International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 3 Issue 8 || December. 2015 || PP-01-14
www.ijmsi.org 1 | Page
Inventory Model with Different Deterioration Rates with Stock
and Price Dependent Demand under Time Varying Holding Cost
and Shortages
S.R. Sheikh1
and Raman Patel2
1
Department of Statistics, V.B. Shah Institute of Management, Amroli, Surat
2
Department of Statistics, Veer Narmad South Gujarat University, Surat
ABSTRACT: An inventory model for deteriorating items with stock and price dependent demand is developed.
Holding cost is considered as function of time. Shortages are allowed and completely backlogged. Numerical
example is provided to illustrate the model and sensitivity analysis is also carried out for parameters.
KEY WORDS: Inventory model, Deterioration, Price dependent demand, Stock dependent demand, Time
varying holding cost, Shortages
I. INTRODUCTION
In real life, deterioration of items is a general phenomenon for many inventory systems and therefore
deterioration effect cannot be ignored. Many researchers have studied EOQ models for deteriorating items in
past. Ghare and Schrader [2] considered no-shortage inventory model with constant rate of deterioration. The
model was extended by Covert and Philip [1] by considering variable rate of deterioration. By considering
shortages, the model was further extended by Shah and Jaiswal [14]. The related work are found in (Nahmias
[9], Raffat [12], Goyal and Giri [3], Ouyang et al. [10], Wu et al. [16]).
Hill [4] considered inventory model with ramp type demand rate. Mandal and Pal [6] developed
inventory model with ramp type demand with shortages. Hung [5] considered inventory model with arbitrary
demand and arbitrary deterioration rate. Salameh and Jaber [13] developed a model to determine the total profit
per unit of time and the economic order quantity for a product purchased from the supplier. Mukhopadhyay et
al. [8] developed an inventory model for deteriorating items with a price-dependent demand rate. The rate of
deterioration was taken to be time-proportional and a power law form of the price-dependence of demand was
considered. Teng and Chang [15] considered the economic production quantity model for deteriorating items
with stock level and selling price dependent demand. Mathew [7] developed an inventory model for
deteriorating items with mixture of Weibull rate of decay and demand as function of both selling price and time.
Patel and Parekh [11] developed an inventory model with stock dependent demand under shortages and variable
selling price.
Inventory models for non-instantaneous deteriorating items have been an object of study for a long
time. Generally the products are such that there is no deterioration initially. After certain time deterioration
starts and again after certain time the rate of deterioration increases with time. Here we have used such a
concept and developed the deteriorating items inventory models.
In this paper we have developed an inventory model with stock and price dependent demand with
different deterioration rates for the cycle time. Shortages are allowed and completely backlogged. To illustrate
the model, numerical example is taken and sensitivity analysis for major parameters on the optimal solutions is
also carried out.
II. ASSUMPTIONS AND NOTATIONS
The following notations are used for the development of the model:
NOTATIONS:
D(t) : Demand rate is a linear function of price and inventory level (a + bI(t) - ρp, a>0, 0<b<1, ρ>0)
A : Replenishment cost per order
c : Purchasing cost per unit
p : Selling price per unit
T : Length of inventory cycle
I(t) : Inventory level at any instant of time t, 0 ≤ t ≤ T
Q1 : Order quantity intially
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 2 | Page
Q2 : Shortages of quantity
Q : Order quantity
θ : Deterioration rate during μ1 ≤ t ≤ μ2, 0< θ <1
θt : Deterioration rate during , μ2 ≤ t ≤ T, 0< θ <1
c2 : Shortage cost per unit item
π : Total relevant profit per unit time.
ASSUMPTIONS:
The following assumptions are considered for the development of the model.
 The demand of the product is declining as a function of price and inventory level.
 Replenishment rate is infinite and instantaneous.
 Lead time is zero.
 Shortages are permitted and completely backlogged.
 Deteriorated units neither be repaired nor replaced during the cycle time.
III. THE MATHEMATICAL MODEL AND ANALYSIS
Let I(t) be the inventory at time t (0 ≤ t ≤ T) as shown in figure.
Figure 1
The differential equations which describes the instantaneous states of I(t) over the period (0, T) are given by :
dI(t)
= - (a + bI(t) - ρp),
dt
1
0 t μ  (1)
dI(t)
+ θI(t) = - (a + bI(t) - ρp),
dt
1 2
μ t μ  (2)
dI(t)
+ θtI(t) = - (a + bI(t) - ρp),
dt
2 0
μ t t  (3)
dI(t)
= - (a + bI(t) - ρp),
dt
0
t t T  (4)
with initial conditions I(0) = Q1, I(μ1) = S1, I(t0) = 0, and I(T) = -Q2.
Solutions of these equations are given by
2 2 2 2
1
1 1
I(t) = Q (1 - b t) - (at + b t -ρ p t - ρ b p t - ab t + ρ b p t ),
2 2
(5)
           
           
   
2 2 2 2
1 1 1 1
1 1
2 2 2 2
1 1 1 1
1 1
a μ - t - ρ p μ - t + a θ + b μ - t - ρ p θ + b μ - t
2 2I(t) = + S 1 + θ + b μ - t
- a θ + b t μ - t + ρ p θ + b t μ - t - ab θ t μ - t + ρ p b θ t μ - t
 
 
   
 
 
(6)
               
           
2 2 2 2 3 3 3 3
0 0 0 0 0 0 0 0
3 3 3 3 2 2 2 2 2 2 2 2
0 0 0 0 0 0
1 1 1 1
a t -t -ρ p t -t + ab t -t - ρ p b t -t + aθ t -t - ρ p θ t -t -ab t t -t + b ρ p t t -t
2 2 6 6
I(t) =
1 1 1 1 1 1
- ab θ t t -t + ρ b p θ t t -t - aθ t t -t + ρ p θ t t -t + ρ b p θ t t -t - ab θ t t -t
6 6 2 2 4 4
 
 
 
 
  
(7)
           
2 2 2 2
0 0 0 0 0 0
1 1
I(t) = a t - t - ρp t - t + ab t - t - ρpb t - t - abt t - t + b ρpt t - t .
2 2
 
 
 
(8)
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 3 | Page
(by neglecting higher powers of θ)
From equation (5), putting t = μ1, we have
   
2 2 2 21
1 1 1 1 1 1 1
1 1
S 1 1 1
Q = + aμ - ρ p μ + b μ - b ρ p μ - ab μ + ρ b p μ .
1 - b μ 1 - b μ 2 2
 
 
 
(9)
From equations (6) and (7), putting t = μ2, we have
           
           
   
2 2 2 2
1 2 1 2 1 2 1 2
2 1 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
1 1
a μ -μ -ρ p μ -μ + a θ + b μ -μ - ρ p θ + b μ - μ
2 2I(μ ) = + S 1 + θ + b μ -μ
-a θ + b μ μ -μ + ρ p θ + b μ μ -μ -ab θ μ μ -μ + b ρ θ p μ μ -μ
 
 
   
 
 
(10)
           
         
 
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2
3 3 3 3 2
2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2
2 0 2
1 1 1 1
a t - μ - ρ p t - μ + a b t - μ - ρ b p t - μ + a θ t - μ - ρ θ p t - μ
2 2 6 6
1 1 1
I(μ ) = - a b μ t - μ + b ρ p μ t - μ - a b θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ
6 6 2
1 1
+ ρ θ p μ t - μ + ρ
2 4
   2 2 2 2 2 2
2 0 2 2 0 2
.
1
b θ p μ t - μ - a b θ μ t - μ
4
 
 
 
 
 
 
 
  
(11)
So from equations (10) and (11), we get
   
           
         
1
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2
3 3 3 3 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
1
S =
1 + θ + b μ - μ
1 1 1 1
a t - μ - ρ p t - μ + a b t - μ - ρ b p t - μ + a θ t - μ - ρ θ p t - μ
2 2 6 6
1 1 1
- a b μ t - μ + b ρ p μ t - μ - a b θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ
6 6 2
1
+ ρ
2
  
             
               
2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 2 0 2 1 2 1 2 1 2
2 2 2 2 2 2
1 2 2 1 2 2 1 2 2 1 2 2 1 2
.
1 1 1
θ p μ t -μ + ρ b θ p μ t -μ - a b θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ
4 4 2
1
+ ρ p θ + b μ -μ + a θ + b μ μ -μ -ρ p θ + b μ μ -μ + a b θ μ μ -μ -b ρ θ p μ μ -μ
2
 
 
 
 
 
 
 
 
 
 
 
(12)
Putting value of S1 from equation (12) into equation (9), we have
     
             
         
1
1 1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2 2
2 0
1
Q =
1 - b μ 1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t -μ + ρ θ p μ t -μ
6 6 2 2
1
+ ρ b θ p μ t -μ
4
  
               
           
2 2 2 2 2 2 2 2
2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
2 2 2
1 1 1 1 1
1 1 1
- ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
1 1
aμ - ρ p μ + b μ + b ρ p μ - ab μ
2 2
+
 
 
 
 
 
 
 
 
 
  


 1
.
1 - b μ

 

(13)
Putting t = T in equation (8), we have
           
2 2 2 2
2 0 0 0 0 0 0
1 1
Q = a T - t - ρp T - t + ab T - t - ρpb T - t - abT T - t + b ρpT T - t .
2 2
 
 
 
. (14)
Using (13) in (5), we have
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 4 | Page
     
             
       
1 1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2
2 0 2 2 0 2 2 0 2 2 0 2
(1 -b t)
I(t) =
1 - b μ 1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t - μ - ab μ t - μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ + ρ θ p μ
6 6 2 2
  
 
               
           
2
2 0 2
2 2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
1 1 1
t - μ
1 1 1 1
+ ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
1
(1 -b t) aμ - ρ p μ + b μ
2
+
 
 
 
 
 
 
 
 
 
  
 
2 2 2
1 1
2 2 2
1
1
+ b ρ p μ - ab μ
1 12
- at + b t - ρ p t + ρ b p t + ab t
1 - b μ 2 2
 
 
  
 
 
(15)
Based on the assumptions and descriptions of the model, the total relevant profit (π), include the following
elements:
(i) Ordering cost (OC) = A (16)
(ii)
0t
0
H C = (x + yt)I(t)d t
01 2
1 2
tμ μ
0 μ μ
= (x + yt)I(t)d t + (x + yt)I(t)d t + (x + yt)I(t)d t  
 
             
2 2 3 3 6
0 0 0 0 0 0 0 0
1 1
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
1 1 1 1 1 5 5
= x at - ρ p t + ab t - ρ b p t + aθ t - ρ θ p t t + y ab θ - ρ b p t
2 2 6 6 6 1 2 1 2
aμ - ρ p μ
1
1 + (θ + b ) μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ
2 2 6 6
+ x
+
   
   
   
  
         
           
           
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2
2 2
1 2 2 1 2 2 1 2
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t -μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ θ p μ t -μ
6 6 2 2
1 1 1
+ ρ b θ p μ t - μ - ab θ μ t - μ - a μ - μ + ρ p μ - μ - a θ + b μ - μ
4 4 2
1
+ ρ p θ + b μ -μ + a θ + b μ μ -μ -ρ p θ + b μ μ -μ + ab θ
2
   
 
2
2 2 2 2
2 1 2 2 1 2
2 2
1 1 1
μ
μ μ -μ -b ρ θ p μ μ -μ
1 1
1 + (θ + b )μ + a(θ + b )μ - ρ p (θ + b )μ
2 2
 
 
  
  
  
   
   
   
   
   
   
   
   
   
   
   
  
  
  
  
   
             
         
1 1
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2
2
aμ - ρ p μ
1
+
1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t -μ + ρ θ p μ t -μ- x
6 6 2 2
1
+ ρ b θ p μ
4
  
               
           
 
2 2 2 2 2 2 2 2 2
0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
2 2
1 1 1
1 1 1
t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
1 1
1 + θ + b μ + a(θ + b )μ - ρ p (θ + b )μ
2 2
 
 
 
 
 
 
 
 
 
  
 

 
1
μ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 5 | Page
2 2
0 0 0 0
3
2
3 3
0 0 0 0
2
0 0
1 1 1 1 1 1
x - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t
2 2 4 2 2 41
- μ
3 1 1
+ y -a + ρ p + ρ b θ p t - ab t + ρ b p t - ab θ t
6 6
1 1 1 1 1 1 1
- x aθ - ρ θ p + y - ρ b p + ρ θ p t + ρ b θ p t + ab -
4 3 3 2 2 4 2
  
  
  
  
  
  
 
 
 
2 4
0 0 2
5
2
3 3 2 2 3 3 2
0 0 0 0 0 0 0 0 0 0 0
1 1
aθ t - ab θ t μ
2 4
1 5 5 1 1
- x ab θ - ρ b θ p + y aθ - ρ θ p μ
5 1 2 1 2 3 3
1 1 1 1 1 1 1
+ x -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t + y at -ρ p t + ab t - ρ b p t + aθ t - ρ θ t t
2 6 6 2 2 6 6
-
  
  
  
    
    
    
    
    
    
     
4
1
1 1 1
x ab θ - ρ b θ p + y a θ + b - ρ p θ + b μ
4 2 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
   
   
 
 
   
   
             
       
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2
2 0 2 2 0 2 2 0 2 2 0 2
1 1
x a θ + b - ρ p θ + b
2 2
1
-a +
1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ
2 2 6 6
1
1 1 1 1-
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t -μ + ρ3
6 6 2 2+ y
 
 
 
  
 
               
           
     
2
2 0 2
2 2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
1
θ p μ t -μ
1 1 1 1
+ ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
-θ - b - a θ + b μ + ρ p θ + b μ
 
 
 
 
 
 
 
 
 
  
3
1
2 2
1 1 1
μ
- ab θ μ + ρ b θ p μ + ρ p
 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
/
   
             
         
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
1
-a +
1 + θ + b μ - μ
1 1 1 1
a t -μ - ρ p t - μ + ab t - μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t - μ1
6 6 2 2- x
2 1
+ ρ b θ p μ
4
  
               
           
     
2 2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
2
1 1 1 1
1 1 1
t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
-θ -b - a θ + b μ + ρ p θ + b μ - ab θ μ + ρ b θ p μ
 
 
 
 
 
 
 
 
 
  
2
+ ρ p
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 6 | Page
   
             
         
1 1
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
1
aμ - ρ p μ +
1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t - μ -a b μ t -μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ θ p μ t -μ
6 6 2 21
- y
12 + ρ b θ p μ
4
  
               
           
     
2 2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
2 2
1 1 1
1 1 1
t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
1 1
1 + θ + b μ + a θ + b μ - ρ p θ + b μ
2 2

 
 
 
 
 
 
 
 
 
  
 
 
 

2
1
μ
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
2 2
0 0 0 0
3 5
0 0
3 3
0 0
1 1 1 1 1 1
x - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t
2 2 4 2 2 41 1 5 5 1 1
+ t + x ab θ - ρ b θ p + y aθ - ρ θ p t
3 5 1 2 1 2 3 31 1
+ y -a + ρ p + ρ b θ p T - ab t + ρ b p t - ab θ T
6 6
1 1 1
+ x aθ - ρ θ p
4 3 3
  
  
       
    
        
  
  



2 2 4
0 0 0 0 0
1 1 1 1 1 1
+ y - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t t
2 2 4 2 2 4
   
   
   
     
             
       
1 1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2
2 0 2 2 0 2 2 0 2 2 0 2
1
1 - b μ 1 + θ + b μ - μ
1 1 1 1
a t - μ - ρ p t - μ + ab t - μ - ρ b p t - μ + a θ t - μ - ρ θ p t - μ - ab μ t - μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ +
6 6 2
+ x
  
 
           
               
2
2 0 2
2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2
2 2 2 2 2 2
1 2 2 1 2 2 1 2 2 1 2 2 1 2
ρ θ p μ t - μ
2
1 1 1
+ ρ b θ p μ t - μ - ab θ μ t - μ - a μ - μ + ρ p μ - μ - a θ + b μ - μ
4 4 2
1
+ ρ p θ + b μ - μ + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
2
 
 
 
 
 
 
 
 
 

 
 
1
2 2 2
1 1 1 1 1
1
μ
1 1
aμ - ρ p μ + b μ + ρ b p μ - ab μ
2 2+
1 - b μ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
   
       
4 5
1 2
4
2
1 2
2 2 2 2
0 2 0 2 0 2 0 2
1 1 1 1
+ y - b - ρ b p + ab μ + y ab θ - ρ b θ p μ
4 2 2 5
1 1 1 1 1 1
+ x ab θ - ρ b θ p + y a θ + b - ρ p θ + b μ + x a θ + b - ρ p θ + b
4 2 2 3 2 2
1
-a +
1 + θ + b μ - μ
1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ +
2 2
+ y
 
 
 
      
      
      
  
       
           
               
3 3 3 3
0 2 0 2 2 0 2 2 0 2
3 3 3 3 2 2 2 2 2 2 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2 2 2 2
1 2 1 2 1 2 1 2 2 1 2
1
aθ t -μ - ρ θ p t -μ -ab μ t -μ + b ρ p μ t -μ
6 6
1 1 1 1 1 1
- ab θ μ t -μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t -μ + ρ b θ p μ t -μ - ab θ μ t -μ
6 6 2 2 4 4
1 1
-a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ - μ + a θ + b μ μ - μ -
2 2
   
   
     
2 1 2
2 2 2 2
2 1 2 2 1 2
2 2
1 1 1 1
ρ p θ + b μ μ - μ
+ ab θ μ μ - μ - b ρ θ p μ μ - μ
- θ -b - a θ + b μ + ρ p θ + b μ - ab θ μ + ρ b θ p μ + ρ p
 
 
 
 
 
 
 
 
  
  
  
   
   
   
   
   
   
   
   
   
   
 
 
 
  
3
2
μ



Inventory Model with Different Deterioration Rates…
www.ijmsi.org 7 | Page
   
             
         
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2
2 0
1
-a +
1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t - μ + a b t -μ - ρ b p t -μ + a θ t -μ - ρ θ p t -μ -a b μ t -μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - a b θ μ t - μ + ρ b θ p μ t -μ - a θ μ t - μ + ρ θ p μ t - μ
1 6 6 2 2
+ x
2 1
+ ρ b θ p μ t
4
  
           
               
     
2 2 2 2 2 2 2
2 2 0 2 1 2 1 2 1 2
2 2 2 2 2 2
1 2 2 1 2 2 1 2 2 1 2 2 1 2
2 2
1 1 1 1
1 1
- μ - a b θ μ t - μ - a μ - μ + ρ p μ - μ - a θ + b μ - μ
4 2
1
+ ρ p θ + b μ -μ + a θ + b μ μ -μ -ρ p θ + b μ μ -μ + a b θ μ μ -μ -b ρ θ p μ μ -μ
2
-θ -b - a θ + b μ + ρ p θ + b μ - a b θ μ + ρ b θ p μ +
 
 
 
 
 
 
 
 
 
 
 
2
2
μ
ρ p
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   
             
       
1 1
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0
1
aμ - ρ p μ +
1 + θ + b μ - μ
1 1 1 1
a t - μ - ρ p t - μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t -μ + ρ b θ p μ t -μ - aθ μ t - μ + ρ θ p μ t - μ1
6 6 2 2+ y
2
  
 
               
           
      
2
2 2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
2 2
1 1 1
1 1 1 1
+ ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
1 1
1 + a θ + b μ + a θ + b μ - ρ p θ + b μ
2 2
 
 
 
 
 
 
 
 
 
 
2
2
μ
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
     
             
       
1 1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2
2 0 2 2 0 2 2 0 2 2 0 2
1 1
x - b - ρ b p + ab
2 2
1
-
1 -b μ 1 + θ + b μ - μ
1 1 1 1
a t - μ - ρ p t -μ + ab t - μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ
2 2 6 6
1
1 1 1+
+ b ρ p μ t -μ - ab θ μ t -μ + ρ b θ p μ t - μ - aθ μ t - μ3
6 6 2+ y b
 
 
 
  
 
               
           
2
2 0 2
2 2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
1
+ ρ θ p μ t - μ
2
1 1 1 1
+ ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
  
  
  
  
  
  
  
  
  
  
 
3
1
2 2 2
1 1 1 1 1
1
μ
1 1
b aμ - ρ p μ + b μ + ρ b p μ - ab μ
2 2
- - a + ρ p
1 -b μ
 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   
   
   
  
  
     
             
         
1 1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
1
-
1 -b μ 1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t - μ - ρ θ p t - μ - ab μ t - μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t - μ1
6 6 2 2+ x b
2 1
+ ρ b
4
  
               
           
2 2 2 2 2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
1 1
1 1 1
θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
1
b aμ - ρ p μ +
2
-
  
  
  
  
  
  
  
  
   
  
 
2 2 2
1 1 1
1
1
b μ + ρ b p μ - ab μ
2
- a + ρ p
1 -b μ
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   
   
   
  
  
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 8 | Page
     
             
         
1 1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2 2 0 2
3 3 3 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2
1
1 -b μ 1 + θ + b μ - μ
1 1 1 1
a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t - μ - ρ θ p t - μ - ab μ t - μ
2 2 6 6
1 1 1 1
+ b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t -μ
6 6 2 21 a
+ y
12
+ ρ b θ p μ
4
  
               
           
 
2 2 2 2 2 2 2 2 2 2
0 2 2 0 2 1 2 1 2 1 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2 2 1 2
2 2 2
1 1 1 1 1
1
1 1 1
t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ
4 2 2
+ a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ
1 1
aμ - ρ p μ + b μ + ρ b p μ - ab μ
2 2
+
1 -b μ
 
 
 
 
 
 
 
 
 
 
2
1
μ
 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
6 2 2 3 3
2 0 0 0 0 0 0 2
3 3 2 2 3 3 2
0 0 0 0 0 0 0 0 0 0 2
1 5 5 1 1 1 1
- y ab θ - ρ b θ p μ - x at - ρ p t + ab t - ρ b p t + aθ t - ρ θ t μ
6 1 2 1 2 2 2 6 6
1 1 1 1 1 1 1 1
- x -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t + y at -ρ p t + ab t - ρ b p t + aθ t - ρ θ t μ -
2 6 6 2 2 6 6 5
   
   
   
    
    
    
 
5
1
y ab θ -ρ b θ p μ
( 17)
(by neglecting higher powers of θ)
(iii)
2
1 2
μ T
μ μ
D C = c θ I(t)dt + θ tI(t)dt
 
 
 
 
 
   
   
2 2 2 3 2 3
1 2 2 1 2 2 1 2 2 1 2 2
2 3 2 3 2 2 4 2 2 4
1 2 2 1 2 2 1 2 2 1 2 2
1 1 1 1 1 1
a μ μ - μ - ρ p μ μ - μ + a θ + b μ μ - μ - ρ p θ + b μ μ - μ
2 2 2 3 2 3
1 1 1 1 1 1 1 1
-a θ + b μ μ - μ + ρ p θ + b μ μ - μ -ab θ μ μ - μ + ρ p b θ μ μ - μ
2 3 2 3 2 4 2 4
= cθ
       
       
       
       
       
       
 
           
     
   
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2
3 2 3 2 2
2 0 2 2 0 2 2 0 2 2 0 2 2 0 2
2 2 2 2
2 0 2 2 0 2
1
+
1 + θ + b (μ -μ )
1 1 1 1
a t -μ -ρ p t -μ + ab t - μ - ρ b p t - μ + aθ t - μ - ρ θ p t -μ
2 2 6 6
1 1 1
-ab μ (t -μ )+ b ρ p μ (t -μ )- ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ
6 6 2
1 1 1
+ ρ θ p μ t -μ + ρ b θ p μ t - μ - ab
2 4 4
 
           
   
 
2 2 2
2 0 2 0 2 0 2
2 2 2 2
1 2 1 2 2 1 2 2 1 2
2 2 2 2
2 1 2 2 1 2
2
2 1 2 2
θ μ t - μ -a(t -μ )+ ρ p (t -μ )
1 1
- a θ + b μ -μ + ρ p θ + b μ -μ + a θ + b μ (μ -μ )-ρ p θ + b μ (μ -μ )
2 2
+ ab θ μ μ - μ - ρ b θ p μ μ - μ
1
μ + θ + b μ μ - μ
2











  
  
  
 
 
 
 
 
 
 
 
 
 
 
  
  
  














 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inventory Model with Different Deterioration Rates…
www.ijmsi.org 9 | Page
   
 
           
2 2 3 3 4 4
1 1 1 1 1 1
1 2
2 2 2 2 3 3 3 3
0 2 0 2 0 2 0 2 0 2 0 2
2 1 2 2 1 2
1 1 1 1 1 1
aμ - ρ p μ + a θ + b μ - ρ p θ + b μ - ab θ μ + ρ b θ p μ
2 2 6 6 4 4
1
1 + θ + b (μ -μ )
1 1 1 1
a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ + aθ t - μ - ρ θ p t - μ
2 2 6 6
1
- ab μ (μ -μ ) + b ρ p μ (μ -μ ) -
6
- cθ +
     
     
           
3 3 3 3 2
2 0 2 2 0 2 2 0 2
2 2 2 2 2 2 2
2 0 2 2 0 2 2 0 2 1 2 1 2
2 2 2 2
1 2 1 2 2 1 2 2 1 2
1 1
ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ
6 2
1 1 1
+ ρ θ p μ t -μ + ρ b θ p μ t - μ - ab θ μ t - μ - a( μ -μ ) + ρ p (μ -μ )
2 4 4
1 1
- a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ ) - ρ p θ + b μ (μ -μ )
2 2
+    
 
2 2 2 2
2 1 2 2 1 2
2
1 1
ab θ μ μ - μ - ρ b θ p μ μ - μ
1
μ + θ + b μ
2
 
 
 
  
  
  
   
   
   
   
   
   
   
   
   
   
   
   
       
 
  
  
  
6 5 2 2 4
0 0 0 0 0 0 0
3 3 3 2 2 2 3
0 0 0 0 0 0 0 0 0 0 0
1 5 5 1 1 1 1 1 1 1 1 1 1
ab θ - ρ b θ p t + aθ - ρ θ p t + - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t t
6 1 2 1 2 5 3 3 4 2 2 4 2 2 4
+ cθ
1 1 1 1 1 1 1 1
+ -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t t + at -ρ p t + ab t - ρ b p t + aθ t - ρ θ p t
3 6 6 2 2 2 6 6
     
     
     
 
 
 
2
0
6 5 2 2 4
2 2 0 0 0 0 2
3 3 3 2
0 0 0 0 2 0 0 0
t
1 5 5 1 1 1 1 1 1 1 1 1 1
ab θ - ρ b θ p μ + aθ - ρ θ p μ + - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t μ
6 1 2 1 2 5 3 3 4 2 2 4 2 2 4
-cθ
1 1 1 1 1 1
+ -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t μ + at -ρ p t + ab t -
3 6 6 2 2
 
 
 
  
  
  
     
     
     
 
 
 
2 2 3 2
0 0 0 2
1 1
ρ b p t + aθ t - ρ θ p t μ
2 6 6
 
 
 
  
  
  
(18)
(iv) Shortage cost (SC) is given by
0
T
2
t
S C = - c I(t)d t
 
 
 
 

     
       
3 3 2 2
0 0 0 0
2
2 2
0 0 0 0 0 0 0 0
1 1 1 1
ab - ρ b p T - t + - a + ρ p - ab t + ρ b p t T - t
3 2 2 2
= - c
1 1
+ at T - t - ρ p t T - t + ab t T - t - ρ b p t T - t
2 2
  
  
  
 
 
 
(19)
(v)
T
0
S R = p (a+ b I(t) - ρ p )d t
 
 
 

01 2
1 2 0
tμ μ T
0 μ μ t
= p (a+ bI(t) - ρp)dt + (a+ bI(t) - ρp)dt + (a+ bI(t) - ρp)dt + (a+ bI(t) - ρp)dt
 
 
 
 
   
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 10 | Page
    
       
   
     
1 1 2
2 2 2 2
0 2 0 2 0 2 0 2
3 3 3 3
0 2 0 2 2 0 2 2 0 2
3 3 3 3 2
2 0 2 2 0 2 2 0 2
1
1
1 -b μ 1 + θ + b (μ -μ )
1 1
a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ
2 2
1 1
+ aθ t - μ - ρ θ p t - μ - ab μ (t -μ ) + b ρ p μ (t -μ )
6 6
1 1 1 1
- ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ
6 6 2 2
aμ + b
= p
 
   
         
     
2
2 0 2
2 2 2 2 2 2
2 0 2 2 0 2 1 2 1 2
2 2 2 2
1 2 1 2 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2
θ p μ t -μ
1 1
+ ρ b θ p μ t - μ - ab θ μ t - μ - a(μ -μ ) + ρ p (μ -μ )
4 4
1 1
- a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ )
2 2
- ρ p θ + b μ (μ -μ ) + ab θ μ μ - μ - ρ b θ p μ μ - μ
 
 
 
 











 
2
1 1
2 2 2 2
1 1 1 1 1 1 1
1
2 3 2 3 3
1 1 1 1 1
1
μ - b μ
2
1 1 1 1
+ aμ - ρ p μ + b μ + ρ b p μ - ab μ μ - b μ
(1 -b μ ) 2 2 2
1 1 1 1 1
- aμ - b μ + ρ p μ - ρ b p μ + ab μ
2 6 2 6 3




 
  
  
  
  
  
  
  
  
 
 
 
 
 
 
 
 
 
 
  
  
   
   
   

1
-ρ p μ
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 
   
 
2 2 2 3
1 2 2 1 2 2 1 2 2
2 3 2 3
1 2 2 1 2 2
2 3 2 2 4 2
1 2 2 1 2 2 1
2
1 1 1 1
a μ μ - μ - ρ p μ μ - μ + a θ + b μ μ - μ
2 2 2 3
1 1 1 1
- ρ p θ + b μ μ - μ - a θ + b μ μ - μ
2 3 2 3
1 1 1 1 1
+ ρ p θ + b μ μ - μ - ab θ μ μ - μ + ρ p b θ μ
2 3 2 4 2
aμ + b
+ p
     
     
     
   
   
   
   
   
   
 
       
   
     
2 4
2 2
1 2
2 2 2 2
0 2 0 2 0 2 0 2
3 3 3 3
0 2 0 2 2 0 2 2 0 2
3 2 3 2 2
2 0 2 2 0 2 2 0 2
1
μ - μ
4
1
+
1 + θ + b (μ -μ )
1 1
a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ
2 2
1 1
+ aθ t - μ - ρ θ p t - μ - ab μ (t -μ ) + b ρ p μ (t -μ )
6 6
1 1 1
- ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ +
6 6 2
 
 
 
 
   
         
     
2
2 0 2
2 2 2 2 2 2
2 0 2 2 0 2 0 2 0 2
2 2 2 2
1 2 1 2 2 1 2
2 2 2 2
2 1 2 2 1 2 2 1 2
1
ρ θ p μ t -μ
2
1 1
+ ρ b θ p μ t - μ - ab θ μ t - μ - a(t -μ ) + ρ p (t -μ )
4 4
1 1
- a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ )
2 2
- ρ p θ + b μ (μ -μ ) + ab θ μ μ - μ - ρ b θ p μ μ - μ
 















 
2
2 1 2 2
2
1
μ + θ + b μ μ - μ
2
- ρ p μ
  
  
  
  
  
  
  
  
  
  
  
  
  
  
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
     
         


 
































Inventory Model with Different Deterioration Rates…
www.ijmsi.org 11 | Page
   
  
       
   
2 2 3 3 4 4
1 1 1 1 1 1
1 2
2 2 2 2
0 2 0 2 0 2 0 2
3 3 3 3
0 2 0 2 2 0 2 2 0
1
1 1 1 1 1 1
aμ - ρ p μ + a θ + b μ - ρ p θ + b μ - ab θ μ + ρ b θ p μ
2 2 6 6 4 4
1
+
1 + θ + b (μ -μ )
1 1
a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ
2 2
1 1
+ aθ t - μ - ρ θ p t - μ - ab μ (t -μ ) + b ρ p μ (t -μ
6 6
aμ + b
- p
       
   
         
 
2
3 2 3 2 2 2
2 0 2 2 0 2 2 0 2 2 0 2
2 2 2 2 2 2
2 0 2 2 0 2 0 2 0 2
2 2 2 2
1 2 1 2 2 1 2
2
)
1 1 1 1
- ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ θ p μ t -μ
6 6 2 2
1 1
+ ρ b θ p μ t - μ - ab θ μ t - μ - a(t -μ ) + ρ p (t -μ )
4 4
1 1
- a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ )
2 2
- ρ p θ + b μ (μ    
 
2 2 2 2
1 2 2 1 2 2 1 2
2
1 1
1
-μ ) + ab θ μ μ - μ - ρ b θ p μ μ - μ
1
μ + θ + b μ
2
- ρ p μ
  
  
  
  
  
  
  
  
    
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
    
   










 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2 3 3 4
0 0 0 0 0
0 0
4 5 5
0 0 0
2 2 2 3
0 2 2 0 2 2 0 2 2
2
1 1 1 1 1
at - ρ p t + ab t - ρ b p t + aθ t
2 2 6 6 1 2
+ p at + b - ρ p t
1 1 1
ρ θ p t - ab θ t + ρ b θ p t
1 2 1 2 1 2
1 1 1 1
a t μ - μ - ρ p t μ - μ + ab t μ - μ
2 2 2 3
-
- p aμ + b
  
  
  
  
  
  
     
     
     
2 3 3 4 3 4
0 2 2 0 2 2 0 2 2
2 3 2 3 3 2 5
0 2 2 0 2 2 0 2 2
3 2 5
0 2 2
1 1 1 1 1 1
ρ b p t μ - μ + aθ t μ - μ - ρ θ p t μ - μ
2 3 6 4 6 4
1 1 1 1 1 1 1
- ab t μ - μ + b ρ p t μ - μ - ab θ t μ - μ
2 3 2 3 6 2 5
1 1 1 1 1
+ ρ b θ p t μ - μ - aθ
6 2 5 2 3
     
     
     
     
     
     
 
 
 
2
3 4 3 4
0 2 2 0 2 2
2 3 5 2 3 5
0 2 2 0 2 2
-ρ p μ
1 1 1 1
t μ - μ + ρ θ p t μ - μ
4 2 3 4
1 1 1 1 1 1
+ ρ b θ p t μ - μ - ab θ t μ - μ
4 3 5 4 3 5
  
  
  
  
  
  
  
  
  
  
   
     
     
  
     
     
     
2 2 2 3
0 0 0
2 3 2 3 2 3
0 0 0
2
0 0
1 1 1 1
T t - T - ρ p T t - T + ab t T - T
2 2 2 3
+ p aT + b - ρ p T
1 1 1 1 1 1
- ρ b p t T - T - ab t T - T + ρ b p t T - T
2 3 2 3 2 3
1 1
- p at + b at - ρ p
2 2
       
       
       
       
        
       
2 3 3
0 0 0 0
1 1
t + ab t - ρ b p t - ρ p t
6 6
  
  
  
(20)
The total profit during a cycle, π(t0,T,p) consisted of the following:
 0
1
π (t ,T ,p ) = S R - O C - H C - D C - S C
T
(21)
Substituting values from equations (16) to (20) in equation (21), we get total profit per unit. Putting µ1= v1t0 and
µ2=v2t0 in equation (21), we get profit in terms of t0, T and p. Differentiating equation (21) with respect to t0, T
and p and equate it to zero, we have
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 12 | Page
i.e. 0 0 0
0
π(t ,T ,p ) π(t ,T ,p ) π(t ,T ,p )
= 0 , = 0 , = 0
t T p
  
  
(22)
provided it satisfies the condition
2 2 2
0 0 0
2
0 00
2 2 2
0 0 0
2
0
2 2 2
0 0 0
2
0
π (t ,T ,p ) π (t ,T ,p ) π (t ,T ,p )
t T t pt
π (t ,T ,p ) π (t ,T ,p ) π (t ,T ,p )
> 0
T t T pT
π (t ,T ,p ) π (t ,T ,p ) π (t ,T ,p )
p t p T p
  
 
  
 
  
  
(23)
IV. NUMERICAL EXAMPLE
Considering A= Rs.100, a = 500, b=0.05, c=Rs. 25, ρ= 5, θ=0.05, x = Rs. 5, y=0.05, v1 = 0.30, v2 = 0.50, c2 =
Rs. 8, in appropriate units. The optimal values of t0* = 0.4505, T* =0.5808, p* = 50.5313, and Profit*= Rs.
12162.9820.
The second order conditions given in equation (23) are also satisfied. The graphical representation of
the concavity of the profit function is also given.
t0 and Profit T and Profit p and Profit
Graph 1
Graph 2 Graph 3
V. SENSITIVITY ANALYSIS
On the basis of the data given in example above we have studied the sensitivity analysis by changing
the following parameters one at a time and keeping the rest fixed.
Table 1
Sensitivity Analysis
Parameter % t0 T p Profit
a
+20% 0.4569 0.5629 60.5423 17655.9523
+10% 0.4526 0.5700 55.5345 14782.9921
-10% 0.4516 0.5965 45.5333 9795.8726
-20% 0.4567 0.6184 40.5414 7681.6778
x
+20% 0.3794 0.5246 50.5201 12123.7579
+10% 0.4115 0.5496 50.5246 12142.1646
-10% 0.4991 0.6206 50.5412 12186.8211
-20% 0.5628 0.6735 50.5564 12214.5794
θ
+20% 0.4397 0.5707 50.5240 12159.4220
+10% 0.4465 0.5776 50.5297 12161.2015
-10% 0.4546 0.5841 50.5330 12164.7889
-20% 0.4589 0.5875 50.5348 12133.6245
Inventory Model with Different Deterioration Rates…
www.ijmsi.org 13 | Page
A
+20% 0.4913 0.6344 50.5805 12130.3498
+10% 0.4714 0.6082 50.5565 12146.3045
-10% 0.4285 0.5519 50.5048 12180.4949
-20% 0.4050 0.5212 50.4767 12198.9846
ρ
+20% 0.4165 0.5584 42.1586 10063.9856
+10% 0.4313 0.5679 45.9632 11017.7569
-10% 0.4748 0.5967 56.1179 13563.7951
-20% 0.5122 0.6245 63.1107 15316.7190
c2
+20% 0.4565 0.5709 50.5498 12197.9785
+10% 0.4537 0.5756 50.5411 12160.3310
-10% 0.4455 0.5849 50.5195 12165.9827
-20% 0.4404 0.5907 50.5074 12169.4242
From the table we observe that as parameter a increases/ decreases average total profit and optimum
order quantity also increases/ decreases.
Also, we observe that with increase and decrease in the value of θ, x and ρ, there is corresponding
decrease/ increase in total profit and optimum order quantity.
From the table we observe that as parameter A increases/ decreases average total profit decreases/
increases and optimum order quantity increases/ decreases.
VI. CONCLUSION
In this paper, we have developed an inventory model for deteriorating items with price and inventory
dependent demand with different deterioration rates. Sensitivity with respect to parameters have been carried
out. The results show that with the increase/ decrease in the parameter values there is corresponding increase/
decrease in the value of profit.
REFERENCES
[1] Covert, R.P. and Philip, G.C. (1973): An EOQ model for items with Weibull distribution deterioration; American Institute of
Industrial Engineering Transactions, Vol. 5, pp. 323-328.
[2] Ghare, P.N. and Schrader, G.F. (1963): A model for exponentially decaying inventories; J. Indus. Engg., Vol. 15, pp. 238-243.
[3] Goyal, S.K. and Giri, B. (2001): Recent trends in modeling of deteriorating inventory; Euro. J. Oper. Res., Vol. 134, pp. 1-16.
[4] Hill, R.M. (1995): Inventory models for increasing demand followed by level demand; J. Oper. Res. Soc., Vol. 46, No. 10, pp.
1250-1259.
[5] Hung, K.C. (2011): An inventory model with generalized type demand, deterioration and backorder rates; Euro. J. Oper. Res,
Vol. 208, pp. 239-242.
[6] Mandal, B. and Pal, A.K. (1998): Order level inventory system with ramp type demand rate for deteriorating items; J.
Interdisciplinary Mathematics, Vol. 1, No. 1, pp. 49-66.
[7] Mathew, R.J. (2013): Perishable inventory model having mixture of Weibull lifetime and demand as function of both selling
price and time; International J. of Scientific and Research Publication, Vol. 3(7), pp. 1-8.
[8] Mukhopadhyay, R.N., Mukherjee, R.N. and Chaudhary, K.S. (2004): Joint pricing and ordering policy for deteriorating
inventory; Computers and Industrial Engineering, Vol. 47, pp. 339-349.
[9] Nahmias, S. (1982): Perishable inventory theory: a review; Operations Research, Vol. 30, pp. 680-708.
[10] Ouyang, L. Y., Wu, K.S. and Yang, C.T. (2006): A study on an inventory model for non-instantaneous deteriorating items with
permissible delay in payments; Computers and Industrial Engineering, Vol. 51, pp. 637-651.
[11] Patel, R. and Parekh, R. (2014): Deteriorating items inventory model with stock dependent demand under shortages and variable
selling price, International J. Latest Technology in Engg. Mgt. Applied Sci., Vol. 3, No. 9, pp. 6-20.
[12] Raafat, F. (1991): Survey of literature on continuously deteriorating inventory model, Euro. J. of O.R. Soc., Vol. 42, pp. 27-37.
[13] Salameh, M.K. and Jaber, M.Y. (2000): Economic production quantity model for items with imperfect quality; J. Production
Eco., Vol. 64, pp. 59-64.
[14] Shah, Y.K. and Jaiswal, M.C. (1977): An order level inventory model for a system with constant rate of deterioration; Opsearch;
Vol. 14, pp. 174-184.
[15] Teng, J.T. and Chang, H.T. (2005): Economic production quantity model for deteriorating items with price and stock dependent
demand; Computers and Oper. Res., Vol. 32, pp. 279-308.
[16] Wu, K.S., Ouyang, L. Y. and Yang, C.T. (2006): An optimal replenishment policy for non-instantaneous deteriorating items with
stock dependent demand and partial backlogging; International J. of Production Economics, Vol. 101, pp. 369-384.

More Related Content

PDF
A common random fixed point theorem for rational ineqality in hilbert space ...
PDF
11 two warehouse production inventory model with different deterioration rate...
PDF
Application of parallel hierarchical matrices and low-rank tensors in spatial...
PPT
ppt_tech
PDF
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
PDF
Communication systems solution manual 5th edition
PDF
communication-systems-4th-edition-2002-carlson-solution-manual
PPT
Geohydrology ii (3)
A common random fixed point theorem for rational ineqality in hilbert space ...
11 two warehouse production inventory model with different deterioration rate...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
ppt_tech
素数は孤独じゃない(番外編) 第13回 数学カフェ「素数!!」
Communication systems solution manual 5th edition
communication-systems-4th-edition-2002-carlson-solution-manual
Geohydrology ii (3)

What's hot (18)

PPT
Image Compression Comparison Using Golden Section Transform, Haar Wavelet Tra...
PDF
A small introduction into H-matrices which I gave for my colleagues
PDF
ロマンティックな9つの数 #ロマ数ボーイズ
PDF
Application of hierarchical matrices for partial inverse
PDF
طراحی الگوریتم فصل 1
PDF
Fixed point and common fixed point theorems in complete metric spaces
PDF
Fixed point theorems for random variables in complete metric spaces
PDF
合同数問題と保型形式
PDF
12X1 T01 01 log laws
PDF
A common random fixed point theorem for rational inequality in hilbert space
PDF
Application of parallel hierarchical matrices for parameter inference and pre...
DOC
DOCX
Lissajous
DOC
PPTX
Combined Functions
PPTX
Exercise 2
PDF
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
Image Compression Comparison Using Golden Section Transform, Haar Wavelet Tra...
A small introduction into H-matrices which I gave for my colleagues
ロマンティックな9つの数 #ロマ数ボーイズ
Application of hierarchical matrices for partial inverse
طراحی الگوریتم فصل 1
Fixed point and common fixed point theorems in complete metric spaces
Fixed point theorems for random variables in complete metric spaces
合同数問題と保型形式
12X1 T01 01 log laws
A common random fixed point theorem for rational inequality in hilbert space
Application of parallel hierarchical matrices for parameter inference and pre...
Lissajous
Combined Functions
Exercise 2
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
Ad

Viewers also liked (9)

PDF
On Power Tower of Integers
PDF
MISHRA DISTRIBUTION
PDF
An Improved Regression Type Estimator of Finite Population Mean using Coeffic...
PDF
Congruence Lattices of A Finite Uniform Lattices
PDF
International Journal of Business and Management Invention (IJBMI)
PDF
On Estimation of Population Variance Using Auxiliary Information
PDF
Analysis of expected and actual waiting time in fast food restaurants
PDF
Problems and prospects of telecommunication sector of bangladesh a critical ...
PPTX
Mobile Banking System in Bangladesh- A Closer Study
On Power Tower of Integers
MISHRA DISTRIBUTION
An Improved Regression Type Estimator of Finite Population Mean using Coeffic...
Congruence Lattices of A Finite Uniform Lattices
International Journal of Business and Management Invention (IJBMI)
On Estimation of Population Variance Using Auxiliary Information
Analysis of expected and actual waiting time in fast food restaurants
Problems and prospects of telecommunication sector of bangladesh a critical ...
Mobile Banking System in Bangladesh- A Closer Study
Ad

Similar to Inventory Model with Different Deterioration Rates with Stock and Price Dependent Demand under Time Varying Holding Cost and Shortages (20)

PDF
Inventory Model with Different Deterioration Rates under Exponential Demand, ...
PDF
9 different deterioration rates of two warehouse inventory model with time a...
PDF
International Journal of Mathematics and Statistics Invention (IJMSI)
PDF
20 sameer sharma 186-206
PDF
Inventory Model with Different Deterioration Rates for Imperfect Quality Item...
PDF
An Inventory Management System for Deteriorating Items with Ramp Type and Qua...
PDF
Learning from customer interaction: how merchants create price-level proposit...
PDF
Perishable Inventory Model Having Weibull Lifetime and Time Dependent Demand
PDF
Intro to Quant Trading Strategies (Lecture 5 of 10)
PDF
An epq model having weibull distribution deterioration with
PDF
A Marketing-Oriented Inventory Model with Three-Component Demand Rate and Tim...
PDF
F027037047
PDF
Welcome to International Journal of Engineering Research and Development (IJERD)
PDF
By32474479
PDF
Ig3614301436
PDF
Ig3614301436
PPT
Eigen value , eigen vectors, caley hamilton theorem
PDF
On problem-of-parameters-identification-of-dynamic-object
PDF
Intro to Quantitative Investment (Lecture 4 of 6)
DOC
225.doc
Inventory Model with Different Deterioration Rates under Exponential Demand, ...
9 different deterioration rates of two warehouse inventory model with time a...
International Journal of Mathematics and Statistics Invention (IJMSI)
20 sameer sharma 186-206
Inventory Model with Different Deterioration Rates for Imperfect Quality Item...
An Inventory Management System for Deteriorating Items with Ramp Type and Qua...
Learning from customer interaction: how merchants create price-level proposit...
Perishable Inventory Model Having Weibull Lifetime and Time Dependent Demand
Intro to Quant Trading Strategies (Lecture 5 of 10)
An epq model having weibull distribution deterioration with
A Marketing-Oriented Inventory Model with Three-Component Demand Rate and Tim...
F027037047
Welcome to International Journal of Engineering Research and Development (IJERD)
By32474479
Ig3614301436
Ig3614301436
Eigen value , eigen vectors, caley hamilton theorem
On problem-of-parameters-identification-of-dynamic-object
Intro to Quantitative Investment (Lecture 4 of 6)
225.doc

Recently uploaded (20)

PPTX
Platelet disorders - thrombocytopenia.pptx
PPTX
Understanding the Circulatory System……..
PPT
Mutation in dna of bacteria and repairss
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PPT
Cell Structure Description and Functions
PDF
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PDF
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
PPTX
Preformulation.pptx Preformulation studies-Including all parameter
PDF
7.Physics_8_WBS_Electricity.pdfXFGXFDHFHG
PPTX
ELISA(Enzyme linked immunosorbent assay)
PPTX
Introcution to Microbes Burton's Biology for the Health
PPTX
LIPID & AMINO ACID METABOLISM UNIT-III, B PHARM II SEMESTER
PPTX
Substance Disorders- part different drugs change body
PDF
Chapter 3 - Human Development Poweroint presentation
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
CuO Nps photocatalysts 15156456551564161
PPTX
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
PPTX
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
PPTX
gene cloning powerpoint for general biology 2
Platelet disorders - thrombocytopenia.pptx
Understanding the Circulatory System……..
Mutation in dna of bacteria and repairss
TORCH INFECTIONS in pregnancy with toxoplasma
Cell Structure Description and Functions
Integrative Oncology: Merging Conventional and Alternative Approaches (www.k...
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
Preformulation.pptx Preformulation studies-Including all parameter
7.Physics_8_WBS_Electricity.pdfXFGXFDHFHG
ELISA(Enzyme linked immunosorbent assay)
Introcution to Microbes Burton's Biology for the Health
LIPID & AMINO ACID METABOLISM UNIT-III, B PHARM II SEMESTER
Substance Disorders- part different drugs change body
Chapter 3 - Human Development Poweroint presentation
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
CuO Nps photocatalysts 15156456551564161
GREEN FIELDS SCHOOL PPT ON HOLIDAY HOMEWORK
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
gene cloning powerpoint for general biology 2

Inventory Model with Different Deterioration Rates with Stock and Price Dependent Demand under Time Varying Holding Cost and Shortages

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 3 Issue 8 || December. 2015 || PP-01-14 www.ijmsi.org 1 | Page Inventory Model with Different Deterioration Rates with Stock and Price Dependent Demand under Time Varying Holding Cost and Shortages S.R. Sheikh1 and Raman Patel2 1 Department of Statistics, V.B. Shah Institute of Management, Amroli, Surat 2 Department of Statistics, Veer Narmad South Gujarat University, Surat ABSTRACT: An inventory model for deteriorating items with stock and price dependent demand is developed. Holding cost is considered as function of time. Shortages are allowed and completely backlogged. Numerical example is provided to illustrate the model and sensitivity analysis is also carried out for parameters. KEY WORDS: Inventory model, Deterioration, Price dependent demand, Stock dependent demand, Time varying holding cost, Shortages I. INTRODUCTION In real life, deterioration of items is a general phenomenon for many inventory systems and therefore deterioration effect cannot be ignored. Many researchers have studied EOQ models for deteriorating items in past. Ghare and Schrader [2] considered no-shortage inventory model with constant rate of deterioration. The model was extended by Covert and Philip [1] by considering variable rate of deterioration. By considering shortages, the model was further extended by Shah and Jaiswal [14]. The related work are found in (Nahmias [9], Raffat [12], Goyal and Giri [3], Ouyang et al. [10], Wu et al. [16]). Hill [4] considered inventory model with ramp type demand rate. Mandal and Pal [6] developed inventory model with ramp type demand with shortages. Hung [5] considered inventory model with arbitrary demand and arbitrary deterioration rate. Salameh and Jaber [13] developed a model to determine the total profit per unit of time and the economic order quantity for a product purchased from the supplier. Mukhopadhyay et al. [8] developed an inventory model for deteriorating items with a price-dependent demand rate. The rate of deterioration was taken to be time-proportional and a power law form of the price-dependence of demand was considered. Teng and Chang [15] considered the economic production quantity model for deteriorating items with stock level and selling price dependent demand. Mathew [7] developed an inventory model for deteriorating items with mixture of Weibull rate of decay and demand as function of both selling price and time. Patel and Parekh [11] developed an inventory model with stock dependent demand under shortages and variable selling price. Inventory models for non-instantaneous deteriorating items have been an object of study for a long time. Generally the products are such that there is no deterioration initially. After certain time deterioration starts and again after certain time the rate of deterioration increases with time. Here we have used such a concept and developed the deteriorating items inventory models. In this paper we have developed an inventory model with stock and price dependent demand with different deterioration rates for the cycle time. Shortages are allowed and completely backlogged. To illustrate the model, numerical example is taken and sensitivity analysis for major parameters on the optimal solutions is also carried out. II. ASSUMPTIONS AND NOTATIONS The following notations are used for the development of the model: NOTATIONS: D(t) : Demand rate is a linear function of price and inventory level (a + bI(t) - ρp, a>0, 0<b<1, ρ>0) A : Replenishment cost per order c : Purchasing cost per unit p : Selling price per unit T : Length of inventory cycle I(t) : Inventory level at any instant of time t, 0 ≤ t ≤ T Q1 : Order quantity intially
  • 2. Inventory Model with Different Deterioration Rates… www.ijmsi.org 2 | Page Q2 : Shortages of quantity Q : Order quantity θ : Deterioration rate during μ1 ≤ t ≤ μ2, 0< θ <1 θt : Deterioration rate during , μ2 ≤ t ≤ T, 0< θ <1 c2 : Shortage cost per unit item π : Total relevant profit per unit time. ASSUMPTIONS: The following assumptions are considered for the development of the model.  The demand of the product is declining as a function of price and inventory level.  Replenishment rate is infinite and instantaneous.  Lead time is zero.  Shortages are permitted and completely backlogged.  Deteriorated units neither be repaired nor replaced during the cycle time. III. THE MATHEMATICAL MODEL AND ANALYSIS Let I(t) be the inventory at time t (0 ≤ t ≤ T) as shown in figure. Figure 1 The differential equations which describes the instantaneous states of I(t) over the period (0, T) are given by : dI(t) = - (a + bI(t) - ρp), dt 1 0 t μ  (1) dI(t) + θI(t) = - (a + bI(t) - ρp), dt 1 2 μ t μ  (2) dI(t) + θtI(t) = - (a + bI(t) - ρp), dt 2 0 μ t t  (3) dI(t) = - (a + bI(t) - ρp), dt 0 t t T  (4) with initial conditions I(0) = Q1, I(μ1) = S1, I(t0) = 0, and I(T) = -Q2. Solutions of these equations are given by 2 2 2 2 1 1 1 I(t) = Q (1 - b t) - (at + b t -ρ p t - ρ b p t - ab t + ρ b p t ), 2 2 (5)                             2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 a μ - t - ρ p μ - t + a θ + b μ - t - ρ p θ + b μ - t 2 2I(t) = + S 1 + θ + b μ - t - a θ + b t μ - t + ρ p θ + b t μ - t - ab θ t μ - t + ρ p b θ t μ - t             (6)                             2 2 2 2 3 3 3 3 0 0 0 0 0 0 0 0 3 3 3 3 2 2 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 a t -t -ρ p t -t + ab t -t - ρ p b t -t + aθ t -t - ρ p θ t -t -ab t t -t + b ρ p t t -t 2 2 6 6 I(t) = 1 1 1 1 1 1 - ab θ t t -t + ρ b p θ t t -t - aθ t t -t + ρ p θ t t -t + ρ b p θ t t -t - ab θ t t -t 6 6 2 2 4 4            (7)             2 2 2 2 0 0 0 0 0 0 1 1 I(t) = a t - t - ρp t - t + ab t - t - ρpb t - t - abt t - t + b ρpt t - t . 2 2       (8)
  • 3. Inventory Model with Different Deterioration Rates… www.ijmsi.org 3 | Page (by neglecting higher powers of θ) From equation (5), putting t = μ1, we have     2 2 2 21 1 1 1 1 1 1 1 1 1 S 1 1 1 Q = + aμ - ρ p μ + b μ - b ρ p μ - ab μ + ρ b p μ . 1 - b μ 1 - b μ 2 2       (9) From equations (6) and (7), putting t = μ2, we have                             2 2 2 2 1 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 1 1 a μ -μ -ρ p μ -μ + a θ + b μ -μ - ρ p θ + b μ - μ 2 2I(μ ) = + S 1 + θ + b μ -μ -a θ + b μ μ -μ + ρ p θ + b μ μ -μ -ab θ μ μ -μ + b ρ θ p μ μ -μ             (10)                         2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 0 2 1 1 1 1 a t - μ - ρ p t - μ + a b t - μ - ρ b p t - μ + a θ t - μ - ρ θ p t - μ 2 2 6 6 1 1 1 I(μ ) = - a b μ t - μ + b ρ p μ t - μ - a b θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ 6 6 2 1 1 + ρ θ p μ t - μ + ρ 2 4    2 2 2 2 2 2 2 0 2 2 0 2 . 1 b θ p μ t - μ - a b θ μ t - μ 4                  (11) So from equations (10) and (11), we get                           1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 3 3 3 3 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 1 S = 1 + θ + b μ - μ 1 1 1 1 a t - μ - ρ p t - μ + a b t - μ - ρ b p t - μ + a θ t - μ - ρ θ p t - μ 2 2 6 6 1 1 1 - a b μ t - μ + b ρ p μ t - μ - a b θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ 6 6 2 1 + ρ 2                                  2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 2 0 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 . 1 1 1 θ p μ t -μ + ρ b θ p μ t -μ - a b θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ 4 4 2 1 + ρ p θ + b μ -μ + a θ + b μ μ -μ -ρ p θ + b μ μ -μ + a b θ μ μ -μ -b ρ θ p μ μ -μ 2                       (12) Putting value of S1 from equation (12) into equation (9), we have                               1 1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 2 0 1 Q = 1 - b μ 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t -μ + ρ θ p μ t -μ 6 6 2 2 1 + ρ b θ p μ t -μ 4                                2 2 2 2 2 2 2 2 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 1 1 1 1 1 1 1 1 - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 1 1 aμ - ρ p μ + b μ + b ρ p μ - ab μ 2 2 +                         1 . 1 - b μ     (13) Putting t = T in equation (8), we have             2 2 2 2 2 0 0 0 0 0 0 1 1 Q = a T - t - ρp T - t + ab T - t - ρpb T - t - abT T - t + b ρpT T - t . 2 2       . (14) Using (13) in (5), we have
  • 4. Inventory Model with Different Deterioration Rates… www.ijmsi.org 4 | Page                             1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 0 2 2 0 2 2 0 2 2 0 2 (1 -b t) I(t) = 1 - b μ 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t - μ - ab μ t - μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ + ρ θ p μ 6 6 2 2                                  2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 1 1 1 t - μ 1 1 1 1 + ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 1 (1 -b t) aμ - ρ p μ + b μ 2 +                        2 2 2 1 1 2 2 2 1 1 + b ρ p μ - ab μ 1 12 - at + b t - ρ p t + ρ b p t + ab t 1 - b μ 2 2            (15) Based on the assumptions and descriptions of the model, the total relevant profit (π), include the following elements: (i) Ordering cost (OC) = A (16) (ii) 0t 0 H C = (x + yt)I(t)d t 01 2 1 2 tμ μ 0 μ μ = (x + yt)I(t)d t + (x + yt)I(t)d t + (x + yt)I(t)d t                   2 2 3 3 6 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 1 1 1 1 1 5 5 = x at - ρ p t + ab t - ρ b p t + aθ t - ρ θ p t t + y ab θ - ρ b p t 2 2 6 6 6 1 2 1 2 aμ - ρ p μ 1 1 + (θ + b ) μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ 2 2 6 6 + x +                                                  3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 2 2 1 2 2 1 2 2 1 2 1 1 1 1 + b ρ p μ t - μ - ab θ μ t -μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ θ p μ t -μ 6 6 2 2 1 1 1 + ρ b θ p μ t - μ - ab θ μ t - μ - a μ - μ + ρ p μ - μ - a θ + b μ - μ 4 4 2 1 + ρ p θ + b μ -μ + a θ + b μ μ -μ -ρ p θ + b μ μ -μ + ab θ 2       2 2 2 2 2 2 1 2 2 1 2 2 2 1 1 1 μ μ μ -μ -b ρ θ p μ μ -μ 1 1 1 + (θ + b )μ + a(θ + b )μ - ρ p (θ + b )μ 2 2                                                                                                  1 1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 aμ - ρ p μ 1 + 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t -μ + ρ θ p μ t -μ- x 6 6 2 2 1 + ρ b θ p μ 4                                  2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 1 1 1 + θ + b μ + a(θ + b )μ - ρ p (θ + b )μ 2 2                           1 μ                                      
  • 5. Inventory Model with Different Deterioration Rates… www.ijmsi.org 5 | Page 2 2 0 0 0 0 3 2 3 3 0 0 0 0 2 0 0 1 1 1 1 1 1 x - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t 2 2 4 2 2 41 - μ 3 1 1 + y -a + ρ p + ρ b θ p t - ab t + ρ b p t - ab θ t 6 6 1 1 1 1 1 1 1 - x aθ - ρ θ p + y - ρ b p + ρ θ p t + ρ b θ p t + ab - 4 3 3 2 2 4 2                         2 4 0 0 2 5 2 3 3 2 2 3 3 2 0 0 0 0 0 0 0 0 0 0 0 1 1 aθ t - ab θ t μ 2 4 1 5 5 1 1 - x ab θ - ρ b θ p + y aθ - ρ θ p μ 5 1 2 1 2 3 3 1 1 1 1 1 1 1 + x -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t + y at -ρ p t + ab t - ρ b p t + aθ t - ρ θ t t 2 6 6 2 2 6 6 -                                              4 1 1 1 1 x ab θ - ρ b θ p + y a θ + b - ρ p θ + b μ 4 2 2                                                                               1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 0 2 2 0 2 2 0 2 2 0 2 1 1 x a θ + b - ρ p θ + b 2 2 1 -a + 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ 2 2 6 6 1 1 1 1 1- + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t -μ + ρ3 6 6 2 2+ y                                              2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 1 θ p μ t -μ 1 1 1 1 + ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ -θ - b - a θ + b μ + ρ p θ + b μ                      3 1 2 2 1 1 1 μ - ab θ μ + ρ b θ p μ + ρ p                                                            /                             1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 1 -a + 1 + θ + b μ - μ 1 1 1 1 a t -μ - ρ p t - μ + ab t - μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t - μ1 6 6 2 2- x 2 1 + ρ b θ p μ 4                                      2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 1 1 1 1 1 t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ -θ -b - a θ + b μ + ρ p θ + b μ - ab θ μ + ρ b θ p μ                      2 + ρ p                                                     
  • 6. Inventory Model with Different Deterioration Rates… www.ijmsi.org 6 | Page                             1 1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 1 aμ - ρ p μ + 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t - μ -a b μ t -μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ θ p μ t -μ 6 6 2 21 - y 12 + ρ b θ p μ 4                                      2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 1 1 1 + θ + b μ + a θ + b μ - ρ p θ + b μ 2 2                              2 1 μ                                                        2 2 0 0 0 0 3 5 0 0 3 3 0 0 1 1 1 1 1 1 x - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t 2 2 4 2 2 41 1 5 5 1 1 + t + x ab θ - ρ b θ p + y aθ - ρ θ p t 3 5 1 2 1 2 3 31 1 + y -a + ρ p + ρ b θ p T - ab t + ρ b p t - ab θ T 6 6 1 1 1 + x aθ - ρ θ p 4 3 3                                      2 2 4 0 0 0 0 0 1 1 1 1 1 1 + y - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t t 2 2 4 2 2 4                                         1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 0 2 2 0 2 2 0 2 2 0 2 1 1 - b μ 1 + θ + b μ - μ 1 1 1 1 a t - μ - ρ p t - μ + ab t - μ - ρ b p t - μ + a θ t - μ - ρ θ p t - μ - ab μ t - μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t - μ - a θ μ t - μ + 6 6 2 + x                                  2 2 0 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 ρ θ p μ t - μ 2 1 1 1 + ρ b θ p μ t - μ - ab θ μ t - μ - a μ - μ + ρ p μ - μ - a θ + b μ - μ 4 4 2 1 + ρ p θ + b μ - μ + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 2                        1 2 2 2 1 1 1 1 1 1 μ 1 1 aμ - ρ p μ + b μ + ρ b p μ - ab μ 2 2+ 1 - b μ                                                                 4 5 1 2 4 2 1 2 2 2 2 2 0 2 0 2 0 2 0 2 1 1 1 1 + y - b - ρ b p + ab μ + y ab θ - ρ b θ p μ 4 2 2 5 1 1 1 1 1 1 + x ab θ - ρ b θ p + y a θ + b - ρ p θ + b μ + x a θ + b - ρ p θ + b 4 2 2 3 2 2 1 -a + 1 + θ + b μ - μ 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + 2 2 + y                                                                   3 3 3 3 0 2 0 2 2 0 2 2 0 2 3 3 3 3 2 2 2 2 2 2 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 2 2 1 2 1 2 1 2 1 2 2 1 2 1 aθ t -μ - ρ θ p t -μ -ab μ t -μ + b ρ p μ t -μ 6 6 1 1 1 1 1 1 - ab θ μ t -μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t -μ + ρ b θ p μ t -μ - ab θ μ t -μ 6 6 2 2 4 4 1 1 -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ - μ + a θ + b μ μ - μ - 2 2               2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 1 1 1 1 ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ - θ -b - a θ + b μ + ρ p θ + b μ - ab θ μ + ρ b θ p μ + ρ p                                                                           3 2 μ   
  • 7. Inventory Model with Different Deterioration Rates… www.ijmsi.org 7 | Page                             1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 0 1 -a + 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t - μ + a b t -μ - ρ b p t -μ + a θ t -μ - ρ θ p t -μ -a b μ t -μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - a b θ μ t - μ + ρ b θ p μ t -μ - a θ μ t - μ + ρ θ p μ t - μ 1 6 6 2 2 + x 2 1 + ρ b θ p μ t 4                                      2 2 2 2 2 2 2 2 2 0 2 1 2 1 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 - μ - a b θ μ t - μ - a μ - μ + ρ p μ - μ - a θ + b μ - μ 4 2 1 + ρ p θ + b μ -μ + a θ + b μ μ -μ -ρ p θ + b μ μ -μ + a b θ μ μ -μ -b ρ θ p μ μ -μ 2 -θ -b - a θ + b μ + ρ p θ + b μ - a b θ μ + ρ b θ p μ +                       2 2 μ ρ p                                                                                 1 1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 1 aμ - ρ p μ + 1 + θ + b μ - μ 1 1 1 1 a t - μ - ρ p t - μ + ab t -μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t -μ + ρ b θ p μ t -μ - aθ μ t - μ + ρ θ p μ t - μ1 6 6 2 2+ y 2                                         2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 1 1 1 1 1 + ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 1 1 1 + a θ + b μ + a θ + b μ - ρ p θ + b μ 2 2                     2 2 μ                                                                                1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 0 2 2 0 2 2 0 2 2 0 2 1 1 x - b - ρ b p + ab 2 2 1 - 1 -b μ 1 + θ + b μ - μ 1 1 1 1 a t - μ - ρ p t -μ + ab t - μ - ρ b p t -μ + aθ t -μ - ρ θ p t -μ -ab μ t -μ 2 2 6 6 1 1 1 1+ + b ρ p μ t -μ - ab θ μ t -μ + ρ b θ p μ t - μ - aθ μ t - μ3 6 6 2+ y b                                        2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 1 + ρ θ p μ t - μ 2 1 1 1 1 + ρ b θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ                                 3 1 2 2 2 1 1 1 1 1 1 μ 1 1 b aμ - ρ p μ + b μ + ρ b p μ - ab μ 2 2 - - a + ρ p 1 -b μ                                                                                                    1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 1 - 1 -b μ 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t - μ - ρ θ p t - μ - ab μ t - μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t - μ1 6 6 2 2+ x b 2 1 + ρ b 4                                2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 1 1 1 1 1 θ p μ t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 1 b aμ - ρ p μ + 2 -                                  2 2 2 1 1 1 1 1 b μ + ρ b p μ - ab μ 2 - a + ρ p 1 -b μ                                                               
  • 8. Inventory Model with Different Deterioration Rates… www.ijmsi.org 8 | Page                               1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 3 3 3 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 1 1 -b μ 1 + θ + b μ - μ 1 1 1 1 a t -μ -ρ p t -μ + ab t -μ - ρ b p t -μ + aθ t - μ - ρ θ p t - μ - ab μ t - μ 2 2 6 6 1 1 1 1 + b ρ p μ t - μ - ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ + ρ θ p μ t -μ 6 6 2 21 a + y 12 + ρ b θ p μ 4                                  2 2 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 t -μ - ab θ μ t -μ -a μ -μ + ρ p μ -μ - a θ + b μ -μ + ρ p θ + b μ -μ 4 2 2 + a θ + b μ μ - μ - ρ p θ + b μ μ - μ + ab θ μ μ - μ - b ρ θ p μ μ - μ 1 1 aμ - ρ p μ + b μ + ρ b p μ - ab μ 2 2 + 1 -b μ                     2 1 μ                                                    6 2 2 3 3 2 0 0 0 0 0 0 2 3 3 2 2 3 3 2 0 0 0 0 0 0 0 0 0 0 2 1 5 5 1 1 1 1 - y ab θ - ρ b θ p μ - x at - ρ p t + ab t - ρ b p t + aθ t - ρ θ t μ 6 1 2 1 2 2 2 6 6 1 1 1 1 1 1 1 1 - x -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t + y at -ρ p t + ab t - ρ b p t + aθ t - ρ θ t μ - 2 6 6 2 2 6 6 5                              5 1 y ab θ -ρ b θ p μ ( 17) (by neglecting higher powers of θ) (iii) 2 1 2 μ T μ μ D C = c θ I(t)dt + θ tI(t)dt                   2 2 2 3 2 3 1 2 2 1 2 2 1 2 2 1 2 2 2 3 2 3 2 2 4 2 2 4 1 2 2 1 2 2 1 2 2 1 2 2 1 1 1 1 1 1 a μ μ - μ - ρ p μ μ - μ + a θ + b μ μ - μ - ρ p θ + b μ μ - μ 2 2 2 3 2 3 1 1 1 1 1 1 1 1 -a θ + b μ μ - μ + ρ p θ + b μ μ - μ -ab θ μ μ - μ + ρ p b θ μ μ - μ 2 3 2 3 2 4 2 4 = cθ                                                                         1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 3 2 3 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 2 2 2 0 2 2 0 2 1 + 1 + θ + b (μ -μ ) 1 1 1 1 a t -μ -ρ p t -μ + ab t - μ - ρ b p t - μ + aθ t - μ - ρ θ p t -μ 2 2 6 6 1 1 1 -ab μ (t -μ )+ b ρ p μ (t -μ )- ab θ μ t - μ + ρ b θ p μ t -μ - aθ μ t -μ 6 6 2 1 1 1 + ρ θ p μ t -μ + ρ b θ p μ t - μ - ab 2 4 4                     2 2 2 2 0 2 0 2 0 2 2 2 2 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 θ μ t - μ -a(t -μ )+ ρ p (t -μ ) 1 1 - a θ + b μ -μ + ρ p θ + b μ -μ + a θ + b μ (μ -μ )-ρ p θ + b μ (μ -μ ) 2 2 + ab θ μ μ - μ - ρ b θ p μ μ - μ 1 μ + θ + b μ μ - μ 2                                                                                              
  • 9. Inventory Model with Different Deterioration Rates… www.ijmsi.org 9 | Page                   2 2 3 3 4 4 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 0 2 0 2 0 2 0 2 0 2 0 2 2 1 2 2 1 2 1 1 1 1 1 1 aμ - ρ p μ + a θ + b μ - ρ p θ + b μ - ab θ μ + ρ b θ p μ 2 2 6 6 4 4 1 1 + θ + b (μ -μ ) 1 1 1 1 a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ + aθ t - μ - ρ θ p t - μ 2 2 6 6 1 - ab μ (μ -μ ) + b ρ p μ (μ -μ ) - 6 - cθ +                         3 3 3 3 2 2 0 2 2 0 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2 0 2 2 0 2 1 2 1 2 2 2 2 2 1 2 1 2 2 1 2 2 1 2 1 1 ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ 6 2 1 1 1 + ρ θ p μ t -μ + ρ b θ p μ t - μ - ab θ μ t - μ - a( μ -μ ) + ρ p (μ -μ ) 2 4 4 1 1 - a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ ) - ρ p θ + b μ (μ -μ ) 2 2 +       2 2 2 2 2 1 2 2 1 2 2 1 1 ab θ μ μ - μ - ρ b θ p μ μ - μ 1 μ + θ + b μ 2                                                                                   6 5 2 2 4 0 0 0 0 0 0 0 3 3 3 2 2 2 3 0 0 0 0 0 0 0 0 0 0 0 1 5 5 1 1 1 1 1 1 1 1 1 1 ab θ - ρ b θ p t + aθ - ρ θ p t + - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t t 6 1 2 1 2 5 3 3 4 2 2 4 2 2 4 + cθ 1 1 1 1 1 1 1 1 + -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t t + at -ρ p t + ab t - ρ b p t + aθ t - ρ θ p t 3 6 6 2 2 2 6 6                         2 0 6 5 2 2 4 2 2 0 0 0 0 2 3 3 3 2 0 0 0 0 2 0 0 0 t 1 5 5 1 1 1 1 1 1 1 1 1 1 ab θ - ρ b θ p μ + aθ - ρ θ p μ + - ρ b p + ρ θ p t + ρ b θ p t + ab - aθ t - ab θ t μ 6 1 2 1 2 5 3 3 4 2 2 4 2 2 4 -cθ 1 1 1 1 1 1 + -a+ ρ p + ρ b θ p t -ab t + ρ b p t - ab θ t μ + at -ρ p t + ab t - 3 6 6 2 2                                        2 2 3 2 0 0 0 2 1 1 ρ b p t + aθ t - ρ θ p t μ 2 6 6                (18) (iv) Shortage cost (SC) is given by 0 T 2 t S C = - c I(t)d t                        3 3 2 2 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 1 1 1 1 ab - ρ b p T - t + - a + ρ p - ab t + ρ b p t T - t 3 2 2 2 = - c 1 1 + at T - t - ρ p t T - t + ab t T - t - ρ b p t T - t 2 2                (19) (v) T 0 S R = p (a+ b I(t) - ρ p )d t        01 2 1 2 0 tμ μ T 0 μ μ t = p (a+ bI(t) - ρp)dt + (a+ bI(t) - ρp)dt + (a+ bI(t) - ρp)dt + (a+ bI(t) - ρp)dt            
  • 10. Inventory Model with Different Deterioration Rates… www.ijmsi.org 10 | Page                        1 1 2 2 2 2 2 0 2 0 2 0 2 0 2 3 3 3 3 0 2 0 2 2 0 2 2 0 2 3 3 3 3 2 2 0 2 2 0 2 2 0 2 1 1 1 -b μ 1 + θ + b (μ -μ ) 1 1 a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ 2 2 1 1 + aθ t - μ - ρ θ p t - μ - ab μ (t -μ ) + b ρ p μ (t -μ ) 6 6 1 1 1 1 - ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ 6 6 2 2 aμ + b = p                       2 2 0 2 2 2 2 2 2 2 2 0 2 2 0 2 1 2 1 2 2 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 θ p μ t -μ 1 1 + ρ b θ p μ t - μ - ab θ μ t - μ - a(μ -μ ) + ρ p (μ -μ ) 4 4 1 1 - a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ ) 2 2 - ρ p θ + b μ (μ -μ ) + ab θ μ μ - μ - ρ b θ p μ μ - μ                      2 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 3 2 3 3 1 1 1 1 1 1 μ - b μ 2 1 1 1 1 + aμ - ρ p μ + b μ + ρ b p μ - ab μ μ - b μ (1 -b μ ) 2 2 2 1 1 1 1 1 - aμ - b μ + ρ p μ - ρ b p μ + ab μ 2 6 2 6 3                                                                      1 -ρ p μ                                                                                       2 2 2 3 1 2 2 1 2 2 1 2 2 2 3 2 3 1 2 2 1 2 2 2 3 2 2 4 2 1 2 2 1 2 2 1 2 1 1 1 1 a μ μ - μ - ρ p μ μ - μ + a θ + b μ μ - μ 2 2 2 3 1 1 1 1 - ρ p θ + b μ μ - μ - a θ + b μ μ - μ 2 3 2 3 1 1 1 1 1 + ρ p θ + b μ μ - μ - ab θ μ μ - μ + ρ p b θ μ 2 3 2 4 2 aμ + b + p                                                               2 4 2 2 1 2 2 2 2 2 0 2 0 2 0 2 0 2 3 3 3 3 0 2 0 2 2 0 2 2 0 2 3 2 3 2 2 2 0 2 2 0 2 2 0 2 1 μ - μ 4 1 + 1 + θ + b (μ -μ ) 1 1 a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ 2 2 1 1 + aθ t - μ - ρ θ p t - μ - ab μ (t -μ ) + b ρ p μ (t -μ ) 6 6 1 1 1 - ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ + 6 6 2                             2 2 0 2 2 2 2 2 2 2 2 0 2 2 0 2 0 2 0 2 2 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 1 2 1 ρ θ p μ t -μ 2 1 1 + ρ b θ p μ t - μ - ab θ μ t - μ - a(t -μ ) + ρ p (t -μ ) 4 4 1 1 - a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ ) 2 2 - ρ p θ + b μ (μ -μ ) + ab θ μ μ - μ - ρ b θ p μ μ - μ                    2 2 1 2 2 2 1 μ + θ + b μ μ - μ 2 - ρ p μ                                                                                                                                                                  
  • 11. Inventory Model with Different Deterioration Rates… www.ijmsi.org 11 | Page                    2 2 3 3 4 4 1 1 1 1 1 1 1 2 2 2 2 2 0 2 0 2 0 2 0 2 3 3 3 3 0 2 0 2 2 0 2 2 0 1 1 1 1 1 1 1 aμ - ρ p μ + a θ + b μ - ρ p θ + b μ - ab θ μ + ρ b θ p μ 2 2 6 6 4 4 1 + 1 + θ + b (μ -μ ) 1 1 a t -μ - ρ p t -μ + ab t - μ - ρ b p t - μ 2 2 1 1 + aθ t - μ - ρ θ p t - μ - ab μ (t -μ ) + b ρ p μ (t -μ 6 6 aμ + b - p                         2 3 2 3 2 2 2 2 0 2 2 0 2 2 0 2 2 0 2 2 2 2 2 2 2 2 0 2 2 0 2 0 2 0 2 2 2 2 2 1 2 1 2 2 1 2 2 ) 1 1 1 1 - ab θ μ t - μ + ρ b θ p μ t - μ - aθ μ t -μ + ρ θ p μ t -μ 6 6 2 2 1 1 + ρ b θ p μ t - μ - ab θ μ t - μ - a(t -μ ) + ρ p (t -μ ) 4 4 1 1 - a θ + b μ - μ + ρ p θ + b μ - μ + a θ + b μ (μ -μ ) 2 2 - ρ p θ + b μ (μ       2 2 2 2 1 2 2 1 2 2 1 2 2 1 1 1 -μ ) + ab θ μ μ - μ - ρ b θ p μ μ - μ 1 μ + θ + b μ 2 - ρ p μ                                                                                                                                                        2 2 3 3 4 0 0 0 0 0 0 0 4 5 5 0 0 0 2 2 2 3 0 2 2 0 2 2 0 2 2 2 1 1 1 1 1 at - ρ p t + ab t - ρ b p t + aθ t 2 2 6 6 1 2 + p at + b - ρ p t 1 1 1 ρ θ p t - ab θ t + ρ b θ p t 1 2 1 2 1 2 1 1 1 1 a t μ - μ - ρ p t μ - μ + ab t μ - μ 2 2 2 3 - - p aμ + b                                     2 3 3 4 3 4 0 2 2 0 2 2 0 2 2 2 3 2 3 3 2 5 0 2 2 0 2 2 0 2 2 3 2 5 0 2 2 1 1 1 1 1 1 ρ b p t μ - μ + aθ t μ - μ - ρ θ p t μ - μ 2 3 6 4 6 4 1 1 1 1 1 1 1 - ab t μ - μ + b ρ p t μ - μ - ab θ t μ - μ 2 3 2 3 6 2 5 1 1 1 1 1 + ρ b θ p t μ - μ - aθ 6 2 5 2 3                                           2 3 4 3 4 0 2 2 0 2 2 2 3 5 2 3 5 0 2 2 0 2 2 -ρ p μ 1 1 1 1 t μ - μ + ρ θ p t μ - μ 4 2 3 4 1 1 1 1 1 1 + ρ b θ p t μ - μ - ab θ t μ - μ 4 3 5 4 3 5                                                                    2 2 2 3 0 0 0 2 3 2 3 2 3 0 0 0 2 0 0 1 1 1 1 T t - T - ρ p T t - T + ab t T - T 2 2 2 3 + p aT + b - ρ p T 1 1 1 1 1 1 - ρ b p t T - T - ab t T - T + ρ b p t T - T 2 3 2 3 2 3 1 1 - p at + b at - ρ p 2 2                                                  2 3 3 0 0 0 0 1 1 t + ab t - ρ b p t - ρ p t 6 6          (20) The total profit during a cycle, π(t0,T,p) consisted of the following:  0 1 π (t ,T ,p ) = S R - O C - H C - D C - S C T (21) Substituting values from equations (16) to (20) in equation (21), we get total profit per unit. Putting µ1= v1t0 and µ2=v2t0 in equation (21), we get profit in terms of t0, T and p. Differentiating equation (21) with respect to t0, T and p and equate it to zero, we have
  • 12. Inventory Model with Different Deterioration Rates… www.ijmsi.org 12 | Page i.e. 0 0 0 0 π(t ,T ,p ) π(t ,T ,p ) π(t ,T ,p ) = 0 , = 0 , = 0 t T p       (22) provided it satisfies the condition 2 2 2 0 0 0 2 0 00 2 2 2 0 0 0 2 0 2 2 2 0 0 0 2 0 π (t ,T ,p ) π (t ,T ,p ) π (t ,T ,p ) t T t pt π (t ,T ,p ) π (t ,T ,p ) π (t ,T ,p ) > 0 T t T pT π (t ,T ,p ) π (t ,T ,p ) π (t ,T ,p ) p t p T p                 (23) IV. NUMERICAL EXAMPLE Considering A= Rs.100, a = 500, b=0.05, c=Rs. 25, ρ= 5, θ=0.05, x = Rs. 5, y=0.05, v1 = 0.30, v2 = 0.50, c2 = Rs. 8, in appropriate units. The optimal values of t0* = 0.4505, T* =0.5808, p* = 50.5313, and Profit*= Rs. 12162.9820. The second order conditions given in equation (23) are also satisfied. The graphical representation of the concavity of the profit function is also given. t0 and Profit T and Profit p and Profit Graph 1 Graph 2 Graph 3 V. SENSITIVITY ANALYSIS On the basis of the data given in example above we have studied the sensitivity analysis by changing the following parameters one at a time and keeping the rest fixed. Table 1 Sensitivity Analysis Parameter % t0 T p Profit a +20% 0.4569 0.5629 60.5423 17655.9523 +10% 0.4526 0.5700 55.5345 14782.9921 -10% 0.4516 0.5965 45.5333 9795.8726 -20% 0.4567 0.6184 40.5414 7681.6778 x +20% 0.3794 0.5246 50.5201 12123.7579 +10% 0.4115 0.5496 50.5246 12142.1646 -10% 0.4991 0.6206 50.5412 12186.8211 -20% 0.5628 0.6735 50.5564 12214.5794 θ +20% 0.4397 0.5707 50.5240 12159.4220 +10% 0.4465 0.5776 50.5297 12161.2015 -10% 0.4546 0.5841 50.5330 12164.7889 -20% 0.4589 0.5875 50.5348 12133.6245
  • 13. Inventory Model with Different Deterioration Rates… www.ijmsi.org 13 | Page A +20% 0.4913 0.6344 50.5805 12130.3498 +10% 0.4714 0.6082 50.5565 12146.3045 -10% 0.4285 0.5519 50.5048 12180.4949 -20% 0.4050 0.5212 50.4767 12198.9846 ρ +20% 0.4165 0.5584 42.1586 10063.9856 +10% 0.4313 0.5679 45.9632 11017.7569 -10% 0.4748 0.5967 56.1179 13563.7951 -20% 0.5122 0.6245 63.1107 15316.7190 c2 +20% 0.4565 0.5709 50.5498 12197.9785 +10% 0.4537 0.5756 50.5411 12160.3310 -10% 0.4455 0.5849 50.5195 12165.9827 -20% 0.4404 0.5907 50.5074 12169.4242 From the table we observe that as parameter a increases/ decreases average total profit and optimum order quantity also increases/ decreases. Also, we observe that with increase and decrease in the value of θ, x and ρ, there is corresponding decrease/ increase in total profit and optimum order quantity. From the table we observe that as parameter A increases/ decreases average total profit decreases/ increases and optimum order quantity increases/ decreases. VI. CONCLUSION In this paper, we have developed an inventory model for deteriorating items with price and inventory dependent demand with different deterioration rates. Sensitivity with respect to parameters have been carried out. The results show that with the increase/ decrease in the parameter values there is corresponding increase/ decrease in the value of profit. REFERENCES [1] Covert, R.P. and Philip, G.C. (1973): An EOQ model for items with Weibull distribution deterioration; American Institute of Industrial Engineering Transactions, Vol. 5, pp. 323-328. [2] Ghare, P.N. and Schrader, G.F. (1963): A model for exponentially decaying inventories; J. Indus. Engg., Vol. 15, pp. 238-243. [3] Goyal, S.K. and Giri, B. (2001): Recent trends in modeling of deteriorating inventory; Euro. J. Oper. Res., Vol. 134, pp. 1-16. [4] Hill, R.M. (1995): Inventory models for increasing demand followed by level demand; J. Oper. Res. Soc., Vol. 46, No. 10, pp. 1250-1259. [5] Hung, K.C. (2011): An inventory model with generalized type demand, deterioration and backorder rates; Euro. J. Oper. Res, Vol. 208, pp. 239-242. [6] Mandal, B. and Pal, A.K. (1998): Order level inventory system with ramp type demand rate for deteriorating items; J. Interdisciplinary Mathematics, Vol. 1, No. 1, pp. 49-66. [7] Mathew, R.J. (2013): Perishable inventory model having mixture of Weibull lifetime and demand as function of both selling price and time; International J. of Scientific and Research Publication, Vol. 3(7), pp. 1-8. [8] Mukhopadhyay, R.N., Mukherjee, R.N. and Chaudhary, K.S. (2004): Joint pricing and ordering policy for deteriorating inventory; Computers and Industrial Engineering, Vol. 47, pp. 339-349. [9] Nahmias, S. (1982): Perishable inventory theory: a review; Operations Research, Vol. 30, pp. 680-708. [10] Ouyang, L. Y., Wu, K.S. and Yang, C.T. (2006): A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments; Computers and Industrial Engineering, Vol. 51, pp. 637-651. [11] Patel, R. and Parekh, R. (2014): Deteriorating items inventory model with stock dependent demand under shortages and variable selling price, International J. Latest Technology in Engg. Mgt. Applied Sci., Vol. 3, No. 9, pp. 6-20. [12] Raafat, F. (1991): Survey of literature on continuously deteriorating inventory model, Euro. J. of O.R. Soc., Vol. 42, pp. 27-37. [13] Salameh, M.K. and Jaber, M.Y. (2000): Economic production quantity model for items with imperfect quality; J. Production Eco., Vol. 64, pp. 59-64. [14] Shah, Y.K. and Jaiswal, M.C. (1977): An order level inventory model for a system with constant rate of deterioration; Opsearch; Vol. 14, pp. 174-184. [15] Teng, J.T. and Chang, H.T. (2005): Economic production quantity model for deteriorating items with price and stock dependent demand; Computers and Oper. Res., Vol. 32, pp. 279-308. [16] Wu, K.S., Ouyang, L. Y. and Yang, C.T. (2006): An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging; International J. of Production Economics, Vol. 101, pp. 369-384.