mature sporophyte • Develop a sporangium: stalk and jacketed structure where spores develop • o Examples • Peat mosses: used to soak up water (5x more than cotton), used as antiseptic, and also burned for electricity • peat bogs: moist mats of the remains of peat mosses
  • 7. 23.3: Existing Seedless Vascular Plants • Whisk ferns, lycophytes, horsetails, and ferns • Different from bryophytes b/c sporophytes that develop independently of gametophytes – sporophytes that have well-developed vascular tissues – larger, longer-lived sporophyte phase of its life cycle • Sporophytes can live on land, while gametophytes cannot • Lycophytes: small club mosses on the forest floor – “ground pines” – sporophytes with true roots, stems, small leaves with vascular tissue – strobili (strobilius) bear spores that germinate, forming small, free-living gametophytes • heterosporous • Whisk ferns: not true ferns; resemble whisk brooms – have rhizomes: short, branched, mainly horizontal absorptive stems that grow underground – no leaves, made of scale-like branches – popular ornamental plants common to tropical/subtropical areas • Horsetails – sporophytes have rhizosomes – scalelike leaves whorl around a hollow, photosynthetic stem – spores produced inside cone-shaped clusters of leaves at shoot tip – found in streambank muds and other disrupted habitats • Ferns – have rhizosomes and fronds: aerial leaves that coil into what resembles a fiddlehead – sporangia: clusters of spores on the lower surface of the fronds
  • 8. 23.4: Ancient Carbon Treasures • Lycophyte trees: giant club mosses that developed during the Carboniferous era – strobili that produced 8 billion microspores or hundreds of megaspores – 40m tall • 20m tall horsetails • Many swamp forests had sediments that compressed undecayed remains of plants into peat mosses – Pressure transformed the peat into coal: a renewable fossil fuel
  • 9. 23.5: The Rise Of Seed-Bearing Plants • Most successful vascular plants because independent of water for fertilization – Seed ferns, gymnosperms, angiosperms • Different than seedless vascular plants because: – Microspores: develop into pollen grains to carry sperm to female structures (pollination) – Megaspores: develop within ovules: female reproductive structures that, when mature, produce seed • § female gametophyte, nutrient rich tissue, jacket of cell layers (to develop a seed coat) – Traits to conserve water: Thicker cuticles, stomata underneath leaves • Pre-Carboniferous: dominated by seed ferns (simlar to progymnosperms): earliest seed-producing plants
  • 10. 23.6: Gymnosperms-Plants With “Naked” Seeds • Gymnosperm sporophyte stages are conspicuous trees and shrubs; the seeds are rather unprotected ("naked seeds") perched at the surface of reproductive parts. • Conifers (Coniferophyta) – The conifers (cone-bearers) are woody trees with needlelike or scalelike leaves. – Most are evergreens, some are deciduous. – Produce true cones: repro. structures in clusters of papery/wood-like scales that bear exposed to ovules on upper surface • Lesser Known Gymnosperms – Cycads (Cycadophyta) • These palmlike trees flourished during the Mesozoic era, but only about 100 species still exist--confined to the tropics and subtropics. • They bear massive cone-shaped strobili that produce either pollen (transferred by air currents or insects) or ovules. – Ginkgos (Ginkgophyta) • From the diversity of this group during the Mesozoic, only one species has survived. • They are remarkably hardy, showing resistance to insects, disease, and air pollutants. – Gnetophytes (Gnetophyta) are the most unusual gymnosperms; they live in tropical and desert areas.
  • 11. 23.7: A Closer Look At The Conifers • Pine Life Cycle – The pine tree produces two kinds of cones: • Male cones produce sporangia which yield microspores that develop into pollen grains (male gametophyte). • Female cones produce ovules that yield megaspores (female gametophyte). – Pollination is the arrival of a pollen grain on the female reproductive parts, after which a pollen tube grows toward the egg. – Fertilization, which is delayed for up to a year, results in a zygote that develops into an embryo within the conifer seed. • Deforestation and the Conifers – Although conifers still dominate in certain climates, their slow reproductive pace puts them at a disadvantage compared to angiosperms. – However, deforestation by clear-cutting for their commercial value has put them at even greater risk.
  • 13. 23.8: Angiosperms - Flowering, Seed-Bearing Plants • Characteristics of Flowering Plants – Only angiosperms produce specialized reproductive structures called flowers. • Of all the divisions of plants, angiosperms ("vessel seed") are the most successful and most diverse. • Most flowering plants coevolved with pollinators--insects, bats, birds, etc. – There are three major groups of flowering plants: • Magnoliids include magnolias, avocados, nutmeg, and black pepper plants. • Eudicots include familiar shrubs, trees (except conifers), and herbaceous plants. • Monocots include grasses, lilies, and the major food-crop grains. • Representative Life Cycle--A Monocot – The diploid sporophyte has extensive root and shoot systems; it also retains and nourishes the gametophyte. – Embryos are nourished by the endosperm within the seeds, which are packaged inside fruits.
  • 14. 23.9: Seed Plants And People • Artificial selection of plants led to the development of domesticated grains including wheat and barley (11,000 yrs ago) • Different trees have been used for their wood pliability (paper, furniture, rope)
  • 15. Works Cited Starr, Cecie and Ralph Taggart. Biology: The Unity and Diversity of Life. 10th Ed. Belmont: Brooks/Cole, 2004. Print.

Editor's Notes

  • #2: Seed Plantshttp://www.youtube.com/profile?feature=iv&annotation_id=annotation_409148&user=greatpacificmedia&src_vid=kBPLKUTtXBM#p/c/9F64F28702C824B5/9/iv5JjH4kD1kand Byrophytes: http://www.youtube.com/profile?feature=iv&annotation_id=annotation_409148&user=greatpacificmedia&src_vid=kBPLKUTtXBM#p/c/9F64F28702C824B5/0/kBPLKUTtXBMChoice 2http://www.youtube.com/user/kosasihiskandarsjah?feature=BFThis guy has a bunch of vids on the different plant life cycles and he has ones for the moss, conifer, and flowering plant life cycles but not for the life cycle of a fern...