Introduction to trader bots
with Python
Thomas Aglassinger
http://roskakori.at
@Taglassinger
https://github.com/roskakori/talks/tree/master/pygraz/traderbot
Overview
● Outline a simple trading bot
● Example usages for several Python modules
(most part of the standard library)
● (Probably) Python beginner friendly
Agenda
● Communication and configuration
● Trading
● Data analysis and debugging
● Testing
Limitations
● You won't get rich (but it's fun nevertheless)
● Code does not work anymore due API update
● Masterexchange is going to shut down soon
● Terms of service
Communication and Configuration
Overview
● Uses https://masterxchange.com/api.php
(defunct after 2015-11-15)
● Communicate using HTTPS and JSON
● Public queries available to anyone (e.g. current
bids)
● Private queries requiring a personal token
bound to you account (e.g. orders)
Query trades
● Query the last 500 trades for maidsafe coins:
https://masterxchange.com/api/v2/trades.php?currency=maid
● Result:
[{"tradeid":"31242","price":"0.00990000","amount":"0.151
10800","date":"1446399439","market":"msc_btc"},
{"tradeid":"31241","price":"0.00990000","amount":"0.099
89200","date":"1446319270","market":"msc_btc"},
{"tradeid":"31240","price":"0.00562223","amount":"0.037
79028","date":"1446309947","market":"msc_btc"}, ...]
Print the top 3 trades
import json
import requests
def _without_utf8_bom(text):
return text[3:] if text.startswith('xefxbbxbf') else text
query = requests.get(
'https://masterxchange.com/api/v2/trades.php',
headers={'User-Agent': 'demobot/0.1'},
params={'currency': 'maid'}
)
print('query.status_code =', query.status_code)
if query.status_code < 300:
query_text = _without_utf8_bom(query.text)
print('query_text = %r...' % query_text[:40])
trades = json.loads(query_text)
print('trades =', trades[:3])
Print the top 3 trades - result
query.status_code = 200
query_text = '[{"tradeid":"31246","price":"0.00002603"'...
trades = [{'market': 'maid_btc', 'date': '1446500342', 'amount':
'7000.00000000', 'price': '0.00002603', 'tradeid': '31246'}, {'market':
'maid_btc', 'date': '1446489311', 'amount': '22000.00000000',
'price': '0.00002655', 'tradeid': '31244'}, {'market': 'maid_btc', 'date':
'1446462486', 'amount': '1250.00000000', 'price': '0.00002655',
'tradeid': '31243'}]
Configuring the API key
● Private queries require an API key.
● Simple way to manage: configparser
● Store key in a config file
● Read it during startup
Example config file
[demobot]
api_key = ou1IurT4HQrFfN1ch...
Read the API key from the config
import configparser
config = configparser.ConfigParser()
config.read('demobot.cfg')
api_key = config.get('demobot', 'api_key')
Query your balances
https://masterxchange.com/api/v2/private/balance
s.php?APIkey=ou1IurT4H...
{"balances":{"total":
{"btc":"9.16311816","msc":"34.63724456","maid":"
43233.50000000"},"available":
{"btc":7.16311816,"msc":26.63724456,"maid":426
33.5}},"error_message":"","error_code":0}
Print your balances
query = requests.get(
'https://masterxchange.com/api/v2/private/balances.php' ,
headers={'User-Agent': 'demobot/0.1'},
params={'APIkey': api_key}
)
print('query.status_code =', query.status_code)
if query.status_code < 300:
query_text = _without_utf8_bom(query.text)
print('query_text = %r...' % query_text[:40])
balances_result = json.loads(query_text)
if balances_result['error_code'] == 0:
balances = balances_result['balances']
print('balances =', balances)
Print your balances - result
query.status_code = 200
query_text = '{"balances":{"total":
{"btc":0,"msc":0,"m'...
balances = {'total': {'xcpjenga': 0, 'colzoidy': 0,
'coltdu': 0, 'xcpopcu': 0, 'colgauto': 0, ...}}
Masterexchange error handling
1.Http status < 300?
2.Query result error_code = 0?
3.Process actual data in query result
Wrap error handling in Exceptions
class BotError(Exception):
pass
class HttpsConnection(object):
...
def query(self, function_name, payload=None, use_api_key=True):
function_url = 'https://masterxchange.com/api/v2/%s.php' % function_name
actual_payload = {} if payload is None else dict(payload)
if use_api_key:
actual_payload['APIkey'] = self._api_key
headers = {'User-Agent': 'demobot/0.1'}
r = requests.get(function_url, headers=headers, params=actual_payload)
if r.status_code >= 300:
raise BotError(
'cannot query %s with %s: HTTP error code=%d'
% (function_url, actual_payload, r.status_code))
result = json.loads(
r.text[3:] if r.text.startswith('xefxbbxbf') else r.text)
if use_api_key and (result['error_code'] != 0):
raise BotError(
'cannot query %s with %s: %s'
% (function_url, actual_payload, result['error_message']))
return result
Trading
Processing monetary values
● Use decimal instead of float
http://floating-point-gui.de/
● Python has a decimal module:
https://docs.python.org/3/library/decimal.html
● json and configparser only support float
→ convert after reading and before writing
● Bitcoin uses 8 digits after decimal separator
Use formatting for decimals
>>> from decimal import Decimal
>>> print(Decimal('0.00000001'))
1E-8
>>> print('%.8f' % Decimal('0.00000001'))
0.00000001
Modes of operation
● Advise: only suggest to sell or buy → user has to manually initiate
transactions
● Lower risk for “stupid” transactions
● Might miss opportunities due slow reaction time
● Helpful when trying out a hopefully improved trading algorithm
● Action: automatically sell and buy on market conditions deemed
favorable
● Can react quickly to changes
● Possibility for epic fail on buggy trading algorithms
● Recommendation: reduce risk (but also opportunities) by limiting
amount traded per transaction and hour, stop loss limits etc.
Basic bot loop
1.Update own balances
2.Update open orders on the market
3.Apply trading algorithm and decide next action
4.Possibly buy or sell
5.Wait some time
6.Repeat
Trading algorithms
On the long run, nothing really works
Some simple trading algorithms
● Spread between 2 different but interchangeable items;
e.g. Team Fortress 2's keys and earbuds:
http://icrontic.com/article/tf2-black-market-explained
● Delayed correlation between two items; e.g. stocks for
Coca Cola and Pepsi:
http://www.investopedia.com/university/guide-pairs-trading/pairs-trading-correlation.asp
● Wait for slips from sellers, buy “unusually” cheap items
and resell for “normal” price;
article about such a bot (violating terms of service):
http://diablo3story.blogspot.com.au/2014/07/a-diablo-3-story.html
Data analysis and Debugging
Tracking statistics
● Collect statistics in database
● To debug bot decisions
● To improve trading algorithm
● To monitor market conditions
Sqlite
● Robust and stable
● Efficient for single client use
● Easy to set up
● Included with Python:
https://docs.python.org/3/library/sqlite3.html
● Rather creative type system
● “Real” instead of “decimal”
● “int” for timestamp instead of “datetime” type
● Type anarchy concerning comparison
● http://www.sqlite.org/datatype3.html
Create a statistics database
def _create_database(self, database_path):
_log.info('connect to database %r', database_path)
result = sqlite3.connect(database_path)
with closing(result.cursor()) as cursor:
cursor.execute("""
create table if not exists balances (
action char(4) not null,
balance_time int not null,
btc real not null,
maid real not null,
price_per_maid real not null,
transferred int not null
)
""")
cursor.execute("""
create index if not exists
idx_balance_time on balances (balance_time)
""")
result.commit()
return result
Insert a statistics row
values_to_insert = (
action,
int(time.time()),
float(self.btc_balance),
float(self.maid_balance),
float(price_per_maid),
int(maid_transferred),
)
with closing(self._database.cursor()) as cursor:
cursor.execute("""
insert into balances (
action, balance_time, btc, maid, price_per_maid, transferred
)
values (?, ?, ?, ?, ?, ?)
""", values_to_insert)
self._database.commit()
Logging
● More detailed tracking of trading decisions than
database
● But no easy structured analysis
● Use logging Module
https://docs.python.org/3/library/logging.html
● Use RotatingFileHandler
https://docs.python.org/3/library/logging.handler
s.html#rotatingfilehandler
Example logging configuration 1/2
# Logging configuration as described in
# <https://docs.python.org/3/howto/logging-cookbook.html>.
[loggers]
keys=root,demobot
[handlers]
keys=console,file
[formatters]
keys=default
[logger_root]
level=DEBUG
handlers=console,file
[logger_demobot]
level=DEBUG
handlers=console,file
qualname=demobot
propagate=0
Example logging configuration 2/2
[handler_console]
class=StreamHandler
level=INFO
formatter=default
args=(sys.stderr,)
[handler_file]
class=RotatingFileHandler
level=DEBUG
formatter=default
args=('/tmp/demobot.log', mode='a', maxBytes=1000000, backupCount=5, encoding='utf-8')
[formatter_default]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=
Testing
Testing challenges
● Network communication is slow
● Many sites have limits on transactions per
second
● Testing actual orders requires money
Mock-up connections with scenarios
● Scenarios are simple text file containing
expected queries and JSON results
● The test case makes a decisions that results in
a query, parses the scenarios JSON result, and
makes the next decision and query
● Scenarios can be maintained by domain
experts
Example scenario file
# got maid, no open orders
# the bot should create a maid-order for 500maid and 0.10000001btc/maid
private/balances
{
"balances": {
"total":{"btc":0.9,"maid":500},
"available" {"btc":0,"maid":0}
},
"error_message":"", "error_code":0
}
private/openedOrders
{
"open_orders": [],
"error_message":"", "error_code":0
}
orderbook
[
{"market":"maid_btc","type":"sell","amount":"120.00000000","price":"0.20000000","date_created":"1401077847"},
{"market":"maid_btc","type":"buy","amount":"270.00000000","price":"0.10000000","date_created":"1418566454"}
]
private/createOrder
Scenario implementation
● Bot constructor gets a connection
● Class HttpConnection → query() returns JSON
from Masterexchange
● Class ScenarioConnection → query() checks
that function matches next line in scenario file
and if so returns next JSON from it
Audience feedback: try Gherkin!
https://pypi.python.org/pypi/gherkin3
Summary
Summary
● Python has many useful libraries to quickly
implement simple trading bots.
● You probably won't get rich.
● It's fun!

More Related Content

PDF
Python in the Financial Industry The universal tool for end-to-end developme...
PPTX
Python trading
PDF
容器式軟體開發介紹
PDF
程式交易介紹及 FinTech 創作分享
PDF
EuroPython 2013 - FAST, DOCUMENTED AND RELIABLE JSON BASED WEBSERVICES WITH P...
PDF
Why you should be using structured logs
PPTX
Sharding in MongoDB 4.2 #what_is_new
PDF
Docker Logging and analysing with Elastic Stack
Python in the Financial Industry The universal tool for end-to-end developme...
Python trading
容器式軟體開發介紹
程式交易介紹及 FinTech 創作分享
EuroPython 2013 - FAST, DOCUMENTED AND RELIABLE JSON BASED WEBSERVICES WITH P...
Why you should be using structured logs
Sharding in MongoDB 4.2 #what_is_new
Docker Logging and analysing with Elastic Stack

Similar to Introduction to trader bots with Python (20)

PDF
Docker Logging and analysing with Elastic Stack - Jakub Hajek
PDF
[245] presto 내부구조 파헤치기
PDF
Presto anatomy
PDF
Crafting APIs
PDF
Fun Teaching MongoDB New Tricks
PDF
Altitude NY 2018: Leveraging Log Streaming to Build the Best Dashboards, Ever
PDF
using Mithril.js + postgREST to build and consume API's
PDF
Web Scraping for Non Programmers
PDF
Cubes 1.0 Overview
PPTX
10 ways to make your code rock
PPT
Spring Transaction
PDF
What we learnt at carousell tw for golang gathering #31
PDF
PVS-Studio vs Chromium. 3-rd Check
ODP
Introduction to Structured Streaming
PDF
Headache from using mathematical software
PDF
PVS-Studio and Continuous Integration: TeamCity. Analysis of the Open RollerC...
ODP
Finagle and Java Service Framework at Pinterest
PPTX
Altitude San Francisco 2018: Logging at the Edge
KEY
Introduction to Django
PDF
MongoDB World 2018: Tutorial - Free the DBA: Building Chat Bots to Triage, Mo...
Docker Logging and analysing with Elastic Stack - Jakub Hajek
[245] presto 내부구조 파헤치기
Presto anatomy
Crafting APIs
Fun Teaching MongoDB New Tricks
Altitude NY 2018: Leveraging Log Streaming to Build the Best Dashboards, Ever
using Mithril.js + postgREST to build and consume API's
Web Scraping for Non Programmers
Cubes 1.0 Overview
10 ways to make your code rock
Spring Transaction
What we learnt at carousell tw for golang gathering #31
PVS-Studio vs Chromium. 3-rd Check
Introduction to Structured Streaming
Headache from using mathematical software
PVS-Studio and Continuous Integration: TeamCity. Analysis of the Open RollerC...
Finagle and Java Service Framework at Pinterest
Altitude San Francisco 2018: Logging at the Edge
Introduction to Django
MongoDB World 2018: Tutorial - Free the DBA: Building Chat Bots to Triage, Mo...
Ad

More from roskakori (18)

PDF
Expanding skill sets - Broaden your perspective on design
PPTX
Django trifft Flutter
PDF
Multiple django applications on a single server with nginx
PDF
Helpful pre commit hooks for Python and Django
PDF
Startmeeting Interessengruppe NLP NLU Graz
PDF
Helpful logging with python
PDF
Helpful logging with Java
PDF
Einführung in Kommunikation und Konfliktmanagement für Software-Entwickler
PDF
Analyzing natural language feedback using python
PDF
Microsoft SQL Server with Linux and Docker
PDF
Migration to Python 3 in Finance
PDF
Introduction to pygments
PDF
Lösungsorientierte Fehlerbehandlung
PDF
XML namespaces and XPath with Python
PDF
Erste-Hilfekasten für Unicode mit Python
PDF
Open source projects with python
PDF
Python builds mit ant
PPT
Kanban zur Abwicklung von Reporting-Anforderungen
Expanding skill sets - Broaden your perspective on design
Django trifft Flutter
Multiple django applications on a single server with nginx
Helpful pre commit hooks for Python and Django
Startmeeting Interessengruppe NLP NLU Graz
Helpful logging with python
Helpful logging with Java
Einführung in Kommunikation und Konfliktmanagement für Software-Entwickler
Analyzing natural language feedback using python
Microsoft SQL Server with Linux and Docker
Migration to Python 3 in Finance
Introduction to pygments
Lösungsorientierte Fehlerbehandlung
XML namespaces and XPath with Python
Erste-Hilfekasten für Unicode mit Python
Open source projects with python
Python builds mit ant
Kanban zur Abwicklung von Reporting-Anforderungen
Ad

Recently uploaded (20)

PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PPTX
Tartificialntelligence_presentation.pptx
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PPT
Module 1.ppt Iot fundamentals and Architecture
PPT
What is a Computer? Input Devices /output devices
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPT
Geologic Time for studying geology for geologist
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
Unlock new opportunities with location data.pdf
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
STKI Israel Market Study 2025 version august
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Five Habits of High-Impact Board Members
PPTX
Modernising the Digital Integration Hub
PDF
sustainability-14-14877-v2.pddhzftheheeeee
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
Tartificialntelligence_presentation.pptx
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Module 1.ppt Iot fundamentals and Architecture
What is a Computer? Input Devices /output devices
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
DP Operators-handbook-extract for the Mautical Institute
O2C Customer Invoices to Receipt V15A.pptx
Geologic Time for studying geology for geologist
A review of recent deep learning applications in wood surface defect identifi...
Unlock new opportunities with location data.pdf
Assigned Numbers - 2025 - Bluetooth® Document
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
STKI Israel Market Study 2025 version august
Hindi spoken digit analysis for native and non-native speakers
A novel scalable deep ensemble learning framework for big data classification...
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Five Habits of High-Impact Board Members
Modernising the Digital Integration Hub
sustainability-14-14877-v2.pddhzftheheeeee

Introduction to trader bots with Python

  • 1. Introduction to trader bots with Python Thomas Aglassinger http://roskakori.at @Taglassinger https://github.com/roskakori/talks/tree/master/pygraz/traderbot
  • 2. Overview ● Outline a simple trading bot ● Example usages for several Python modules (most part of the standard library) ● (Probably) Python beginner friendly
  • 3. Agenda ● Communication and configuration ● Trading ● Data analysis and debugging ● Testing
  • 4. Limitations ● You won't get rich (but it's fun nevertheless) ● Code does not work anymore due API update ● Masterexchange is going to shut down soon ● Terms of service
  • 6. Overview ● Uses https://masterxchange.com/api.php (defunct after 2015-11-15) ● Communicate using HTTPS and JSON ● Public queries available to anyone (e.g. current bids) ● Private queries requiring a personal token bound to you account (e.g. orders)
  • 7. Query trades ● Query the last 500 trades for maidsafe coins: https://masterxchange.com/api/v2/trades.php?currency=maid ● Result: [{"tradeid":"31242","price":"0.00990000","amount":"0.151 10800","date":"1446399439","market":"msc_btc"}, {"tradeid":"31241","price":"0.00990000","amount":"0.099 89200","date":"1446319270","market":"msc_btc"}, {"tradeid":"31240","price":"0.00562223","amount":"0.037 79028","date":"1446309947","market":"msc_btc"}, ...]
  • 8. Print the top 3 trades import json import requests def _without_utf8_bom(text): return text[3:] if text.startswith('xefxbbxbf') else text query = requests.get( 'https://masterxchange.com/api/v2/trades.php', headers={'User-Agent': 'demobot/0.1'}, params={'currency': 'maid'} ) print('query.status_code =', query.status_code) if query.status_code < 300: query_text = _without_utf8_bom(query.text) print('query_text = %r...' % query_text[:40]) trades = json.loads(query_text) print('trades =', trades[:3])
  • 9. Print the top 3 trades - result query.status_code = 200 query_text = '[{"tradeid":"31246","price":"0.00002603"'... trades = [{'market': 'maid_btc', 'date': '1446500342', 'amount': '7000.00000000', 'price': '0.00002603', 'tradeid': '31246'}, {'market': 'maid_btc', 'date': '1446489311', 'amount': '22000.00000000', 'price': '0.00002655', 'tradeid': '31244'}, {'market': 'maid_btc', 'date': '1446462486', 'amount': '1250.00000000', 'price': '0.00002655', 'tradeid': '31243'}]
  • 10. Configuring the API key ● Private queries require an API key. ● Simple way to manage: configparser ● Store key in a config file ● Read it during startup
  • 11. Example config file [demobot] api_key = ou1IurT4HQrFfN1ch...
  • 12. Read the API key from the config import configparser config = configparser.ConfigParser() config.read('demobot.cfg') api_key = config.get('demobot', 'api_key')
  • 14. Print your balances query = requests.get( 'https://masterxchange.com/api/v2/private/balances.php' , headers={'User-Agent': 'demobot/0.1'}, params={'APIkey': api_key} ) print('query.status_code =', query.status_code) if query.status_code < 300: query_text = _without_utf8_bom(query.text) print('query_text = %r...' % query_text[:40]) balances_result = json.loads(query_text) if balances_result['error_code'] == 0: balances = balances_result['balances'] print('balances =', balances)
  • 15. Print your balances - result query.status_code = 200 query_text = '{"balances":{"total": {"btc":0,"msc":0,"m'... balances = {'total': {'xcpjenga': 0, 'colzoidy': 0, 'coltdu': 0, 'xcpopcu': 0, 'colgauto': 0, ...}}
  • 16. Masterexchange error handling 1.Http status < 300? 2.Query result error_code = 0? 3.Process actual data in query result
  • 17. Wrap error handling in Exceptions class BotError(Exception): pass class HttpsConnection(object): ... def query(self, function_name, payload=None, use_api_key=True): function_url = 'https://masterxchange.com/api/v2/%s.php' % function_name actual_payload = {} if payload is None else dict(payload) if use_api_key: actual_payload['APIkey'] = self._api_key headers = {'User-Agent': 'demobot/0.1'} r = requests.get(function_url, headers=headers, params=actual_payload) if r.status_code >= 300: raise BotError( 'cannot query %s with %s: HTTP error code=%d' % (function_url, actual_payload, r.status_code)) result = json.loads( r.text[3:] if r.text.startswith('xefxbbxbf') else r.text) if use_api_key and (result['error_code'] != 0): raise BotError( 'cannot query %s with %s: %s' % (function_url, actual_payload, result['error_message'])) return result
  • 19. Processing monetary values ● Use decimal instead of float http://floating-point-gui.de/ ● Python has a decimal module: https://docs.python.org/3/library/decimal.html ● json and configparser only support float → convert after reading and before writing ● Bitcoin uses 8 digits after decimal separator
  • 20. Use formatting for decimals >>> from decimal import Decimal >>> print(Decimal('0.00000001')) 1E-8 >>> print('%.8f' % Decimal('0.00000001')) 0.00000001
  • 21. Modes of operation ● Advise: only suggest to sell or buy → user has to manually initiate transactions ● Lower risk for “stupid” transactions ● Might miss opportunities due slow reaction time ● Helpful when trying out a hopefully improved trading algorithm ● Action: automatically sell and buy on market conditions deemed favorable ● Can react quickly to changes ● Possibility for epic fail on buggy trading algorithms ● Recommendation: reduce risk (but also opportunities) by limiting amount traded per transaction and hour, stop loss limits etc.
  • 22. Basic bot loop 1.Update own balances 2.Update open orders on the market 3.Apply trading algorithm and decide next action 4.Possibly buy or sell 5.Wait some time 6.Repeat
  • 23. Trading algorithms On the long run, nothing really works
  • 24. Some simple trading algorithms ● Spread between 2 different but interchangeable items; e.g. Team Fortress 2's keys and earbuds: http://icrontic.com/article/tf2-black-market-explained ● Delayed correlation between two items; e.g. stocks for Coca Cola and Pepsi: http://www.investopedia.com/university/guide-pairs-trading/pairs-trading-correlation.asp ● Wait for slips from sellers, buy “unusually” cheap items and resell for “normal” price; article about such a bot (violating terms of service): http://diablo3story.blogspot.com.au/2014/07/a-diablo-3-story.html
  • 25. Data analysis and Debugging
  • 26. Tracking statistics ● Collect statistics in database ● To debug bot decisions ● To improve trading algorithm ● To monitor market conditions
  • 27. Sqlite ● Robust and stable ● Efficient for single client use ● Easy to set up ● Included with Python: https://docs.python.org/3/library/sqlite3.html ● Rather creative type system ● “Real” instead of “decimal” ● “int” for timestamp instead of “datetime” type ● Type anarchy concerning comparison ● http://www.sqlite.org/datatype3.html
  • 28. Create a statistics database def _create_database(self, database_path): _log.info('connect to database %r', database_path) result = sqlite3.connect(database_path) with closing(result.cursor()) as cursor: cursor.execute(""" create table if not exists balances ( action char(4) not null, balance_time int not null, btc real not null, maid real not null, price_per_maid real not null, transferred int not null ) """) cursor.execute(""" create index if not exists idx_balance_time on balances (balance_time) """) result.commit() return result
  • 29. Insert a statistics row values_to_insert = ( action, int(time.time()), float(self.btc_balance), float(self.maid_balance), float(price_per_maid), int(maid_transferred), ) with closing(self._database.cursor()) as cursor: cursor.execute(""" insert into balances ( action, balance_time, btc, maid, price_per_maid, transferred ) values (?, ?, ?, ?, ?, ?) """, values_to_insert) self._database.commit()
  • 30. Logging ● More detailed tracking of trading decisions than database ● But no easy structured analysis ● Use logging Module https://docs.python.org/3/library/logging.html ● Use RotatingFileHandler https://docs.python.org/3/library/logging.handler s.html#rotatingfilehandler
  • 31. Example logging configuration 1/2 # Logging configuration as described in # <https://docs.python.org/3/howto/logging-cookbook.html>. [loggers] keys=root,demobot [handlers] keys=console,file [formatters] keys=default [logger_root] level=DEBUG handlers=console,file [logger_demobot] level=DEBUG handlers=console,file qualname=demobot propagate=0
  • 32. Example logging configuration 2/2 [handler_console] class=StreamHandler level=INFO formatter=default args=(sys.stderr,) [handler_file] class=RotatingFileHandler level=DEBUG formatter=default args=('/tmp/demobot.log', mode='a', maxBytes=1000000, backupCount=5, encoding='utf-8') [formatter_default] format=%(asctime)s - %(name)s - %(levelname)s - %(message)s datefmt=
  • 34. Testing challenges ● Network communication is slow ● Many sites have limits on transactions per second ● Testing actual orders requires money
  • 35. Mock-up connections with scenarios ● Scenarios are simple text file containing expected queries and JSON results ● The test case makes a decisions that results in a query, parses the scenarios JSON result, and makes the next decision and query ● Scenarios can be maintained by domain experts
  • 36. Example scenario file # got maid, no open orders # the bot should create a maid-order for 500maid and 0.10000001btc/maid private/balances { "balances": { "total":{"btc":0.9,"maid":500}, "available" {"btc":0,"maid":0} }, "error_message":"", "error_code":0 } private/openedOrders { "open_orders": [], "error_message":"", "error_code":0 } orderbook [ {"market":"maid_btc","type":"sell","amount":"120.00000000","price":"0.20000000","date_created":"1401077847"}, {"market":"maid_btc","type":"buy","amount":"270.00000000","price":"0.10000000","date_created":"1418566454"} ] private/createOrder
  • 37. Scenario implementation ● Bot constructor gets a connection ● Class HttpConnection → query() returns JSON from Masterexchange ● Class ScenarioConnection → query() checks that function matches next line in scenario file and if so returns next JSON from it Audience feedback: try Gherkin! https://pypi.python.org/pypi/gherkin3
  • 39. Summary ● Python has many useful libraries to quickly implement simple trading bots. ● You probably won't get rich. ● It's fun!